1
|
Yan G, Qiao C, Liu Z, Bohu T, Wang J, Zhang G, Bai Z, Zhuang X. Fugitive gases reduction and carbon sequestration potential of ecological floating beds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125341. [PMID: 40262495 DOI: 10.1016/j.jenvman.2025.125341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/15/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Ecological floating beds (EFBs) are widely utilized as a green, cost-effective, and efficient technology for biologicalwater treatment in ponds, rivers, and secondary treatment of wastewater plant effluents. However, their potential for greenhouse gas (GHG) absorption and transformation is often overlooked. This paper begins by summarizing the accounting and emission status of GHGs from wastewater treatment plants (WWTPs), reviewing plant-microbial interactions in the phyllosphere and rhizosphere, and exploring plant-microbial-mediated transformations of carbon and nitrogen cycles. Special attention is given to variations in carbon and nitrogen cycling intensities within the plant phyllosphere and rhizosphere under warm and humid conditions with elevated GHG concentrations. We propose an exploratory approach using Ecological Floating Beds-Greenhouse (EFBs-GH) to absorb and transform fugitive gases from biochemical tanks, while enhancing sewage treatment efficiency. The study investigates the advantages and potential of EFBs for carbon sequestration and efficiency improvement in WWTPs, aiming to provide technical solutions and theoretical foundations for reducing fugitive gas emissions, including GHGs and odorous gases, etc., from concentrated sources such as WWTPs.
Collapse
Affiliation(s)
- Gaojun Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Binzhou, Shandong, 256600, China.
| | - Chisong Qiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Binzhou Institute of Technology, Binzhou, Shandong, 256600, China; Zhengzhou University, Zhengzhou, 450001, China.
| | - Ziyan Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tsing Bohu
- Xiongan Institute of Innovation, Xiongan New Area, 071000, China.
| | - Jiancheng Wang
- Binzhou Institute of Technology, Binzhou, Shandong, 256600, China.
| | | | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
3
|
Peng M, Jiang Z, Zhou F, Wang Z. From salty to thriving: plant growth promoting bacteria as nature's allies in overcoming salinity stress in plants. Front Microbiol 2023; 14:1169809. [PMID: 37426022 PMCID: PMC10327291 DOI: 10.3389/fmicb.2023.1169809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Soil salinity is one of the main problems that affects global crop yield. Researchers have attempted to alleviate the effects of salt stress on plant growth using a variety of approaches, including genetic modification of salt-tolerant plants, screening the higher salt-tolerant genotypes, and the inoculation of beneficial plant microbiome, such as plant growth-promoting bacteria (PGPB). PGPB mainly exists in the rhizosphere soil, plant tissues and on the surfaces of leaves or stems, and can promote plant growth and increase plant tolerance to abiotic stress. Many halophytes recruit salt-resistant microorganisms, and therefore endophytic bacteria isolated from halophytes can help enhance plant stress responses. Beneficial plant-microbe interactions are widespread in nature, and microbial communities provide an opportunity to understand these beneficial interactions. In this study, we provide a brief overview of the current state of plant microbiomes and give particular emphasis on its influence factors and discuss various mechanisms used by PGPB in alleviating salt stress for plants. Then, we also describe the relationship between bacterial Type VI secretion system and plant growth promotion.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhihui Jiang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Fangzhen Zhou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
| |
Collapse
|
4
|
Valente J, Gerin F, Mini A, Richard R, Le Gouis J, Prigent-Combaret C, Moënne-Loccoz Y. Symbiotic Variations among Wheat Genotypes and Detection of Quantitative Trait Loci for Molecular Interaction with Auxin-Producing Azospirillum PGPR. Microorganisms 2023; 11:1615. [PMID: 37375117 DOI: 10.3390/microorganisms11061615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Crop varieties differ in their ability to interact with Plant Growth-Promoting Rhizobacteria (PGPR), but the genetic basis for these differences is unknown. This issue was addressed with the PGPR Azospirillum baldaniorum Sp245, using 187 wheat accessions. We screened the accessions based on the seedling colonization by the PGPR and the expression of the phenylpyruvate decarboxylase gene ppdC (for synthesis of the auxin indole-3-acetic acid), using gusA fusions. Then, the effects of the PGPR on the selected accessions stimulating Sp245 (or not) were compared in soil under stress. Finally, a genome-wide association approach was implemented to identify the quantitative trait loci (QTL) associated with PGPR interaction. Overall, the ancient genotypes were more effective than the modern genotypes for Azospirillum root colonization and ppdC expression. In non-sterile soil, A. baldaniorum Sp245 improved wheat performance for three of the four PGPR-stimulating genotypes and none of the four non-PGPR-stimulating genotypes. The genome-wide association did not identify any region for root colonization but revealed 22 regions spread on 11 wheat chromosomes for ppdC expression and/or ppdC induction rate. This is the first QTL study focusing on molecular interaction with PGPR bacteria. The molecular markers identified provide the possibility to improve the capacity of modern wheat genotypes to interact with Sp245, as well as, potentially, other Azospirillum strains.
Collapse
Affiliation(s)
- Jordan Valente
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Florence Gerin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Agathe Mini
- GDEC, INRAE, UCA, F-63000 Clermont-Ferrand, France
| | | | | | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
5
|
Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, Jat ML, Krupnik TJ. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. FIELD CROPS RESEARCH 2022; 283:108541. [PMID: 35782167 PMCID: PMC9133800 DOI: 10.1016/j.fcr.2022.108541] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 05/02/2023]
Abstract
The demand for nitrogen (N) for crop production increased rapidly from the middle of the twentieth century and is predicted to at least double by 2050 to satisfy the on-going improvements in productivity of major food crops such as wheat, rice and maize that underpin the staple diet of most of the world's population. The increased demand will need to be fulfilled by the two main sources of N supply - biological nitrogen (gas) (N2) fixation (BNF) and fertilizer N supplied through the Haber-Bosch processes. BNF provides many functional benefits for agroecosystems. It is a vital mechanism for replenishing the reservoirs of soil organic N and improving the availability of soil N to support crop growth while also assisting in efforts to lower negative environmental externalities than fertilizer N. In cereal-based cropping systems, legumes in symbiosis with rhizobia contribute the largest BNF input; however, diazotrophs involved in non-symbiotic associations with plants or present as free-living N2-fixers are ubiquitous and also provide an additional source of fixed N. This review presents the current knowledge of BNF by free-living, non-symbiotic and symbiotic diazotrophs in the global N cycle, examines global and regional estimates of contributions of BNF, and discusses possible strategies to enhance BNF for the prospective benefit of cereal N nutrition. We conclude by considering the challenges of introducing in planta BNF into cereals and reflect on the potential for BNF in both conventional and alternative crop management systems to encourage the ecological intensification of cereal and legume production.
