1
|
Rancel-Rodríguez NM, Sausen N, Reyes CP, Quintana AM, Melkonian B, Melkonian M. Unexpected Genetic Diversity of Nostocales (Cyanobacteria) Isolated from the Phyllosphere of the Laurel Forests in the Canary Islands (Spain). Microorganisms 2024; 12:2625. [PMID: 39770827 PMCID: PMC11676812 DOI: 10.3390/microorganisms12122625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
A total of 96 strains of Nostocales (Cyanobacteria) were established from the phyllosphere of the laurel forests in the Canary Islands (Spain) and the Azores (Portugal) using enrichment media lacking combined nitrogen. The strains were characterized by light microscopy and SSU rRNA gene comparisons. Morphologically, most strains belonged to two different morphotypes, termed "Nostoc-type" and "Tolypothrix-type". Molecular phylogenetic analysis of 527 SSU rRNA gene sequences of cyanobacteria (95 sequences established during this study plus 392 sequences from Nostocales and 40 sequences from non-heterocyte-forming cyanobacteria retrieved from the databases) revealed that none of the SSU rRNA gene sequences from the phyllosphere of the laurel forests was identical to a database sequence. In addition, the genetic diversity of the isolated strains was high, with 42 different genotypes (44% of the sequences) recognized. Among the new genotypes were also terrestrial members of the genus Nodularia as well as members of the genus Brasilonema. It is concluded that heterocyte-forming cyanobacteria represent a component of the phyllosphere that is still largely undersampled in subtropical/tropical forests.
Collapse
Affiliation(s)
- Nereida M. Rancel-Rodríguez
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, 38200 San Cristóbal De La Laguna, Spain
| | - Nicole Sausen
- Institute for Plant Sciences, Department of Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Carolina P. Reyes
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, 38206 San Cristóbal De La Laguna, Spain;
| | - Antera Martel Quintana
- Banco Español de Algas, Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain;
| | - Barbara Melkonian
- Integrative Bioinformatics, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Michael Melkonian
- Integrative Bioinformatics, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|
2
|
Halary S, Duval C, Marie B, Bernard C, Piquet B, Gros O, Bourguet-Kondracki ML, Duperron S. Genomes of nine biofilm-forming filamentous strains of Cyanobacteria (genera Jaaginema, Scytonema, and Karukerafilum gen. nov.) isolated from mangrove habitats of Guadeloupe (Lesser Antilles). FEMS MICROBES 2023; 5:xtad024. [PMID: 38213393 PMCID: PMC10781437 DOI: 10.1093/femsmc/xtad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
Biofilm-forming cyanobacteria are abundant in mangrove ecosystems, colonizing various niches including sediment surface and periphyton where they can cover large areas, yet have received limited attention. Several filamentous isolates were recently isolated from Guadeloupe, illustrating the diversity and novelty present in these biofilms. In this study, nine strains belonging to three novel lineages found abundantly in Guadeloupe biofilms are characterized by genome sequencing, morphological and ultrastructural examination, metabolome fingerprinting and searched for secondary metabolites biosynthesis pathways. Assignation of two lineages to known genera is confirmed, namely Scytonema and Jaaginema. The third lineage corresponds to a new Coleofasciculales genus herein described as Karukerafilum gen. nov. The four strains belonging to this genus group into two subclades, one of which displays genes necessary for nitrogen fixation as well as the complete pathway for geosmin production. This study gives new insights into the diversity of mangrove biofilm-forming cyanobacteria, including genome-based description of a new genus and the first genome sequence available for the genus Jaaginema.
