1
|
Liu Q, Shen C, Dai Y, Tang T, Hou C, Yang H, Wang Y, Xu J, Lu Y, Wang Y, Shan Y, Wei P, Zhao G. Single-cell, single-nucleus and xenium-based spatial transcriptomics analyses reveal inflammatory activation and altered cell interactions in the hippocampus in mice with temporal lobe epilepsy. Biomark Res 2024; 12:103. [PMID: 39272194 PMCID: PMC11396644 DOI: 10.1186/s40364-024-00636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is among the most common types of epilepsy and often leads to cognitive, emotional, and psychiatric issues due to the frequent seizures. A notable pathological change related to TLE is hippocampal sclerosis (HS), which is characterized by neuronal loss, gliosis, and an increased neuron fibre density. The mechanisms underlying TLE-HS development remain unclear, but the reactive transcriptomic changes in glial cells and neurons of the hippocampus post-epileptogenesis may provide insights. METHODS To induce TLE, 200 nl of kainic acid (KA) was stereotactically injected into the hippocampal CA1 region of mice, followed by a 7-day postinjection period. Single-cell RNA sequencing (ScRNA-seq), single-nucleus RNA sequencing (SnRNA-seq), and Xenium-based spatial transcriptomics analyses were employed to evaluate the changes in mRNA expression in glial cells and neurons. RESULTS From the ScRNA-seq and SnRNA-seq data, 31,390 glial cells and 48,221 neuronal nuclei were identified. Analysis of the differentially expressed genes (DEGs) revealed significant transcriptomic alterations in the hippocampal cells of mice with TLE, affecting hundreds to thousands of mRNAs and their signalling pathways. Enrichment analysis indicated notable activation of stress and inflammatory pathways in the TLE hippocampus, while pathways related to axonal development and neural support were suppressed. Xenium analysis demonstrated the expression of all 247 genes across mouse brain sections, revealing the spatial distributions of their expression in 27 cell types. Integrated analysis of the DEGs identified via the three sequencing techniques revealed that Spp1, Trem2, and Cd68 were upregulated in all glial cell types and in the Xenium data; Penk, Sorcs3, and Plekha2 were upregulated in all neuronal cell types and in the Xenium data; and Tle4 and Sipa1l3 were downregulated in all glial cell types and in the Xenium data. CONCLUSION In this study, a high-resolution single-cell transcriptomic atlas of the hippocampus in mice with TLE was established, revealing potential intrinsic mechanisms driving TLE-associated inflammatory activation and altered cell interactions. These findings provide valuable insights for further exploration of HS development and epileptogenesis.
Collapse
Affiliation(s)
- Quanlei Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Chunhao Shen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yang Dai
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Ting Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Changkai Hou
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Hongyi Yang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Clinical Research Centerfor, Epilepsy Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jinkun Xu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yongchang Lu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yunming Wang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China.
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China.
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China.
- Clinical Research Centerfor, Epilepsy Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China.
- Brain Research Innovation and Translation Laboratory, Xuanwu Hospital Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China.
- Clinical Research Centerfor, Epilepsy Capital Medical University, 54 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
2
|
Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci 2022; 15:1006419. [PMID: 36304997 PMCID: PMC9592815 DOI: 10.3389/fnmol.2022.1006419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common symptom of many neurological disorders and can lead to neuronal damage that plays a major role in seizure-related disability. The peptidyl-prolyl isomerase Pin1 has wide-ranging influences on the occurrence and development of neurological diseases. It has also been suggested that Pin1 acts on epileptic inhibition, and the molecular mechanism has recently been reported. In this review, we primarily focus on research concerning the mechanisms and functions of Pin1 in neurons. In addition, we highlight the significance and potential applications of Pin1 in neuronal diseases, especially epilepsy. We also discuss the molecular mechanisms by which Pin1 controls synapses, ion channels and neuronal signaling pathways to modulate epileptic susceptibility. Since neurotransmitters and some neuronal signaling pathways, such as Notch1 and PI3K/Akt, are vital to the nervous system, the role of Pin1 in epilepsy is discussed in the context of the CaMKII-AMPA receptor axis, PSD-95-NMDA receptor axis, NL2/gephyrin-GABA receptor signaling, and Notch1 and PI3K/Akt pathways. The effect of Pin1 on the progression of epilepsy in animal models is discussed as well. This information will lead to a better understanding of Pin1 signaling pathways in epilepsy and may facilitate development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojun Hou