Collapse
Affiliation(s)
- Jagdish K. Ladha
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mark B. Peoples
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | | | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mangi L. Jat
- International Maize and Wheat Improvement Center, New Delhi, India
| | | |
Collapse
|
6
|
Ren X, Wang Q, Chen X, He Y, Li R, Li J, Zhang Z. Pathways and mechanisms of nitrogen transformation during co-composting of pig manure and diatomite. BIORESOURCE TECHNOLOGY 2021; 329:124914. [PMID: 33690057 DOI: 10.1016/j.biortech.2021.124914] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 05/16/2023]
Abstract
The aim of this study was to investigate the pathways and mechanisms of nitrogen transformation during the composting process, by adding diatomite (0%, 2.5%, 5%, 10%, 15% and 20%) into initial mixtures of pig manure and sawdust. The results revealed that diatomite facilitated the conversion from NH4+-N to amino acid nitrogen and hydrolysis undefined nitrogen, then reduced NH3 and N2O emission by 8.63-35.29% and 14.34-73.21%, respectively. Moreover, the structure and abundance of nitrogen functional genes provided evidence for nitrogen loss. Furthermore, compared with the control (0.03), the treatment blended with 10% diatomite (T3) had the highest value in composting score (-1.27). Additionally, the ratio of carbon and nitrogen (57.30%) was vital for reducing nitrogen loss among all physio-chemical parameters in this study. In conclusion, adding diatomite was a practical way to enhance nitrogen conservation and increase quality of end products, and the optimum added dosage was at 10%.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xing Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yifeng He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Ji Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128 Jiangsu Province, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
7
|
Zhong XZ, Zeng Y, Wang SP, Sun ZY, Tang YQ, Kida K. Insight into the microbiology of nitrogen cycle in the dairy manure composting process revealed by combining high-throughput sequencing and quantitative PCR. BIORESOURCE TECHNOLOGY 2020; 301:122760. [PMID: 31972401 DOI: 10.1016/j.biortech.2020.122760] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen cycling during composting process is not yet fully understood. This study explored the key genes involved in nitrogen cycling during dairy manure composting process using high-throughput sequencing and quantitative PCR technologies. Results showed that nitrogen fixation occurred mainly during the thermophilic and cooling phases, and significantly enhanced the nitrogen content of compost. Thermoclostridium stercorarium was the main diazotroph. Ammonia oxidation occurred during the maturation phase and Nitrosomonas sp. was the most abundant ammonia oxidizing bacteria. Denitrification contributed to the greatest nitrogen loss during the composting process. The nirK community was dominated by Luteimonas sp. and Achromobacter sp., while the nirS community was dominated by Alcaligenes faecalis and Pseudomonas stutzeri. The nosZ community varied in a succession of Halomonas ilicicola, Pseudomonas flexibili and Labrenzia alba dominated communities according to different composting phases. Based on these results, nitrogen cycling models for different phases of the dairy manure composting process were established.
Collapse
Affiliation(s)
- Xiao-Zhong Zhong
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Vishwakarma P, Dubey SK. Diversity of endophytic bacterial community inhabiting in tropical aerobic rice under aerobic and flooded condition. Arch Microbiol 2019; 202:17-29. [DOI: 10.1007/s00203-019-01715-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/03/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022]
|
9
|
Exploring the Potential of Overexpressed OsCIPK2 Rice as a Nitrogen Utilization Efficient Crop and Analysis of Its Associated Rhizo-Compartmental Microbial Communities. Int J Mol Sci 2019; 20:ijms20153636. [PMID: 31349588 PMCID: PMC6695771 DOI: 10.3390/ijms20153636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
Nitrogen (N) is one of the indispensable factors in rice growth and development. China holds a premier position in the production of rice and at the same time also faces higher N fertilizer costs along with serious damage to the environment. A better solution is much needed to address these issues, without disrupting the production of rice as an important cereal, while minimizing all the deleterious effects on the environment. Two isogenic lines Kitaake (WT) and its genetically modified line CIPK2 (RC), overexpressing the gene for Calcineurin B-like interacting protein kinase 2 (OsCIPK2) with better nitrogen use efficiency (NUE), were compared for their growth and development under low versus normal levels of N. NUE is a complex trait mainly related to a plant’s efficiency in extraction, assimilation, and recycling of N from soil. The microbial population was analyzed using high-throughput Illumina Miseq 16S rRNA sequencing and found that RC with CIPK2, specifically expressed in rice root, not only performed better without nitrogen fertilizer (LN) but also increased the diversity of bacterial communities in rice rhizosphere compartments (rhizosphere, rhizoplane, and endosphere). The relative abundance of beneficial bacteria phyla increased, which are known to promote the circulation and transformation of N in rhizosphere soil. To further explore the potential of RC regarding better performance under LN, the ion fluxes in root apical were detected by non-invasive micro-test technique (NMT). We found that RC can absorb more Ca2+ and NO3− under LN as compared to WT. Finally, compared to WT, RC plants exhibited better growth of root and shoot, and increased yield and N uptake under LN, whereas there was no significant difference in the growth of two rice lines under normal nitrogen (NN) treatment. We are able to get preliminary results, dealing with the OsCIPK2 overexpressed rice line, by studying the rice molecular, physiological, and chemical parameters related to NUE. The results laid the foundation for further research on N absorption and utilization in rice from the soil and the interaction with microbial communities.
Collapse
|
10
|
Tang H, Xiao X, Xu Y, Li C, Cheng K, Pan X, Li W. Utilization of carbon sources in the rice rhizosphere and nonrhizosphere soils with different long-term fertilization management. J Basic Microbiol 2019; 59:621-631. [DOI: 10.1002/jobm.201800736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Haiming Tang
- Farming Ecology, Hunan Academy of Agricultural Sciences; Institute of Soil and Fertilizer; Changsha China
| | - Xiaoping Xiao
- Farming Ecology, Hunan Academy of Agricultural Sciences; Institute of Soil and Fertilizer; Changsha China
| | - Yilan Xu
- Plant Science and Technology; Hunan Biological and Electromechanical Polytechnic; Changsha China
| | - Chao Li
- Farming Ecology, Hunan Academy of Agricultural Sciences; Institute of Soil and Fertilizer; Changsha China
| | - Kaikai Cheng
- Farming Ecology, Hunan Academy of Agricultural Sciences; Institute of Soil and Fertilizer; Changsha China
| | - Xiaochen Pan
- Farming Ecology, Hunan Academy of Agricultural Sciences; Institute of Soil and Fertilizer; Changsha China
| | - Weiyan Li
- Farming Ecology, Hunan Academy of Agricultural Sciences; Institute of Soil and Fertilizer; Changsha China
| |
Collapse
|
11
|
Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 2019; 221:36-49. [DOI: 10.1016/j.micres.2019.02.001] [Citation(s) in RCA: 365] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
|
12
|
Compositional and abundance changes of nitrogen-cycling genes in plant-root microbiomes along a salt marsh chronosequence. Antonie Van Leeuwenhoek 2018; 111:2061-2078. [PMID: 29846874 DOI: 10.1007/s10482-018-1098-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
Disentangling the relative influences of soil properties and plant-host on root-associated microbiomes in natural systems is challenging, given that spatially segregated soil types display distinct historical legacies. In addition, distant locations may also lead to biogeographical patterns of microbial communities. Here, we used an undisturbed salt marsh chronosequence spanning over a century of ecosystem development to investigate changes in the community composition and abundance of a set of nitrogen-cycling genes. Specifically, we targeted genes of diazotrophs and ammonia oxidizers associated with the bulk and rhizosphere soil of the plant species Limonium vulgare. Samples were collected across five distinct successional stages of the chronosequence (ranging from 5 to 105 years) at two time-points. Our results indicate that soil variables such as sand:silt:clay % content and pH strongly relates to the abundance of N-cycling genes in the bulk soil. However, in the rhizosphere samples, the abundance of ammonia-oxidizing organisms (both bacteria and archaea, AOB and AOA, respectively) was relatively constant across most of the successional stages, albeit displaying seasonal variation. This result indicates a potentially stronger control of plant host (rather than soil) on the abundance of these organisms. Interestingly, the plant host did not have a significant effect on the composition of AOA and AOB communities, being mostly divergent according to soil successional stages. The abundance of diazotrophic communities in rhizosphere samples was more affected by seasonality than those of bulk soil. Moreover, the abundance pattern of diazotrophs in the rhizosphere related to the systematic increase of plant biomass and soil organic matter along the successional gradient. These results suggest a potential season-dependent regulation of diazotrophs exerted by the plant host. Overall, this study contributes to a better understanding of how the natural formation of a soil and host plants influence the compositional and abundance changes of nitrogen-cycling genes in bulk and rhizosphere soil microhabitats.