Collapse
Affiliation(s)
- Sébastien Halary
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Charlotte Duval
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Benjamin Marie
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Cécile Bernard
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Bérénice Piquet
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 97110 Pointe-à-Pitre, France
| | - Marie-Lise Bourguet-Kondracki
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Sébastien Duperron
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 75005 Paris, France
| |
Collapse
|
3
|
Rahim NAA, Mohd Sidik Merican FM, Radzi R, Omar WMW, Nor SAM, Broady P, Convey P. Unveiling the Diversity of Periphytic Cyanobacteria (Cyanophyceae) from Tropical Mangroves in Penang, Malaysia. Trop Life Sci Res 2023; 34:57-94. [PMID: 37860087 PMCID: PMC10583846 DOI: 10.21315/tlsr2023.34.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/08/2023] [Indexed: 10/21/2023] Open
Abstract
Cyanobacteria are one of the most important groups of photoautotrophic organisms, contributing to carbon and nitrogen fixation in mangroves worldwide. They also play an important role in soil retention and stabilisation and contribute to high plant productivity through their secretion of plant growth-promoting substances. However, their diversity and distribution in Malaysian mangrove ecosystems have yet to be studied in detail, despite Malaysia hosting a significant element of remaining mangroves globally. In a floristic survey conducted in Penang, peninsular Malaysia, 33 morphospecies of periphytic cyanobacteria were identified and described for the first time from a mangrove ecosystem in Malaysia. Sixteen genera, comprising Aphanocapsa, Chroococcus, Chroococcidiopsis, Cyanobacterium, Desmonostoc, Geitlerinema, Leptolyngbya, Lyngbya, Microcystis, Myxosarcina, Oscillatoria, Phormidium, Pseudanabaena, Spirulina, Trichocoleus and Xenococcus, were obtained from field material growing on diverse natural and artificial substrata. Oscillatoriales was the dominant order with Phormidium the dominant genus at nine of the 15 sampling sites examined. Three of the morphospecies, Aphanocapsa cf. concharum, Xenococcus cf. pallidus and Oscillatoria pseudocurviceps, are rare and poorly known morphospecies worldwide. Chroococcus minutus, Phormidium uncinatum, P. amphigranulata, and some species of Oscillatoriales are considered as pollution indicator species. This study provides important baseline information for further investigation of the cyanobacterial microflora present in other mangrove areas around Malaysia. A complete checklist will enhance understanding of their ecological role and the potential for benefits arising from useful secondary metabolites or threats via toxin production to the ecosystem.
Collapse
Affiliation(s)
- Nur Afiqah Abdul Rahim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | | | - Ranina Radzi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Wan Maznah Wan Omar
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu, Malaysia
| | - Paul Broady
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Avenue, Upper Riccarton, Christchurch 8041, New Zealand
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
| |
Collapse
|
4
|
The importance of conditionally rare taxa for the assembly and interaction of fungal communities in mangrove sediments. Appl Microbiol Biotechnol 2022; 106:3787-3798. [PMID: 35538375 DOI: 10.1007/s00253-022-11949-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
Abstract
The fungal communities provide the nutrients and drive the cycles of elements in nature, and the rare fungal taxa are proved to be crucial for these communities in many environments. However, the ecological functions of rare taxa for the fungal communities in mangrove ecosystems are poorly assessed until now. This work aims to reveal the importance of rare taxa for the assembly of fungal communities in mangrove sediments by using the amplicon sequencing analysis of different spatiotemporal samples collected from Sanya mangroves, China. The results showed that Ascomycota and Basidiomycota were the dominant phyla in the conditionally rare taxa (CRT). The fungal communities possessed outstanding stability against the spatiotemporal variation and most collected environmental factors. The CRT possessed narrower niches and were more affected by the environmental variables than the abundant taxa. The current work demonstrated that the CRT had significantly higher relative abundances, degrees (the number of adjacent edges), clustering coefficients, and closeness centralities in the top 8 modules of the co-occurrence network (p < 0.05), indicating the important role of the CRT for the interaction of fungal communities in mangrove sediments. These findings indicate the importance of the CRT for the fungal community structures in mangrove sediments, and would deepen our understanding of dynamic functions of mangrove fungi, thereby facilitating the management, utilization, and protection of mangrove ecosystems. KEY POINTS: • Fungal communities in mangrove sediments are stable against environment variations. • The conditionally rare taxa (CRT) possessed narrower niches than the abundant fungal taxa. • The CRT are central for the co-occurrence network and interaction of fungal communities.