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Jiao Pang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Yang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Angcheng Li
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Suijin Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hekun Liu
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Hekun Liu,
| |
Collapse
|
3
|
Chen J, Yuan XY, Zhang X. Intracerebral hemorrhage influences hippocampal neurogenesis and neurological function recovery via Notch1 signaling. Neuroreport 2021; 32:489-497. [PMID: 33657078 PMCID: PMC8016514 DOI: 10.1097/wnr.0000000000001614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Intracerebral hemorrhage (ICH) is associated with high rate of mortality and morbidity, but lacks effective therapies. Accumulating studies indicated that the hippocampal neurogenesis plays an essential role in the recovery of neurological function after ICH. The Notch1 signaling pathway shows important roles in neurogenesis. However, the effects of Notch1 on the recovery of neurological function after ICH remain unclear. Here, we used ICH mice model to investigate whether Notch1 signaling was involved in the hippocampal neurogenesis and the recovery of neurological function post-ICH. Our results showed that the rate of symmetric division pattern of hippocampal neural stem cells (NSCs) decreased significantly at 3 days after ICH. Meanwhile, the expression of Notch1 in the hippocampus also was reduced significantly. However, Notch1 activator treatment enhanced the expression of Notch1 and increased the number of Sox2+GFAP+ cells. Further, the rate of symmetric division pattern of NSCs also increased after Notch1 activator treatment in mice with ICH. Importantly, the number of DCX+ cells and BrdU+NeuN+ in hippocampus were increased on 28 days post-ICH as the Notch1 expression was upregulated. The motor function and spatial memory ability in post-ICH mice following Notch1 activator treatment also were improved. Taken together, our results suggested that Notch1 signaling could influence the recovery of long-term neurological function by regulating the proliferation and differentiation of the hippocampal NSCs in mice after ICH. Our study may provide ideas for the improvement of neurological function and spatial memory defects after ICH.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Central Hospital of Baoji, Baoji
| | - Xing-Yun Yuan
- Department of Neurology, First Affiliated Hospital of Xi’an Jiao Tong University, Xian, Shanxi Province
| | - Xu Zhang
- Department of Cardiac Surgery, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Anderson J, Patel M, Forenzo D, Ai X, Cai C, Wade Q, Risman R, Cai L. A novel mouse model for the study of endogenous neural stem and progenitor cells after traumatic brain injury. Exp Neurol 2020; 325:113119. [PMID: 31751572 PMCID: PMC10885014 DOI: 10.1016/j.expneurol.2019.113119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/23/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the US. Neural stem/progenitor cells (NSPCs) persist in the adult brain and represent a potential cell source for tissue regeneration and wound healing after injury. The Notch signaling pathway is critical for embryonic development and adult brain injury response. However, the specific role of Notch signaling in the injured brain is not well characterized. Our previous study has established a Notch1CR2-GFP reporter mouse line in which the Notch1CR2 enhancer directs GFP expression in NSPCs and their progeny. In this study, we performed closed head injury (CHI) in the Notch1CR2-GFP mice to study the response of injury-activated NSPCs. We show that CHI induces neuroinflammation, cell death, and the expression of typical TBI markers (e.g., ApoE, Il1b, and Tau), validating the animal model. In addition, CHI induces cell proliferation in GFP+ cells expressing NSPC markers, e.g., Notch1 and Nestin. A significant higher percentage of GFP+ astrocytes and GABAergic neurons was observed in the injured brain, with no significant change in oligodendrocyte lineage between the CHI and sham animal groups. Since injury is known to activate astrogliosis, our results suggest that injury-induced GFP+ NSPCs preferentially differentiate into GABAergic neurons. Our study establishes that Notch1CR2-GFP transgenic mouse is a useful tool for the study of NSPC behavior in vivo after TBI. Unveiling the potential of NSPCs response to TBI (e.g., proliferation and differentiation) will identify new therapeutic strategy for the treatment of brain trauma.