Collapse
|
13
|
Rasche F, Blagodatskaya E, Emmerling C, Belz R, Musyoki MK, Zimmermann J, Martin K. A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems. Ecosphere 2017. [DOI: 10.1002/ecs2.2048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Evgenia Blagodatskaya
- Department of Soil Science of Temperate Ecosystems; Georg-August University Göttingen; 37077 Göttingen Germany
| | | | - Regina Belz
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Mary K. Musyoki
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Judith Zimmermann
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Konrad Martin
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| |
Collapse
|
14
|
Thapa S, Ranjan K, Ramakrishnan B, Velmourougane K, Prasanna R. Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J Basic Microbiol 2017; 58:172-186. [PMID: 29193162 DOI: 10.1002/jobm.201700402] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/21/2017] [Accepted: 10/18/2017] [Indexed: 01/10/2023]
Abstract
Rice paddies are man-made, cross-over ecologies of aquatic and terrestrial systems, which favor the proliferation of characteristic microbial communities. Moisture regimes under flooded and different levels of irrigation such as in direct seeded rice (DSR) and system of rice intensification (SRI) lead to modulation in crop physiology, soil nutrient availability, and the soil microbiome. However, the diversity of the rice phyllosphere microbiome is less investigated in terms of the influence of fertilizer application and the method of rice cultivation (conventional-flooded, DSR and SRI). Scanning electron micrographs revealed the presence of bacteria as aggregates at microsites of the leaves. Phylogenetic analysis of the dominant culturable bacterial isolates using 16S rDNA sequences revealed that they belonged to the genera - Bacillus, Brevibacillus, Pantoea, Enterobacter, Pseudomonas, Erwinia, and Streptomyces. Fertilizer application brought about a distinct modulation in the communities belonging to phyla such as Bacteriodetes, Firmicutes, and Planctomyces, besides Proteobacteria. The cyanobacterial population was much influenced by the cultivation methods, particularly the SRI. Principal component analysis (PCA), involving the culturable phyllospheric microbial groups and leaf attributes (nutrients and pigments), illustrated the importance of leaf nitrogen and zinc. Also, the communities of the phylum Firmicutes exhibited marked changes in terms of the diversity, not only due to the cultivation method, but also the application of fertilizers. Thus, the cultivation methods and fertilizer application played important roles in modulating both the structural (taxonomical) and functional attributes of the phyllosphere microbiome.
Collapse
Affiliation(s)
- Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kunal Ranjan
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
15
|
Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice. Sci Rep 2016; 6:32270. [PMID: 27596935 PMCID: PMC5011652 DOI: 10.1038/srep32270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023] Open
Abstract
Microbial community structure and functions of rhizosphere soil of rice were investigated after applying low and high doses of nitrogenous fertilizer and Phomopsis liquidambari. Average well color development, substrate richness, catabolic diversity and soil enzymes activities varied after applying N-fertilizer and P. liquidambari and were greater in P. liquidambari treated soil than only N-fertilization. Multivariate analysis distinctly separated the catabolic and enzymes activity profile which statistically proved alteration of microbial functional diversity. Nitrogen fertilizer altered microbial community structure revealed by the increased content of total PLFAs, specific subgroup marker PLFAs except fungal PLFAs and by the decreased ratio of G(+)/G(-), sat/monunsat, iso/anteiso, F/B except trans/cis while P. liquidambari inoculation enhanced N-fertilization effect except increased fungal PLFA and decreased trans/cis. PCA using identified marker PLFAs revealed definite discrimination among the treatments which further statistically confirmed structural changed of microbial community. Nitrogenase activity representative of N-fixing community decreased in N-fertilizer treatment while P. liquidambari inoculation increased. In short, application of P. liquidambari with low doses of N-fertilizer improved rice growth and reduced N-fertilizer requirement by increasing enzymes activities involved in C, N and P cycling, structural and functional diversity of microbes, nitrogenase activity involved in N2 fixation and accumulation of total-N.
Collapse
|
16
|
Abstract
Much of the demand for nitrogen (N) in cereal cropping systems is met by using N fertilisers, but the cost of production is increasing and there are also environmental concerns. This has led to a growing interest in exploring other sources of N such as biological N2fixation. Non-symbiotic N2fixation (by free-living bacteria in soils or associated with the rhizosphere) has the potential to meet some of this need especially in the lower input cropping systems worldwide. There has been considerable research on non-symbiotic N2fixation, but still there is much argument about the amount of N that can potentially be fixed by this process largely due to shortcomings of indirect measurements, however isotope-based direct methods indicate agronomically significant amounts of N2fixation both in annual crop and perennial grass systems. New molecular technologies offer opportunities to increase our understanding of N2-fixing microbial communities (many of them non-culturable) and the molecular mechanisms of non-symbiotic N2fixation. This knowledge should assist the development of new plant-diazotrophic combinations for specific environments and more sustainable exploitation of N2-fixing bacteria as inoculants for agriculture. Whilst the ultimate goal might be to introduce nitrogenase genes into significant non-leguminous crop plants, it may be more realistic in the shorter-term to better synchronise plant-microbe interactions to enhance N2fixation when the N needs of the plant are greatest. The review explores possibilities to maximise potential N inputs from non-symbiotic N2fixation through improved management practices, identification of better performing microbial strains and their successful inoculation in the field, and plant based solutions.
Collapse
|
17
|
Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere? Sci Rep 2016; 6:21690. [PMID: 26902960 PMCID: PMC4763242 DOI: 10.1038/srep21690] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
Plant evolutionary history influences the taxonomic composition of the root-associated bacterial community, but whether it can also modulate its functioning is unknown. Here, we tested the hypothesis that crop diversification is a significant factor determining the ecology of the functional group of nitrogen-fixing bacteria the rhizosphere of Poaceae. A greenhouse experiment was carried out using a range of Poaceae, i.e. four Zea mays varieties (from two genetic groups) and teosinte (representing maize’s ancestor), sorghum (from the same Panicoideae subfamily), and wheat (from neighboring Pooideae subfamily), as well as the dicot tomato as external reference. Diazotroph rhizosphere community was characterized at 21 days in terms of size (quantitative PCR of nifH genes), composition (T-RFLP and partial sequencing of nifH alleles) and functioning (quantitative RT-PCR, T-RFLP and partial sequencing of nifH transcripts). Plant species and varieties had a significant effect on diazotroph community size and the number of nifH transcripts per root system. Contrarily to expectations, however, there was no relation between Poaceae evolutionary history and the size, diversity or expression of the rhizosphere diazotroph community. These results suggest a constant selection of this functional group through evolution for optimization of nitrogen fixation in the rhizosphere.
Collapse
|
18
|
Pittol M, Durso L, Valiati VH, Fiuza LM. Agronomic and environmental aspects of diazotrophic bacteria in rice fields. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1154-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Yang B, Wang XM, Ma HY, Yang T, Jia Y, Zhou J, Dai CC. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere. Front Microbiol 2015; 6:982. [PMID: 26441912 PMCID: PMC4585018 DOI: 10.3389/fmicb.2015.00982] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022] Open
Abstract
The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.