Collapse
|
5
|
Chen Y, Zheng M, Qiu Y, Wang H, Zhang H, Tao Q, Luo H, Zhang Z. Organic Matter and Total Nitrogen Lead to Different Microbial Community Structure in Sediments Between Lagoon and Surrounding Areas by Regulating Xenococcus Abundance. Front Microbiol 2022; 13:859921. [PMID: 35531298 PMCID: PMC9069056 DOI: 10.3389/fmicb.2022.859921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Coastal lagoon is an important productive ecosystem on the Earth. In this study, we compared microbial community in the sediments between lagoon and surrounding areas, and explored mechanism for the variation of microbial community. As a result, the sediment of surrounding area showed significantly higher organic matter and total nitrogen than that of the lagoon. The linear regression analysis revealed that organic matter and total nitrogen are positively correlated with Xenococcus. Bacterial and fungal PCoA1 showed significantly positive relationships with the relative abundance of Xenococcus, indicating that Xenococcus affects the bacterial and fungal community in the sediments of both the lagoon and surrounding area. ANOSIM analysis demonstrated that there were significant differences in bacterial and fungal community structure in the sediments between the lagoon and surrounding areas. Therefore, organic matter and total nitrogen affect the microbial community structure in the sediments of lagoon and surrounding areas by regulating the abundance of Xenococcus.
Collapse
Affiliation(s)
- Yonggan Chen
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
| | - Minjing Zheng
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
| | - Yue Qiu
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
| | - Hong Wang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
| | - Haonan Zhang
- Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Qiongren Tao
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
| | - Hongwei Luo
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
| | - Zhenhua Zhang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
- Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Nanjing, China
- *Correspondence: Zhenhua Zhang,
| |
Collapse
|
6
|
The Codevelopment of Mangroves and Infaunal Community Diversity in Response to the Natural Dynamics of Mud Deposition in French Guiana. SUSTAINABILITY 2022. [DOI: 10.3390/su14052829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The sustainability of mangrove ecosystems requires a knowledge of their spatiotemporal variability as a function of regional properties. The unique coastal ecosystems of the mangrove belt along the coast of the Guianas in South America are influenced by cycles of a massive accretion of mud supplied by the Amazon River and wave induced erosion. This study characterized, for the first time, how benthic infaunal assemblages, as proxies of mechanisms of mangrove resilience, were structured by the natural growth track of Avicennia germinans dominated mangroves in French Guiana. We sampled 4 mobile mud stations and 27 consolidated mud stations distributed over 9 tidal transects from bare to vegetated mudflats colonized by young mangroves during the dry season. We collected a complete dataset of sediment and vegetation variables together with the benthic meso- (>0.25 mm) and macrofauna (>1 mm). We used a combination of eigenvector based multivariate analyses and variance partitioning on this multiple set of variables to identify which environmental variables likely drive the benthic diversity patterns. Mangrove early development increased the alpha and beta diversities of the infaunal communities for the two size classes. A total of 20–30% and 7–12% of the beta diversity are explained by linear and nonlinear spatial variables, respectively. However, 7% to 9% of the variance partioning could be determined by other biotic/abiotic variables, biological interactions or neutral processes, not described here. This study has highlighted the necessity of taking into account mangrove dynamics at suitable spatial scales for benthic biodiversity evaluation and mangrove management or restoration plans.
Collapse
|
7
|
Fiard M, Cuny P, Sylvi L, Hubas C, Jézéquel R, Lamy D, Walcker R, El Houssainy A, Heimbürger-Boavida LE, Robinet T, Bihannic I, Gilbert F, Michaud E, Dirberg G, Militon C. Mangrove microbiota along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America): Drivers and potential bioindicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150667. [PMID: 34599952 DOI: 10.1016/j.scitotenv.2021.150667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The microbial communities inhabiting the Atlantic-East Pacific (AEP) mangroves have been poorly studied, and mostly comprise chronically polluted mangroves. In this study, we characterized changes in the structure and diversity of microbial communities of mangroves along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America) that experience low human impact. The microbial communities were assigned into 50 phyla. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Planctomycetes were the most abundant taxa. The environmental determinants found to significantly correlated to the microbial communities at these mangroves were granulometry, dieldrin concentration, pH, and total carbon (TC) content. Furthermore, a precise analysis of the sediment highlights the existence of three types of anthropogenic pressure among the stations: (i) organic matter (OM) enrichment due to the proximity to the city and its wastewater treatment plant, (ii) dieldrin contamination, and (iii) naphthalene contamination. These forms of weak anthropogenic pressure seemed to impact the bacterial population size and microbial assemblages. A decrease in Bathyarchaeota, "Candidatus Nitrosopumilus", and Nitrospira genera was observed in mangroves subjected to OM enrichment. Mangroves polluted with organic contaminants were enriched in Desulfobacteraceae, Desulfarculaceae, and Acanthopleuribacteraceae (with dieldrin or polychlorobiphenyl contamination), and Chitinophagaceae and Geobacteraceae (with naphthalene contamination). These findings provide insights into the main environmental factors shaping microbial communities of mangroves in the AEP that experience low human impact and allow for the identification of several potential microbial bioindicators of weak anthropogenic pressure.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cédric Hubas
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Station Marine de Concarneau, 29900 Concarneau, France.