Collapse
Affiliation(s)
- Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Dylan Forenzo
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Xin Ai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Catherine Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Quinn Wade
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Rebecca Risman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
5
|
Conrad D, Wilker S, Schneider A, Karabatsiakis A, Pfeiffer A, Kolassa S, Freytag V, Vukojevic V, Vogler C, Milnik A, Papassotiropoulos A, J.‐F. de Quervain D, Elbert T, Kolassa I. Integrated genetic, epigenetic, and gene set enrichment analyses identify NOTCH as a potential mediator for PTSD risk after trauma: Results from two independent African cohorts. Psychophysiology 2020; 57:e13288. [PMID: 30328613 PMCID: PMC7379258 DOI: 10.1111/psyp.13288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
The risk of developing posttraumatic stress disorder (PTSD) increases with the number of traumatic event types experienced (trauma load) in interaction with other psychobiological risk factors. The NOTCH (neurogenic locus notch homolog proteins) signaling pathway, consisting of four different trans-membrane receptor proteins (NOTCH1-4), constitutes an evolutionarily well-conserved intercellular communication pathway (involved, e.g., in cell-cell interaction, inflammatory signaling, and learning processes). Its association with fear memory consolidation makes it an interesting candidate for PTSD research. We tested for significant associations of common genetic variants of NOTCH1-4 (investigated by microarray) and genomic methylation of saliva-derived DNA with lifetime PTSD risk in independent cohorts from Northern Uganda (N1 = 924) and Rwanda (N2 = 371), and investigated whether NOTCH-related gene sets were enriched for associations with lifetime PTSD risk. We found associations of lifetime PTSD risk with single nucleotide polymorphism (SNP) rs2074621 (NOTCH3) (puncorrected = 0.04) in both cohorts, and with methylation of CpG site cg17519949 (NOTCH3) (puncorrected = 0.05) in Rwandans. Yet, none of the (epi-)genetic associations survived multiple testing correction. Gene set enrichment analyses revealed enrichment for associations of two NOTCH pathways with lifetime PTSD risk in Ugandans: NOTCH binding (pcorrected = 0.003) and NOTCH receptor processing (pcorrected = 0.01). The environmental factor trauma load was significant in all analyses (all p < 0.001). Our integrated methodological approach suggests NOTCH as a possible mediator of PTSD risk after trauma. The results require replication, and the precise underlying pathophysiological mechanisms should be illuminated in future studies.
Collapse
Affiliation(s)
- Daniela Conrad
- Clinical Psychology and NeuropsychologyUniversity of KonstanzKonstanzGermany
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| | - Sarah Wilker
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| | - Anna Schneider
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| | - Anett Pfeiffer
- Clinical Psychology and NeuropsychologyUniversity of KonstanzKonstanzGermany
| | | | - Virginie Freytag
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
| | - Vanja Vukojevic
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Department Biozentrum, Life Sciences Training FacilityUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
| | - Christian Vogler
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
| | - Annette Milnik
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
| | - Andreas Papassotiropoulos
- Division of Molecular NeuroscienceUniversity of BaselBaselSwitzerland
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Department Biozentrum, Life Sciences Training FacilityUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
| | - Dominique J.‐F. de Quervain
- Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsUniversity of BaselBaselSwitzerland
- Division of Cognitive NeuroscienceUniversity of BaselBaselSwitzerland
| | - Thomas Elbert
- Clinical Psychology and NeuropsychologyUniversity of KonstanzKonstanzGermany
| | - Iris‐Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany
| |
Collapse
|
6
|
Inhibition of microRNA-34a Suppresses Epileptiform Discharges Through Regulating Notch Signaling and Apoptosis in Cultured Hippocampal Neurons. Neurochem Res 2019; 44:1252-1261. [PMID: 30877521 DOI: 10.1007/s11064-019-02772-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Epilepsy is characterized by recurrent unprovoked seizures and some seizures can cause neuronal apoptosis, which is possible to make contributions to the epilepsy phenotype, impairments in cognitive function or even epileptogenesis. Moreover, many studies have indicated that microRNA-34a (miRNA-34a) is involved in apoptosis through regulating Notch signaling. However, whether miRNA-34a participates in neuronal apoptosis after seizures remain unclear. Therefore, we aimed to explore the expression of miRNA-34a and its effects on the epileptiform discharge in spontaneous recurrent epileptiform discharges (SREDs) rat hippocampal neuronal pattern. Mg2+-free medium was used to induce SREDs, quantitative reverse-transcription polymerase chain reaction was used to detect the expression of miRNA-34a, western blot was used to determine the expression of Notch pathway and apoptosis-related proteins, and whole cell current clamp recordings was used to observe the alteration of epileptiform discharge. We found obvious apoptosis, increased expression of miRNA-34a and decreased expression of Notch signaling in Mg2+-free-treated neurons. Treatment with miRNA-34a inhibitor decreased the frequency of action potentials, activated Notch signaling and prevented neuronal apoptosis in Mg2+-free-treated neurons. However, treatment with miRNA-34a mimics increased the frequency of action potentials, down-regulated Notch signaling and promoted neuronal apoptosis in Mg2+-free-treated neurons. Furthermore, γ-secretase inhibitor N-[N-(3,5-di-uorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signaling, could weaken anti-apoptosis effect of miRNA-34a inhibitor. These results suggest that inhibition of miRNA-34a could suppress epileptiform discharges through regulating Notch signaling and apoptosis in the rat hippocampal neuronal model of SREDs.