Collapse
Affiliation(s)
- Bo Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Xiao-Mi Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Hai-Yan Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| | - Jun Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, NanjingChina
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NanjingChina
| |
Collapse
|
20
|
Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1059-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
21
|
Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:403-24. [PMID: 26243728 DOI: 10.1146/annurev-phyto-082712-102342] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Land plants interact with microbes primarily at roots. Despite the importance of root microbial communities for health and nutrient uptake, the current understanding of the complex plant-microbe interactions in the rhizosphere is still in its infancy. Roots provide different microhabitats at the soil-root interface: rhizosphere soil, rhizoplane, and endorhizosphere. We discuss technical aspects of their differentiation that are relevant for the functional analysis of their different microbiomes, and we assess PCR (polymerase chain reaction)-based methods to analyze plant-associated bacterial communities. Development of novel primers will allow a less biased and more quantitative view of these global hotspots of microbial activity. Based on comparison of microbiome data for the different root-soil compartments and on knowledge of bacterial functions, a three-step enrichment model for shifts in community structure from bulk soil toward roots is presented. To unravel how plants shape their microbiome, a major research field is likely to be the coupling of reductionist and molecular ecological approaches, particularly for specific plant genotypes and mutants, to clarify causal relationships in complex root communities.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, D-28334 Bremen, Germany; , , , ,
| | | | | | | | | |
Collapse
|
22
|
Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C. Plant growth-promoting rhizobacteria and root system functioning. FRONTIERS IN PLANT SCIENCE 2013; 4:356. [PMID: 24062756 PMCID: PMC3775148 DOI: 10.3389/fpls.2013.00356] [Citation(s) in RCA: 539] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/23/2013] [Indexed: 05/18/2023]
Abstract
The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Jordan Vacheron
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Guilhem Desbrosses
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113, Université Montpellier 2/Institut de Recherche Pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/SupAgro/Institut National de la Recherche AgronomiqueMontpellier, France
| | - Marie-Lara Bouffaud
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
- Institut National de la Recherche Agronomique, UMR 1347, Agroécologie, Interactions Plantes-MicroorganismesDijon, France
| | - Bruno Touraine
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113, Université Montpellier 2/Institut de Recherche Pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/SupAgro/Institut National de la Recherche AgronomiqueMontpellier, France
| | - Yvan Moënne-Loccoz
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Daniel Muller
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Laurent Legendre
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Florence Wisniewski-Dyé
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Claire Prigent-Combaret
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
- *Correspondence: Claire Prigent-Combaret, Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France e-mail:
| |
Collapse
|
23
|
Sasaki K, Ikeda S, Ohkubo T, Kisara C, Sato T, Minamisawa K. Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots. Microbes Environ 2013; 28:391-5. [PMID: 23979487 PMCID: PMC4070954 DOI: 10.1264/jsme2.me12212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To examine whether microbial community structure differs across rice genotypes, automated ribosomal intergenic spacer analysis (ARISA) was conducted. Nine cultivars of Oryza sativa ssp. indica or japonica and seven lines of other Oryza species were grown in paddy fields with low, standard, and high levels of N fertilization. Multidimensional scaling plots of bacterial ARISA for aerial parts of rice (shoots) revealed that the structure of shoot bacterial communities was significantly affected by plant genotype (indica or japonica) based on similarity tests, whereas root microbiomes were largely affected by the N fertilization level.
Collapse
|
24
|
Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. ANNALS OF BOTANY 2013; 112:331-45. [PMID: 23071218 PMCID: PMC3698374 DOI: 10.1093/aob/mcs217] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/24/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. SCOPE This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. CONCLUSIONS Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.
Collapse
Affiliation(s)
- T. J. Rose
- Southern Cross Plant Science, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
| | - S. M. Impa
- Crop and Environmental Sciences Division, International Rice Research Institute (IRRI), DAPO Bob 7777, Metro Manila, Philippines
| | - M. T. Rose
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - J. Pariasca-Tanaka
- Japan International Research Center for Agricultural Sciences (JIRCAS), Stable Food Production Program, 1-1 Ohwashi Tsukuba, Ibaraki 305-8686, Japan
| | - A. Mori
- Japan International Research Center for Agricultural Sciences (JIRCAS), Stable Food Production Program, 1-1 Ohwashi Tsukuba, Ibaraki 305-8686, Japan
| | - S. Heuer
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Bob 7777, Metro Manila, Philippines
| | - S. E. Johnson-Beebout
- Crop and Environmental Sciences Division, International Rice Research Institute (IRRI), DAPO Bob 7777, Metro Manila, Philippines
| | - M. Wissuwa
- Japan International Research Center for Agricultural Sciences (JIRCAS), Stable Food Production Program, 1-1 Ohwashi Tsukuba, Ibaraki 305-8686, Japan
| |
Collapse
|
25
|
Ding T, Palmer MW, Melcher U. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiol 2013; 13:1. [PMID: 23286760 PMCID: PMC3546043 DOI: 10.1186/1471-2180-13-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/20/2012] [Indexed: 12/02/2022] Open
Abstract
Background Plant endophytic bacteria play an important role benefiting plant growth or being pathogenic to plants or organisms that consume those plants. Multiple species of bacteria have been found co-inhabiting plants, both cultivated and wild, with viruses and fungi. For these reasons, a general understanding of plant endophytic microbial communities and their diversity is necessary. A key issue is how the distributions of these bacteria vary with location, with plant species, with individual plants and with plant growing season. Results Five common plant species were collected monthly for four months in the summer of 2010, with replicates from four different sampling sites in the Tallgrass Prairie Preserve in Osage County, Oklahoma, USA. Metagenomic DNA was extracted from ground, washed plant leaf samples, and fragments of the bacterial 16S rDNA genes were amplified for analysis of terminal restriction fragment length polymorphism (T-RFLP). We performed mono-digestion T-RFLP with restriction endonuclease DdeI, to reveal the structures of leaf endophytic bacterial communities, to identify the differences between plant-associated bacterial communities in different plant species or environments, and to explore factors affecting the bacterial distribution. We tested the impacts of three major factors on the leaf endophytic bacterial communities, including host plant species, sampling dates and sampling locations. Conclusions Results indicated that all of the three factors were significantly related (α = 0.05) to the distribution of leaf endophytic bacteria, with host species being the most important, followed by sampling dates and sampling locations.
Collapse
Affiliation(s)
- Tao Ding
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
26
|
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS One 2012; 7:e52891. [PMID: 23285218 PMCID: PMC3532110 DOI: 10.1371/journal.pone.0052891] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
A three year field study (2007–2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted using the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. Fertility management appeared to have little impact on both diazotrophic and total bacterial communities. However, copy numbers of the nifH gene did appear to be negatively impacted by conventional crop protection measures across all years suggesting diazotrophs may be particularly sensitive to pesticides. Impacts of crop management were greatly overshadowed by the influence of temporal effects with diazotrophic communities changing on a year by year basis and from season to season. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions.
Collapse
|
27
|
Meng X, Wang L, Long X, Liu Z, Zhang Z, Zed R. Influence of nitrogen fertilization on diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.). Res Microbiol 2012; 163:349-56. [PMID: 22564556 DOI: 10.1016/j.resmic.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
Diazotrophs in the soil may be influenced by plant factors as well as nitrogen (N) fertilization. In this study, we investigated potential diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) supplied with differing amounts of N. The community structure of N(2)-fixing bacteria was profiled using the length heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) based on a variation in the nifH gene. Higher numbers of diazotrophs were detected by T-RFLP compared to LH-PCR. The lowest number of N(2)-fixing bacteria was observed in the rhizosphere soil with high N fertilization. T-RFLP was a better method than LH-PCR for profiling microbial diversity of diazotrophs using multidimensional scaling (MDS) and analysis of similarity (ANOSIM) of fingerprints as well as diversity measures. The supply of N fertilizer appeared to negatively influence the abundance of diazotrophs in the rhizophere of the Jerusalem artichoke.