| | | | - Dominique Lamy
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France; Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Sorbonne Université, Univ Paris Est Créteil, IRD, CNRS, INRA, 4 place Jussieu, 75005 Paris, France.
| | - Romain Walcker
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| | - Amonda El Houssainy
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | | | - Tony Robinet
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Station Marine de Concarneau, 29900 Concarneau, France.
| | | | - Franck Gilbert
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National D'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|
8
|
Sylvestre MN, Jean-Louis P, Grimonprez A, Bilas P, Collienne A, Azède C, Gros O. Candidatus Thiovulum sp. strain imperiosus: the largest free-living Epsilonproteobacteraeota Thiovulum strain lives in a marine mangrove environment. Can J Microbiol 2021; 68:1-14. [PMID: 34461021 DOI: 10.1139/cjm-2021-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A large (47.75 ± 3.56 µm in diameter) Thiovulum bacterial strain forming white veils is described from a marine mangrove ecosystem. High sulfide concentrations (up to 8 mM of H2S) were measured on sunken organic matter (wood/bone debris) under laboratory conditions. This sulfur-oxidizing bacterium colonized the organic matter, forming a white veil. According to conventional scanning electron microscope (SEM) observations, bacterial cells are ovoid and slightly motile by numerous small flagella present on the cell surface. Large intracytoplasmic internal sulfur granules were observed, suggesting a sulfidic-based metabolism. Observations were confirmed by elemental sulfur distribution detected by energy-dispersive X-ray spectroscopy (EDXS) analysis using an environmental scanning electron microscope (ESEM) on non-dehydrated samples. Phylogenetic analysis of the partial sequence of 16S rDNA obtained from purified fractions of this Epsilonproteobacteraeota strain indicates that this bacterium belongs to the Thiovulaceae cluster and could be one of the largest Thiovulum ever described. We propose to name this species Candidatus Thiovulum sp. strain imperiosus.
Collapse
Affiliation(s)
- Marie-Noëlle Sylvestre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Patrick Jean-Louis
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Adrien Grimonprez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Philippe Bilas
- Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane (C3MAG), UFR des Sciences Exactes et Naturelles, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
- Groupe de Technologie des Surfaces et des Interfaces, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Amandine Collienne
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Catherine Azède
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
- Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane (C3MAG), UFR des Sciences Exactes et Naturelles, Université des Antilles, BP 592 - 97159 Pointe-à-Pitre, Guadeloupe
| |
Collapse
|
9
|
Vogel MA, Mason OU, Miller TE. Host and environmental determinants of microbial community structure in the marine phyllosphere. PLoS One 2020; 15:e0235441. [PMID: 32614866 PMCID: PMC7332025 DOI: 10.1371/journal.pone.0235441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
Although seagrasses are economically and ecologically critical species, little is known about their blade surface microbial communities and how these communities relate to the plant host. To determine microbial community composition and diversity on seagrass blade surfaces and in the surrounding seawater,16S rRNA gene sequencing (iTag) was used for samples collected at five sites along a gradient of freshwater input in the northern Gulf of Mexico on three separate sampling dates. Additionally, seagrass surveys were performed and environmental parameters were measured to characterize host characteristics and the abiotic conditions at each site. Results showed that Thalassia testudinum (turtle grass) blades hosted unique microbial communities that were distinct in composition and diversity from the water column. Environmental conditions, including water depth, salinity, and temperature, influenced community structure as blade surface microbial communities varied among sites and sampling dates in correlation with changes in environmental parameters. Microbial community composition also correlated with seagrass host characteristics, including growth rates and blade nutrient composition. There is some evidence for a core community for T. testudinum as 21 microorganisms from five phyla (Cyanobacteria, Proteobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes) were present in all blade surface samples. This study provides new insights and understanding of the processes that influence the structure of marine phyllosphere communities, how these microbial communities relate to their host, and their role as a part of the seagrass holobiont, which is an important contribution given the current decline of seagrass coverage worldwide.