Collapse
|
7
|
Bielefeld P, Schouten M, Meijer GM, Breuk MJ, Geijtenbeek K, Karayel S, Tiaglik A, Vuuregge AH, Willems RAL, Witkamp D, Lucassen PJ, Encinas JM, Fitzsimons CP. Co-administration of Anti microRNA-124 and -137 Oligonucleotides Prevents Hippocampal Neural Stem Cell Loss Upon Non-convulsive Seizures. Front Mol Neurosci 2019; 12:31. [PMID: 30837840 PMCID: PMC6389789 DOI: 10.3389/fnmol.2019.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Convulsive seizures promote adult hippocampal neurogenesis (AHN) through a transient activation of neural stem/progenitor cells (NSPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG). However, in a significant population of epilepsy patients, non-convulsive seizures (ncSZ) are observed. The response of NSPCs to non-convulsive seizure induction has not been characterized before. We here studied first the short-term effects of controlled seizure induction on NSPCs fate and identity. We induced seizures of controlled intensity by intrahippocampally injecting increasing doses of the chemoconvulsant kainic acid (KA) and analyzed their effect on subdural EEG recordings, hippocampal structure, NSPC proliferation and the number and location of immature neurons shortly after seizure onset. After establishing a KA dose that elicits ncSZ, we then analyzed the effects of ncSZ on NSPC proliferation and NSC identity in the hippocampus. ncSZ specifically triggered neuroblast proliferation, but did not induce proliferation of NSPCs in the SGZ, 3 days post seizure onset. However, ncSZ induced significant changes in NSPC composition in the hippocampus, including the generation of reactive NSCs. Interestingly, intrahippocampal injection of a combination of two anti microRNA oligonucleotides targeting microRNA-124 and -137 normalized neuroblast proliferation and prevented NSC loss in the DG upon ncSZ. Our results show for the first time that ncSZ induce significant changes in neuroblast proliferation and NSC composition. Simultaneous antagonism of both microRNA-124 and -137 rescued seizure-induced alterations in NSPC, supporting their coordinated action in the regulation of NSC fate and proliferation and their potential for future seizure therapies.
Collapse
Affiliation(s)
- Pascal Bielefeld
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marijn Schouten
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Guido M Meijer
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J Breuk
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sedef Karayel
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Alisa Tiaglik
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anna H Vuuregge
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ruth A L Willems
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Diede Witkamp
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J Lucassen
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Juan M Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain.,Ikerbasque Foundation, Bilbao, Spain.,University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Sun C, Fu J, Qu Z, Li D, Si P, Qiao Q, Zhang W, Xue Y, Zhen J, Wang W. Chronic mild hypoxia promotes hippocampal neurogenesis involving Notch1 signaling in epileptic rats. Brain Res 2019; 1714:88-98. [PMID: 30768929 DOI: 10.1016/j.brainres.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023]
Abstract
Cognitive impairment is one of the most common and disabling co-morbidities of epilepsy. It is therefore imperative to find novel treatment approaches to rescue cognitive function among epilepsy patients. Adult neurogenesis is strongly implicated in cognitive function, and mild hypoxia is known to promote the proliferation and differentiation of both embryonic and adult neural stem cells (NSCs). In the present study, we investigated the effect of mild hypoxia on cognitive function and hippocampal neurogenesis of rats with pilocarpine-induced chronic epilepsy. Chronic epilepsy induced marked spatial learning and memory deficits in the Morris water maze that were rescued by consecutively 28 days mild hypoxia exposure (6 h/d at 3000 m altitude equivalent) during the chronic phase. Moreover, mild hypoxia reversed the suppression of hippocampal neurogenesis and the downregulation of NT-3 and BDNF expression in hippocampus and cortex of epileptic rats. Mild hypoxia in vitro also promoted hippocampus-derived NSC proliferation and neuronal differentiation. In addition, mild hypoxia enhanced Notch1 and Hes1 expression, suggesting that Notch1 signaling may be involved in neuroprotection of hypoxia. Our data may help to pave the way for identifying new therapeutic targets for rescuing cognition conflicts in epileptic patients by using hypoxia to promote hippocampus neurogenesis.