Collapse
Affiliation(s)
- Xianfa Meng
- Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | | | |
Collapse
|
28
|
Ferrando L, Fernández Mañay J, Fernández Scavino A. Molecular and culture-dependent analyses revealed similarities in the endophytic bacterial community composition of leaves from three rice (Oryza sativa) varieties. FEMS Microbiol Ecol 2012; 80:696-708. [PMID: 22375835 DOI: 10.1111/j.1574-6941.2012.01339.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 12/27/2011] [Accepted: 02/18/2012] [Indexed: 12/01/2022] Open
Abstract
The endophytic bacterial communities of the three most important rice varieties cultivated in Uruguay were compared by a multiphasic approach. Leaves of mature plants grown in field experiments for two consecutive crop seasons were studied. No significant differences were found in the heterotrophic bacterial density for the three varieties. Pantoea ananatis and Pseudomonas syringae constituted 51% of the total of the isolates. These species were always present regardless of the variety or the season. Molecular analysis based on the 16S rRNA gene was performed by terminal restriction fragment length polymorphism (T-RFLP) and cloning. T-RFLP analysis revealed that bacterial communities grouped according to the variety, although the three varieties presented communities that showed 74% or higher similarities. Brevundimonas, the dominant genus in the clone library (18% of the clones), which might be present in all varieties according to T-RFLP profiles, was not recovered by cultivation. Conversely, bacteria from the genus Pseudomonas were not detected in the clone library. These results indicate that communities established in leaves of physiologically different rice varieties were highly similar and composed by a reduced group of strongly associated and persistent bacteria that were partially recovered by cultivation.
Collapse
Affiliation(s)
- Lucía Ferrando
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | | | | |
Collapse
|
29
|
Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:28-36. [PMID: 21970692 DOI: 10.1094/mpmi-08-11-0204] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because analysis of their specific functions is impeded by difficulties in cultivating most prokaryotes. Here, we present the first metagenomic approach to analyze an endophytic bacterial community resident inside roots of rice, one of the most important staple foods. Metagenome sequences were obtained from endophyte cells extracted from roots of field-grown plants. Putative functions were deduced from protein domains or similarity analyses of protein-encoding gene fragments, and allowed insights into the capacities of endophyte cells. This allowed us to predict traits and metabolic processes important for the endophytic lifestyle, suggesting that the endorhizosphere is an exclusive microhabitat requiring numerous adaptations. Prominent features included flagella, plant-polymer-degrading enzymes, protein secretion systems, iron acquisition and storage, quorum sensing, and detoxification of reactive oxygen species. Surprisingly, endophytes might be involved in the entire nitrogen cycle, as protein domains involved in N(2)-fixation, denitrification, and nitrification were detected and selected genes expressed. Our data suggest a high potential of the endophyte community for plant-growth promotion, improvement of plant stress resistance, biocontrol against pathogens, and bioremediation, regardless of their culturability.
Collapse
Affiliation(s)
- A Sessitsch
- AIT Austrian Institute of Technology, Tulin, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:435-43. [PMID: 21536480 DOI: 10.1016/j.pbi.2011.04.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 05/03/2023]
Abstract
As current research activities have focused on symbiotic or parasitic plant-microbe interactions, other types of associations between plants and microorganisms are often overlooked. Endophytic bacteria colonize inner host tissues, sometimes in high numbers, without damaging the host or eliciting strong defense responses. Unlike endosymbionts they are not residing in living plant cells or surrounded by a membrane compartment. The molecular basis of endophytic interactions is still not well understood. Several traits involved in the establishment of endophytes have been elucidated. Culture-independent methods for community analysis and functional genomic as well as comparative genomic analyses will provide a better understanding of community dynamics, signaling, and functions in endophyte-plant associations.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- University Bremen, Department of Molecular Plant Microbiology, Center for Biomolecular Interactions Bremen, 28334 Bremen, Germany.
| | | |
Collapse
|
32
|
Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World J Microbiol Biotechnol 2011; 28:493-503. [DOI: 10.1007/s11274-011-0840-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
|
33
|
Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD. Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 2011; 77:154-64. [PMID: 21426364 PMCID: PMC4339037 DOI: 10.1111/j.1574-6941.2011.01092.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this study, the effects of plant genotype, soil type and nutrient use efficiency on the composition of different bacterial communities associated with rice roots were investigated. Thus, total bacteria, Alpha- and Betaproteobacteria, Pseudomonas and Actinobacteria were studied using PCR, followed by denaturing gradient gel electrophoresis (PCR-DGGE). Rice genotype determined, to a large extent, the composition of the different bacterial communities across cultivars. Several cultivars belonging to Oryza sativa ssp. indica tended to select similar bacterial communities, whereas those belonging to subspecies japonica and aromatica selected ones with divergent community structures. An effect of soil type was pronounced for the Actinobacteria communities, while a small effect of 'improved' and 'traditional' plants was noted for all communities analyzed. A few dominant bands in PCR-DGGE, affiliated with Rhizobium radiobacter, Dickeya zeae, Mycobacterium bolletii and with members of the Rhizobiales, Rhodospirillaceae and Paenibacillaceae, were spread across cultivars. In contrast, a majority of bands (e.g. affiliated with Enterobacter cloacae or Burkholderia kururiensis) was only present in particular cultivars or was erratically distributed among rice replicates. These findings suggested that both bacterial adaptation and plant genotype contribute to the shaping of the dynamic bacterial communities associated with roots of rice plants.
Collapse
Affiliation(s)
- Pablo Rodrigo Hardoim
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, Groningen University, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Yang H, Hu L, Hurek T, Reinhold-Hurek B. Global characterization of the root transcriptome of a wild species of rice, Oryza longistaminata, by deep sequencing. BMC Genomics 2010; 11:705. [PMID: 21159186 PMCID: PMC3016420 DOI: 10.1186/1471-2164-11-705] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/15/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Oryza longistaminata, an AA genome type (2 n = 24), originates from Africa and is closely related to Asian cultivated rice (O. sativa L.). It contains various valuable traits with respect to tolerance to biotic and abiotic stress, QTLs with agronomically important traits and high ability to use nitrogen efficiently (NUE). However, only limited genomic or transcriptomic data of O. longistaminata are currently available. RESULTS In this study we present the first comprehensive characterization of the O. longistaminata root transcriptome using 454 pyrosequencing. One sequencing run using a normalized cDNA library from O. longistaminata roots adapted to low N conditions generated 337,830 reads, which assembled into 41,189 contigs and 30,178 singletons. By similarity search against protein databases, putative functions were assigned to over 34,510 uni-ESTs. Comparison with ESTs derived from cultivated rice collections revealed expressed genes across different plant species, however 16.7% of the O. longistaminata ESTs had not been detected as expressed in O. sativa. Additionally, 15.7% had no significant similarity to known sequences. RT-PCR and Southern blot analyses confirmed the expression of selected novel transcripts in O. longistaminata. CONCLUSION Our results show that one run using a Genome Sequencer FLX from 454 Life Science/Roche generates sufficient genomic information for adequate de novo assembly of a large number of transcripts in a wild rice species, O. longistaminata. The generated sequence data are publicly available and will facilitate gene discovery in O. longistaminata and rice functional genomic studies. The large number of abundant of novel ESTs suggests different metabolic activity in O. longistaminata roots in comparison to O. sativa roots.