Collapse
Affiliation(s)
- Margaret A. Vogel
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| | - Olivia U. Mason
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
| | - Thomas E. Miller
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
10
|
Shifts in the Bacterial Population and Ecosystem Functions in Response to Vegetation in the Yellow River Delta Wetlands. mSystems 2020; 5:5/3/e00412-20. [PMID: 32518198 PMCID: PMC7289592 DOI: 10.1128/msystems.00412-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetation represents probably the most crucial step for the ecosystem functions of wetlands, but it is unclear how microbial populations and functions shift along with vegetation. In this study, we found that the richness and diversity of soil bacteria increased with vegetation levels and that the community composition was distinctly shifted from bare to vegetative places. The bare land displayed an extremely high abundance of Cyanobacteria as a monospecies genus, while a Gemmatimonadetes genus was predominant as multiple species in all the vegetative wetlands, suggesting their important ecosystem functions and potential mechanisms. Expression of the genes related to photosynthesis was enriched exclusively in bare land. Genes involved in biological organic carbon metabolism and the cycling of main elements (C, N, S, and P) were highly expressed in vegetative wetlands and were mostly included in the metagenome-assembled genome (MAG) of Gemmatimonadetes Some compounds identified from soil metabolomic results also corresponded to pathways involving these key active genes. Cyanobacteria is thus responsible for the carbon sink in early infertile wetlands, and Gemmatimonadetes plays a crucial role in ecosystem functions in vegetative wetlands. Our results highlight that the soil microbial populations execute ecosystem functions for wetlands and that vegetation is the determinant for the population and functional shifts in the coastal estuarine wetland of the Yellow River Delta.IMPORTANCE Vegetation probably represents the most crucial step for the ecosystem functions of wetlands, but it is unclear how microbial populations and functions shift in pace with the colonization and succession of vegetation. In this study, we found that a Cyanobacteria monospecies genus and a Gemmatimonadetes multispecies genus are fastidiously predominant in the bare and vegetative wetlands of the Yellow River Delta, respectively. Consistently, photosynthesis genes were enriched exclusively in bare land, while genes involved in biological organic carbon metabolism and the cycling of main elements were highly expressed in vegetative wetlands, were mostly included in the MAG of Gemmatimonadetes, and were consistent with soil metabolomic results. Our results provide insight into the adaptive succession of predominant bacterial species and their ecosystem functions in response to the presence of vegetation.
Collapse
|
11
|
Microbial community structure of soils in Bamenwan mangrove wetland. Sci Rep 2019; 9:8406. [PMID: 31182804 PMCID: PMC6557889 DOI: 10.1038/s41598-019-44788-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Microbial community diversity and composition are important for the maintenance of mangrove ecosystem. Bacterial and archaeal community composition of the Bamenwan Mangrove Wetland soil in Hainan, China, was determined using pyrosequencing technique. Bacterial community composition presented differences among the five soil samples. Rhizobiales with higher abundance were observed in inner mangrove forest samples, while Desulfobacterales were in the seaward edge samples, and Frankiales, Gaiellales and Rhodospirillales in the landedge sample. For archaea, Crenarchaeota and Euryarchaeota dominated in five samples, but the proportion in each samples were different. Dominant archaeal community composition at the order level was similar in the seaward edge samples. The dominant archaeal clusters in the two inner mangrove forest samples were different, with Soil Crenarchaeotic Group (SCG) and Halobacteriales in sample inside of Bruguiera sexangula forest and SCG, Methanosarcinales and Marine Benthic Group B (MBGB) in sample inside of Xylocarpus mekongensis forest. The dominant archaeal clusters in land sample were unique, with Terrestrial Group and South African Gold Mine Group 1. The metabolic pathways including metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems and human diseases were all detected for bacterial and archaeal functional profiles, but metabolic potentials among five samples were different.