Collapse
Affiliation(s)
- Can Sun
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Jian Fu
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Zhenzhen Qu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Dongxiao Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Peipei Si
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qi Qiao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wenlin Zhang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yan Xue
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Junli Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
9
|
Li Y, Wu L, Yu M, Yang F, Wu B, Lu S, Tu M, Xu H. HIF-1α is Critical for the Activation of Notch Signaling in Neurogenesis During Acute Epilepsy. Neuroscience 2018; 394:206-219. [PMID: 30394322 DOI: 10.1016/j.neuroscience.2018.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that hypoxia-inducible factors (specifically, HIF-1α) and Notch signaling are involved in epileptogenesis and that cross-coupling exists between HIF-1α and Notch signaling in other diseases, including tumors and ischemia. However, the exact molecular mechanisms by which HIF-1α and Notch signaling affect the development of epilepsy, especially regarding neurogenesis, remain unclear. In the present study, we investigated the role of HIF-1α in neurogenesis and whether Notch signaling is involved in this process during epileptogenesis by assessing hippocampal apoptosis, neuronal injury, and the proliferation and differentiation of neural stem cells (NSCs) in four groups, including control, epilepsy, epilepsy+2-methoxyestradiol (2ME2) and epilepsy+GSI-IX (DAPT) groups. Our data demonstrated that HIF-1α mediated neurogenesis during acute epilepsy, which required the participation of Notch signaling. The immunoprecipitation data illustrated that HIF-1α activated Notch signaling by physically interacting with the Notch intracellular domain (NICD) in epilepsy. In conclusion, our results suggested that HIF-1α-Notch signaling enhanced neurogenesis in acute epilepsy and that neurogenesis during epileptogenesis was reduced once this pathway was blocked; thus, members of this pathway might be potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Yushuang Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Lei Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Fei Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Shuting Lu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Mengqi Tu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
10
|
Becker AJ. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 2018; 44:112-129. [DOI: 10.1111/nan.12451] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- A. J. Becker
- Section for Translational Epilepsy Research; Department of Neuropathology; University of Bonn Medical Center; Bonn Germany
| |
Collapse
|
11
|
Hosford BE, Rowley S, Liska JP, Danzer SC. Ablation of peri-insult generated granule cells after epilepsy onset halts disease progression. Sci Rep 2017; 7:18015. [PMID: 29269775 PMCID: PMC5740143 DOI: 10.1038/s41598-017-18237-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/08/2017] [Indexed: 11/15/2022] Open
Abstract
Aberrant integration of newborn hippocampal granule cells is hypothesized to contribute to the development of temporal lobe epilepsy. To test this hypothesis, we used a diphtheria toxin receptor expression system to selectively ablate these cells from the epileptic mouse brain. Epileptogenesis was initiated using the pilocarpine status epilepticus model in male and female mice. Continuous EEG monitoring was begun 2–3 months after pilocarpine treatment. Four weeks into the EEG recording period, at a time when spontaneous seizures were frequent, mice were treated with diphtheria toxin to ablate peri-insult generated newborn granule cells, which were born in the weeks just before and after pilocarpine treatment. EEG monitoring continued for another month after cell ablation. Ablation halted epilepsy progression relative to untreated epileptic mice; the latter showing a significant and dramatic 300% increase in seizure frequency. This increase was prevented in treated mice. Ablation did not, however, cause an immediate reduction in seizures, suggesting that peri-insult generated cells mediate epileptogenesis, but that seizures per se are initiated elsewhere in the circuit. These findings demonstrate that targeted ablation of newborn granule cells can produce a striking improvement in disease course, and that the treatment can be effective when applied months after disease onset.