Collapse
Affiliation(s)
- Haiyuan Yang
- Laboratory of General Microbiology, Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Liwei Hu
- Laboratory of General Microbiology, Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Thomas Hurek
- Laboratory of General Microbiology, Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Laboratory of General Microbiology, Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
35
|
Barbieri E, Ceccaroli P, Saltarelli R, Guidi C, Potenza L, Basaglia M, Fontana F, Baldan E, Casella S, Ryahi O, Zambonelli A, Stocchi V. New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol 2010; 114:936-42. [PMID: 21036337 DOI: 10.1016/j.funbio.2010.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/27/2010] [Accepted: 09/02/2010] [Indexed: 11/28/2022]
Abstract
Diversity of nitrogen-fixing bacteria and the nitrogen-fixation activity was investigated in Tuber magnatum, the most well-known prized species of Italian white truffle. Degenerate PCR primers were applied to amplify the nitrogenase gene nifH from T. magnatum ascomata at different stages of maturation. Putative amino acid sequences revealed mainly the presence of Alphaproteobacteria belonging to Bradyrhizobium spp. and expression of nifH genes from Bradyrhizobia was detected. The nitrogenase activity evaluated by acetylene reduction assay was 0.5-7.5μmolC(2)H(4)h(-1)g(-1), comparable with early nodules of legumes associated with specific nitrogen-fixing bacteria. This is the first demonstration of nitrogenase expression gene and activity within truffle.
Collapse
Affiliation(s)
- Elena Barbieri
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, Urbino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Here, we report an efficient method for extracting high-quality mRNA from soil. Key steps in the isolation of total RNA were low-pH extraction (pH 5.0) and Q-Sepharose chromatography. The removal efficiency of humic acids was 94 to 98% for all soils tested. To enrich mRNA, subtractive hybridization of rRNA was most efficient. Subtractive hybridization may be followed by exonuclease treatment if the focus is on the analysis of unprocessed mRNA. The total extraction method can be completed within 8 h, resulting in enriched mRNA ranging from 200 bp to 4 kb in size.
Collapse
|
37
|
Burbano CS, Reinhold-Hurek B, Hurek T. LNA-substituted degenerate primers improve detection of nitrogenase gene transcription in environmental samples. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:251-257. [PMID: 23766076 DOI: 10.1111/j.1758-2229.2009.00107.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to study the active diazotrophic bacterial community and to capture the majority of its individuals in environmental samples, strategies improving gene detection by increasing sensitivity and efficiency of PCR reactions are highly desirable. Since LNA (locked nucleic acids) modifications might alleviate a low sensitivity and specificity often limiting PCR reactions utilizing degenerate primers, the effect of LNA substituted primers on the detection of nifH transcripts in roots of rice and sugar cane by direct reverse transcription polymerase chain reaction (RT-PCR) was studied. The LNA substitution of the RT primer increased the sensitivity of the RT-PCR up to 26-fold, whereas LNA substitution of the PCR primers decreased specificity. Terminal restriction fragment length polymorphism (T-RFLP) analysis of RT-PCR products showed that LNA substitutions in the RT-primer did not change the pattern of nifH cDNA phylotypes. The use of the LNA-substituted RT-primer allowed the detection of nifH transcripts in sugar cane, where DNA primers alone failed to produce RT-PCR products. These results suggest that similar improvements to PCR detection of nucleic acids can be expected for other environmental samples and genes likewise, when LNA-substituted primers are used.
Collapse
Affiliation(s)
- Claudia Sofía Burbano
- Laboratory of General Microbiology, Center for Biomolecular Interactions Bremen (CBIB), University of Bremen, D-28359 Bremen, Germany
| | | | | |
Collapse
|
38
|
Prasanna R, Nain L, Pandey AK, Nayak S. Exploring the Ecological Significance of Microbial Diversity and Networking in the Rice Ecosystem. SOIL BIOLOGY 2010. [DOI: 10.1007/978-3-642-05076-3_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Videira SS, de Araujo JLS, Rodrigues LDS, Baldani VLD, Baldani JI. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 2009; 293:11-9. [PMID: 19222576 DOI: 10.1111/j.1574-6968.2008.01475.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
So far, the occurrence of nitrogen-fixing Sphingomonas bacteria has been restricted to three strains of Sphingomonas azotifigens. In this work, a group of 46 Sphingomonas-like isolates, which originated from two rice varieties grown in two soils in Brazil, were characterized based on morphological, physiological and genetic analyses. The PCR genus specifically applied indicated that all 46 isolates belonged to the Sphingomonas genus and confirmed the results based on the yellow pigment of the colonies grown on potato agar medium and the BIOLOG data. It was also observed that 22 isolates are nitrogen-fixing bacteria as determined by the acetylene reduction method and confirmed by nifH gene detection. The genetic diversity based on the 16S rRNA analysis (amplified rDNA restriction analysis) showed that the isolates formed two distinct groups at a similarity value of 60%. Furthermore, five clusters at 60% similarity were observed with the 16S-23S intergenic space (ribosomal intergenic space analysis) analysis. Sequencing of the 16S rRNA gene and nifH fragments showed that most of the 22 nitrogen-fixing isolates formed clusters apart from that of the S. azotifigens. This is the first report on the occurrence of nitrogen-fixing Sphingomonas bacteria associated with rice grown in Brazil.
Collapse
Affiliation(s)
- Sandy Sampaio Videira
- Instituto de Agronomia, CPGA-CS, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | | | | | | | | |
Collapse
|
40
|
Transcription analysis of genes encoding homologues of reductive dehalogenases in "Dehalococcoides" sp. strain CBDB1 by using terminal restriction fragment length polymorphism and quantitative PCR. Appl Environ Microbiol 2009; 75:1876-84. [PMID: 19201984 DOI: 10.1128/aem.01042-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of reductive dehalogenase homologous (rdh) genes of "Dehalococcoides" sp. strain CBDB1 was investigated during the growth and reductive dechlorination of 1,2,3- and 1,2,4-trichlorobenzene (TCB). A method was developed to monitor the expression of all 32 rdhA genes present in the genome based on reverse transcription-PCR amplification with 13 degenerate primer pairs and terminal restriction fragment length polymorphism (t-RFLP) analysis. With this approach, the upregulation of the transcription of 29 rdhA genes was indicated in response to 1,2,3- and 1,2,4-TCB added after a substrate depletion period of 72 h. The transcription of the remaining three rdhA genes additionally was detected using specific primers. While most rdhA genes were upregulated similarly in cultures after induction with 1,2,3-TCB or 1,2,4-TCB, three rdhA genes responded differentially to 1,2,3- and 1,2,4-TCB, as revealed by the comparison of t-RFLP profiles. The enhanced transcription of cbdbA1453 and cbdbA187 was observed in the presence of 1,2,3-TCB, while the transcription of cbdbA1624 was strongly induced by 1,2,4-TCB. Comparison of t-RFLP profiles obtained from cDNA and genomic DNA indicated a particularly high induction of the transcription of cbrA (=cbdbA84) by both TCBs. As indicated by reverse transcription-quantitative PCR, the transcription of these plus two other rdhA genes (cbdbA1588 and cbdbA1618) increased within 48 to 72 h by one or two orders of magnitude. Subsequently, transcript levels slowly decreased and approached initial transcript levels several days after complete dehalogenation. Finally, cbrA was transcribed to a level of 22 transcripts per cbrA gene, suggesting that cbrA mRNA could be an appropriate biomarker for the investigation of the natural dechlorination potential at chlorobenzene-contaminated sites.
Collapse
|
41
|
Wu L, Ma K, Lu Y. Prevalence of betaproteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars. MICROBIAL ECOLOGY 2009; 57:58-68. [PMID: 18548184 DOI: 10.1007/s00248-008-9403-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 05/09/2008] [Indexed: 05/26/2023]
Abstract
The diversity and function of nitrogen-fixing bacteria colonizing rice roots are not well understood. A field experiment was conducted to determine the diversity of diazotrophic communities associated with roots of modern rice cultivars using culture-independent molecular analyses of nitrogenase gene (nifH) fragments. Experimental treatments included four modern rice cultivars (Oryza sativa, one Indica, one Japonica and two hybrid rice varieties) and three levels (0, 50, and 100 kg N ha(-1)) of N (urea) fertilizer application. Cloning and sequencing of 103 partial nifH genes showed that a diverse community of diazotrophs was associated with rice roots. However, the nifH gene fragments belonging to betaproteobacteria were dominant, accounting for nearly half of nifH sequences analyzed across the clone libraries. Most of them were similar to nifH fragments retrieved from wild rice and Kallar grass, with Azoarcus spp. being the closest cultured relatives. Alphaproteobacteria were also detected, but their relative abundance in the nifH gene pools was dramatically decreased with N fertilizer application. In addition, a high fraction of nifH gene pools was affiliated with methylotrophs and methane oxidizers. The sequence analysis was consistent with the terminal restriction fragment-length polymorphism (T-RFLP) fingerprinting of the nifH gene fragments, which showed three of four dominant terminal restriction fragments were mainly related to betaproteobacteria based on in silico digestion of nifH sequences. T-RFLP analyses also revealed that the effects of N fertilizer on the nifH gene diversity retrieved from roots varied according to rice cultivars. In summary, the present study revealed the prevalence of betaproteobacterial sequences among the proteobacteria associated with roots of modern rice cultivars. This group of diazotrophs appeared less sensitive to N fertilizer application than diazotrophic alphaproteobacteria. Furthermore, methylotrophs may also play a role in nitrogen fixation on rice roots. However, it must be noted that due to the potential bias of polymerase chain reaction protocol, the significance of non-proteobacterial diazotrophs such as Firmicutes and anaerobic bacteria is possibly underestimated.
Collapse
Affiliation(s)
- Liqin Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100094, China
| | | | | |
Collapse
|
42
|
Shrestha PM, Kube M, Reinhardt R, Liesack W. Transcriptional activity of paddy soil bacterial communities. Environ Microbiol 2008; 11:960-70. [PMID: 19170728 DOI: 10.1111/j.1462-2920.2008.01821.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bulk mRNA was used to explore the transcriptional activity of bacterial communities in oxic versus anoxic paddy soil. Two microbial cDNA libraries were constructed from composite samples using semi-randomly primed RT-PCR. cDNAs averaged 500-600 bp in length and were treated as expressed sequence tags (ESTs). Clustering analysis of 805 random cDNAs resulted in 179 and 155 different ESTs for the oxic and anoxic zones respectively. Using an E-value threshold of e(-10), a total of 218 different ESTs could be assigned by blastx, while 116 ESTs were predicted novel. Both the proportion and significance of the EST assignments increased with cDNA length. Taxonomic assignment was more powerful in discriminating between the aerobic and anaerobic bacterial communities than functional inference, as most ESTs in both oxygen zones were putative indicators of similar housekeeping functions, in particular ABC-type transporters. A few ESTs were putative indicators for community function in a biogeochemical context, such as beta-oxidation of long-chain fatty acids specifically in the oxic zone. Expressed sequence tags assigned to Alpha- and Betaproteobacteria were predominantly found in the oxic zone, while those affiliated with Deltaproteobacteria were more frequently detected in the anoxic zone. At the genus level, multiple assignments to Bradyrhizobium and Geobacter were unique to the oxic and anoxic zones respectively. The phylum-level affiliations of 93 16S rRNA sequences corresponded well with two taxonomically distinct EST patterns. Expressed sequence tags affiliated with Acidobacteria and Chloroflexi were frequently detected in both oxygen zones. In summary, the soil metatranscriptome is accessible for global analysis and such studies have great potential in elucidating the taxonomic and functional status of soil bacterial communities, but study significance depends on the number and length of cDNAs being randomly analysed.
Collapse
Affiliation(s)
- Pravin Malla Shrestha
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
43
|
Ogilvie LA, Hirsch PR, Johnston AWB. Bacterial diversity of the broadbalk 'classical' winter wheat experiment in relation to long-term fertilizer inputs. MICROBIAL ECOLOGY 2008; 56:525-37. [PMID: 18347845 DOI: 10.1007/s00248-008-9372-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/09/2008] [Accepted: 02/05/2008] [Indexed: 05/26/2023]
Abstract
With more than 160 years of contrasting fertilizer regimes, the Broadbalk winter wheat experiment represents a unique experimental resource for studying the effects of long-term fertilizer application on microbial population diversity. Using DGGE and clone library analysis, we report here on eubacterial species diversity (16S rRNA gene) and diversity within two sets of gene products associated with microbial N acquisition: NifH (nitrogen fixation) and AmtB (ammonium transport). Comparisons were made within and between soils treated with mineral N fertilizer, farmyard manure or receiving no fertilizer. Analysis of 16S rRNA gene DGGE profiles showed no clear patterns to qualitatively distinguish bacterial community structure between the three different treatments (P > 0.05), with all samples containing a range of eubacterial taxa similar to those that are characteristic of soil bacteria reported elsewhere. Intra-plot heterogeneity was high and of a similar magnitude to that between treatments. This lack of qualitative between plot differences was echoed in the representative sequences of 16S rRNA, nifH, and amtB genes in the various samples. Taken together, both phylogenetic and functional gene analyses showed bacterial communities in the Broadbalk-trial soil were very stable and relatively non-responsive to long-term management of balanced fertilizer inputs.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- Centre for Soils and Ecosystem Function, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | | | | |
Collapse
|
44
|
Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 2008; 80:199-209. [DOI: 10.1007/s00253-008-1567-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
45
|
Demba Diallo M, Reinhold-Hurek B, Hurek T. Evaluation of PCR primers for universal nifH gene targeting and for assessment of transcribed nifH pools in roots of Oryza longistaminata with and without low nitrogen input. FEMS Microbiol Ecol 2008; 65:220-8. [PMID: 18631250 DOI: 10.1111/j.1574-6941.2008.00545.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The bias of widely used degenerate nifH-specific primer sets was first tested using denaturing gradient gel electrophoresis (DGGE), and their application for profiling of complex communities assessed for roots of Oryza longistaminata. When primers (P) with mismatches at nondegenerate positions were used on genomic DNA of Azotobacter vinelandii, which harbors three single divergent nifH genes, template-to-product ratios were highly skewed. In contrast, we obtained no evidence for a large PCR bias when we used highly degenerate primers with no mismatches (Z). Similar results were obtained for reverse transcription (RT)-PCR amplifications from root RNA from O. longistaminata grown at the river bed of the Okavango, where Z-primers detected a more complex nifH pool, corroborating that the P-primers are quite biased in the nifH sequences they amplify. In microcosms of O. longistaminata grown in the phytotron in the presence or absence of constant low nitrogen input (25 kg NH4NO3 ha(-1) year(-1)), roots of nitrogen-treated plants showed similar, slightly higher levels of nifH-mRNA. However, nitrogen treatment had a strong effect on the composition and diversity of expressed nifH pools that shifted towards methylotroph-related nitrogenases. Thus the active population of diazotrophs was not resistant towards low rates of nitrogen input and decreased significantly in richness, as also observed for plant species richness in grasslands by others.