Collapse
Affiliation(s)
- Bethany E Hosford
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Shane Rowley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - John P Liska
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA. .,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
12
|
Voluntary running-enhanced synaptic plasticity, learning and memory are mediated by Notch1 signal pathway in C57BL mice. Brain Struct Funct 2017; 223:749-767. [DOI: 10.1007/s00429-017-1521-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
|
13
|
Karimzadeh F, Modarres Mousavi SM, Alipour F, Hosseini Ravandi H, Kovac S, Gorji A. Developmental changes in Notch1 and NLE1 expression in a genetic model of absence epilepsy. Brain Struct Funct 2017; 222:2773-2785. [PMID: 28210849 DOI: 10.1007/s00429-017-1371-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
Childhood absence epilepsy (CAE) is an epilepsy syndrome with seizures occurring in the early childhood, highlighting that seizures susceptibility in CAE is dependent on brain development. The Notch 1 signalling pathway is important in brain development, yet the role of the Notch1 signalling pathway in CAE remains elusive. We here explored Notch1 and its modulator notchless homologue 1 (NLE1) expression in WAG/Rij and control rats using immunohistochemistry. Functional Notch 1 effects were assessed in WAG/Rij rats in vivo. WAG/Rij rats lack the developmental increase in cortical Notch1 and NLE 1 mRNA expression seen in controls, and Notch 1 and NLE1 mRNA and protein expression were lower in somatosensory cortices of WAG/Rij rats when compared to controls. This coincided with an overall decreased cortical GFAP expression in the early development in WAG/Rij rats. These effects were region-specific as they were not observed in thalamic tissues. Neuron-to-glia ratio as a marker of the impact of Notch signalling on differentiation was higher in layer 4 of somatosensory cortex of WAG/Rij rats. Acute application of Notch 1 agonist Jagged 1 suppressed, whereas DAPT, a Notch antagonist, facilitated spike and wave discharges (SWDs) in WAG/Rij rats. These findings point to Notch1 as an important signalling pathway in CAE which likely shapes architectural organization of the somatosensory cortex, a region critically involved in developmental epileptogenesis in CAE. More immediate effects of Notch 1 signalling are seen on in vivo SWDs in CAE, pointing to the Notch 1 pathway as a possible treatment target in CAE.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, Nuclear/metabolism
- Brain Waves
- Disease Models, Animal
- Electrocorticography
- Epilepsy, Absence/genetics
- Epilepsy, Absence/metabolism
- Epilepsy, Absence/physiopathology
- Gene Expression Regulation, Developmental
- Genetic Predisposition to Disease
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry
- Jagged-1 Protein/administration & dosage
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Phenotype
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Receptor, Notch1/drug effects
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Somatosensory Cortex/drug effects
- Somatosensory Cortex/growth & development
- Somatosensory Cortex/metabolism
- Somatosensory Cortex/physiopathology
- Thalamus/metabolism
- Thalamus/physiopathology
Collapse
Affiliation(s)
- Fariba Karimzadeh
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Alipour
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Stjepana Kovac
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Robert-Koch-Straße 45, 48149, Münster, Germany.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Puhakka N, Bot AM, Vuokila N, Debski KJ, Lukasiuk K, Pitkänen A. Chronically dysregulated NOTCH1 interactome in the dentate gyrus after traumatic brain injury. PLoS One 2017; 12:e0172521. [PMID: 28273100 PMCID: PMC5342204 DOI: 10.1371/journal.pone.0172521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) can result in several dentate gyrus-regulated disabilities. Almost nothing is known about the chronic molecular changes after TBI, and their potential as treatment targets. We hypothesized that chronic transcriptional alterations after TBI are under microRNA (miRNA) control. Expression of miRNAs and their targets in the dentate gyrus was analyzed using microarrays at 3 months after experimental TBI. Of 305 miRNAs present on the miRNA-array, 12 were downregulated (p<0.05). In parallel, 75 of their target genes were upregulated (p<0.05). A bioinformatics analysis of miRNA targets highlighted the dysregulation of the transcription factor NOTCH1 and 39 of its target genes (NOTCH1 interactome). Validation assays confirmed downregulation of miR-139-5p, upregulation of Notch1 and its activated protein, and positive enrichment of NOTCH1 target gene expression. These findings demonstrate that miRNA-based transcriptional regulation can be present at chronic time points after TBI, and highlight the NOTCH1 interactome as one of the mechanisms behind the dentate gyrus pathology-related morbidities.
Collapse
Affiliation(s)
- Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna Maria Bot
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Niina Vuokila
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Konrad Jozef Debski
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
15
|
Gerlach J, Donkels C, Münzner G, Haas CA. Persistent Gliosis Interferes with Neurogenesis in Organotypic Hippocampal Slice Cultures. Front Cell Neurosci 2016; 10:131. [PMID: 27242442 PMCID: PMC4870256 DOI: 10.3389/fncel.2016.00131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC), which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within 7 days of cultivation. Accordingly, reverse transcription quantitative polymerase chain reaction analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling neurogenesis under neuropathological conditions.
Collapse
Affiliation(s)
- Johannes Gerlach
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center - University of FreiburgFreiburg, Germany; Faculty of Medicine, University of FreiburgFreiburg, Germany; Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Catharina Donkels
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center - University of FreiburgFreiburg, Germany; Faculty of Medicine, University of FreiburgFreiburg, Germany; Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Gert Münzner
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center - University of FreiburgFreiburg, Germany; Faculty of Medicine, University of FreiburgFreiburg, Germany; Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Carola A Haas
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center - University of FreiburgFreiburg, Germany; Faculty of Medicine, University of FreiburgFreiburg, Germany; BrainLinks-BrainTools, Cluster of Excellence, University of FreiburgFreiburg, Germany
| |
Collapse
|
16
|
Abstract
Seizure activity in the hippocampal region strongly affects stem cell-associated plasticity in the adult dentate gyrus. Here, we describe how seizures in rodent models of mesial temporal lobe epilepsy (mTLE) affect multiple steps in the developmental course from the dividing neural stem cell to the migrating and integrating newborn neuron. Furthermore, we discuss recent evidence indicating either that seizure-induced aberrant neurogenesis may contribute to the epileptic disease process or that altered neurogenesis after seizures may represent an attempt of the injured brain to repair itself. Last, we describe how dysfunction of adult neurogenesis caused by chronic seizures may play an important role in the cognitive comorbidities associated with mTLE.
Collapse
Affiliation(s)
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical Center and VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48109
| |
Collapse
|
17
|
Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol 2013; 49:633-44. [PMID: 23999872 DOI: 10.1007/s12035-013-8545-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Notch signaling in the nervous system is often regarded as a developmental pathway. However, recent studies have suggested that Notch is associated with neuronal discharges. Here, focusing on temporal lobe epilepsy, we found that Notch signaling was activated in the kainic acid (KA)-induced epilepsy model and in human epileptogenic tissues. Using an acute model of seizures, we showed that DAPT, an inhibitor of Notch, inhibited ictal activity. In contrast, pretreatment with exogenous Jagged1 to elevate Notch signaling before KA application had proconvulsant effects. In vivo, we demonstrated that the impacts of activated Notch signaling on seizures can in part be attributed to the regulatory role of Notch signaling on excitatory synaptic activity in CA1 pyramidal neurons. In vitro, we found that DAPT treatment impaired synaptic vesicle endocytosis in cultured hippocampal neurons. Taken together, our findings suggest a correlation between aberrant Notch signaling and epileptic seizures. Notch signaling is up-regulated in response to seizure activity, and its activation further promotes neuronal excitation of CA1 pyramidal neurons in acute seizures.
Collapse
|
18
|
Alberi L, Hoey SE, Brai E, Scotti AL, Marathe S. Notch signaling in the brain: in good and bad times. Ageing Res Rev 2013; 12:801-14. [PMID: 23570941 DOI: 10.1016/j.arr.2013.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/16/2013] [Accepted: 03/22/2013] [Indexed: 01/13/2023]
Abstract
Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.
Collapse
Affiliation(s)
- Lavinia Alberi
- Unit of Anatomy, Department of Medicine, University of Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Chai X, Münzner G, Zhao S, Tinnes S, Kowalski J, Häussler U, Young C, Haas CA, Frotscher M. Epilepsy-induced motility of differentiated neurons. ACTA ACUST UNITED AC 2013; 24:2130-40. [PMID: 23505288 DOI: 10.1093/cercor/bht067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.
Collapse
Affiliation(s)
- Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gert Münzner
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Shanting Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Janina Kowalski
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Young
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|