Collapse
|
46
|
Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME JOURNAL 2008; 2:561-70. [DOI: 10.1038/ismej.2008.14] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Nicolaisen MH, Baelum J, Jacobsen CS, Sørensen J. Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil. Environ Microbiol 2008; 10:571-9. [PMID: 18190516 DOI: 10.1111/j.1462-2920.2007.01476.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A modified protocol for simultaneous extraction of RNA and DNA, followed by real-time polymerase chain reaction quantification, was used to investigate tfdA gene expression during in situ degradation of the herbicide MCPA (4-chloro-2-methylphenoxy-acetic acid) in soil. tfdA encodes an alpha-ketoglutarate-dependent dioxygenase catalysing the first step in the degradation pathway of MCPA and 2,4-D (2,4-dichlorophenoxy-acetic acid). A linear recovery of tfdA mRNA over three orders of magnitude was shown, and the tfdA mRNA level was normalized using the tfdA mRNA/DNA ratio. The density of active cells required for tfdA mRNA detection was 10(5) cells g(-1) soil. Natural soil microcosms inoculated with Cupriavidus necator (formerly Ralstonia eutropha) AEO106 (pRO101) cells were amended with four different MCPA concentrations (2, 20, 50 and 150 mg kg(-1)). Mineralization rates were estimated by quantification of 14CO2 emission from degradation of 14C-MCPA. tfdA mRNA was detected 1 h after amendment at all four concentrations. In soils amended with 2 and 20 mg kg(-1), the mRNA/DNA ratio for tfdA demonstrated a sharp transient maximum of tfdA expression from no to full expression within 3 and 6 h respectively, followed by a decline and complete loss of expression after 19 and 43 h. A more complex pattern of tfdA expression was observed for the higher 50 and 150 mg kg(-1) amendments; this coincided with growth of C. necator AEO106 (pRO101) in the system. Repeated amendment with MCPA after 2 weeks in the 20 mg kg(-1) scenario revealed a sharp increase of tfdA mRNA, and absence of a mineralization lag phase. For all amendments, tfdA mRNA was detectable only during active mineralization, and thus revealed a direct correlation between tfdA mRNA presence and microbial degrader activity. The present study demonstrates that direct analysis of functional gene expression dynamics by quantification of mRNA can indeed be made in natural soil.
Collapse
Affiliation(s)
- Mette Haubjerg Nicolaisen
- Section of Genetics and Microbiology, Department of Ecology, University of Copenhagen, Thorvaldensvej 40, 1871 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
48
|
Welsh A, Burke DJ, Hahn D. Analysis of nitrogen-fixing members of the epsilon subclass of Proteobacteria in salt marsh sediments. Appl Environ Microbiol 2007; 73:7747-52. [PMID: 17921276 PMCID: PMC2168066 DOI: 10.1128/aem.00757-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 09/26/2007] [Indexed: 11/20/2022] Open
Abstract
Based on phylogenetic analysis of clones retrieved from two nifH gene clone libraries that were created using cDNA from suboxic sediment samples obtained from areas densely vegetated with the high-salt marsh plant Spartina patens, a primer set was designed to target nitrogen-fixing bacteria with sequence similarities to members of the epsilon subclass of Proteobacteria. Nested PCR, denaturing gel electrophoresis, and subsequent sequence analysis of reamplified fragments confirmed the specificity of the primer set by retrieving nifH sequences of only putative members of the epsilon subclass of Proteobacteria, all of which were characterized by a highly divergent 27- or 36-bp insertion in both DNA and cDNA.
Collapse
Affiliation(s)
- Allana Welsh
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | | | | |
Collapse
|
49
|
Tian X, Cao L, Tan H, Han W, Chen M, Liu Y, Zhou S. Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. MICROBIAL ECOLOGY 2007; 53:700-7. [PMID: 17334856 DOI: 10.1007/s00248-006-9163-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 08/23/2006] [Accepted: 09/07/2006] [Indexed: 05/14/2023]
Abstract
A dual approach consisting of cultivation and molecular retrieval of actinobacterial 16S rRNA genes was used to characterize the diversity of actinobacterial community inhabiting interior of rice stems and roots. Streptomyces is the most frequently isolated genus from rice stems and roots. Forty-five clones chosen randomly among 250 clones in the 16S rRNA gene clone library from roots were affiliated with nine genera of actinobacteria and uncultured actinobacteria (Mycobacterium, Streptomyces, Micromonospora, Actinoplanes, Frankia, Dactylosporangium, Amycolatopsis, Corynebacterium, Rhodococcus, and uncultured actinobacterium). However, 33 clones from stems were affiliated with four genera and uncultured actinobacteria (Streptomyces, Mycobacterium, Nocardiodies, Janibacter, uncultured earthworm cast bacterium, uncultured earthworm intestine bacterium, and uncultured actinobacterium). Species similar to S. cyaneus were isolated from surface-sterilized roots and stems of rice and detected inside rice roots by culture-independent methods. Species similar to S. caviscabies, S. scabies, and S. turgidiscabies were simultaneously detected from the interior of rice stems by the culture-dependent and culture-independent methods. S. galilaeus was detected from the interior of rice stems and roots. These results indicated that some actinobacterial populations in rice stems were correlated with those in roots.
Collapse
Affiliation(s)
- Xinli Tian
- State Key Laboratory for Biocontrol and Department of Biochemistry, College of Life Sciences, Zhongshan Sun Yatsen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang L, Hurek T, Reinhold-Hurek B. A nifH-based oligonucleotide microarray for functional diagnostics of nitrogen-fixing microorganisms. MICROBIAL ECOLOGY 2007; 53:456-70. [PMID: 17186154 DOI: 10.1007/s00248-006-9126-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 05/13/2023]
Abstract
Nitrogen fixation is an important process in biogeochemical cycles exclusively carried out by prokaryotes, mostly by an evolutionarily conserved nitrogenase protein complex, of which one of the structural genes (nifH) is highly valuable for phylogenetic and diversity analyses. We developed a nifH-based short oligonucleotide microarray (nifH diagnostic microarray) as a rapid tool to effectively monitor nitrogen-fixing diazotrophic populations in a wide range of environments. Taking account of the overwhelming predominance of environmental nifH fragments from uncultivated microorganisms in public databases, our nifH microarray is mainly based on nifH sequences from as yet unidentified prokaryotes. Standard conditions for microarray performance were determined, and criteria for the design of specific oligonucleotides were defined. A primary set of 56 oligonucleotides was validated with fluorescence-labeled single-stranded nifH targets from five reference strains, 26 environmental clones, and artificial mixtures of reference strains. The nifH microarray was applied to analyze the diversity (based on DNA) and activity (based on mRNA) of diazotrophs in roots of wild rice samples from Namibia. Results demonstrated that only a small subset of diazotrophs being present in the sample were actually fixing nitrogen actively. Our data suggest that the developed nifH microarray is a highly reproducible and semiquantitative method for mapping the variability of diazotrophic diversity, allowing rapid comparisons of the relative abundance and activity of diazotrophic prokaryotes in the environment. A further refined nifH microarray comprising of 194 oligonucleotide probes now covers more than 90% of sequences in our nifH database.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of General Microbiology, Center of Applied Gene Sensoric, University of Bremen, P.O. Box 33 04 40, D-28334, Bremen, Germany
| | | | | |
Collapse
|