Collapse
|
12
|
Jung P, Briegel-Williams L, Schermer M, Büdel B. Strong in combination: Polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism. Microbiologyopen 2018; 8:e00729. [PMID: 30239166 PMCID: PMC6528576 DOI: 10.1002/mbo3.729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria of biological soil crusts (BSCs) represent an important part of circumpolar and Alpine ecosystems, serve as indicators for ecological condition and climate change, and function as ecosystem engineers by soil stabilization or carbon and nitrogen input. The characterization of cyanobacteria from both polar regions remains extremely important to understand geographic distribution patterns and community compositions. This study is the first of its kind revealing the efficiency of combining denaturing gradient gel electrophoresis (DGGE), light microscopy and culture‐based 16S rRNA gene sequencing, applied to polar and Alpine cyanobacteria dominated BSCs. This study aimed to show the living proportion of cyanobacteria as an extension to previously published meta‐transcriptome data of the same study sites. Molecular fingerprints showed a distinct clustering of cyanobacterial communities with a close relationship between Arctic and Alpine populations, which differed from those found in Antarctica. Species richness and diversity supported these results, which were also confirmed by microscopic investigations of living cyanobacteria from the BSCs. Isolate‐based sequencing corroborated these trends as cold biome clades were assigned, which included a potentially new Arctic clade of Oculatella. Thus, our results contribute to the debate regarding biogeography of cyanobacteria of cold biomes.
Collapse
Affiliation(s)
- Patrick Jung
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Laura Briegel-Williams
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schermer
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
13
|
Rigonato J, Kent AD, Gumiere T, Branco LHZ, Andreote FD, Fiore MF. Temporal assessment of microbial communities in soils of two contrasting mangroves. Braz J Microbiol 2017; 49:87-96. [PMID: 28827029 PMCID: PMC5790579 DOI: 10.1016/j.bjm.2017.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/04/2022] Open
Abstract
Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.
Collapse
Affiliation(s)
- Janaina Rigonato
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, SP, Brazil; São Paulo State University, Instituto de Biociências, Letras e Ciências Exatas, Department of Zoology and Botany, São José do Rio Preto, SP, Brazil
| | - Angela D Kent
- University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, Champaign, Illinois, USA
| | - Thiago Gumiere
- University of São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Department of Soil Science, Piracicaba, São Paulo, Brazil
| | - Luiz Henrique Zanini Branco
- São Paulo State University, Instituto de Biociências, Letras e Ciências Exatas, Department of Zoology and Botany, São José do Rio Preto, SP, Brazil
| | - Fernando Dini Andreote
- University of São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Department of Soil Science, Piracicaba, São Paulo, Brazil
| | - Marli Fátima Fiore
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, SP, Brazil.
| |
Collapse
|
14
|
Ullah R, Yasir M, Khan I, Bibi F, Sohrab SS, Al-Ansari A, Al-Abbasi F, Al-Sofyani AA, Daur I, Lee SW, Azhar EI. Comparative bacterial community analysis in relatively pristine and anthropogenically influenced mangrove ecosystems on the Red Sea. Can J Microbiol 2017; 63:649-660. [PMID: 28376307 DOI: 10.1139/cjm-2016-0587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mangrove habitats are ecologically important ecosystems that are under severe pressure worldwide because of environmental changes and human activities. In this study, 16S rRNA gene amplicon deep-sequencing was used to compare bacterial communities in Red Sea mangrove ecosystems at anthropogenically influenced coastal sites with those at a relatively pristine island site. In total, 32 phyla were identified from the mangrove rhizospheres, with Proteobacteria predominating at each of the studied sites; however, the relative abundance was significantly decreased at the coastal sites (Mastorah, MG-MS; Ar-Rayis, MG-AR) compared with the pristine island site near Dhahban (MG-DBI). The phyla Actinobacteria, Firmicutes, Acidobacteria, Chloroflexi, Spirochetes, and Planctomycetes were present at a relative abundance of >1% at the MG-MS and MG-AR sites, but their concentration was <1% at the MG-DBI site. A total of 1659 operational taxonomic units (OTUs) were identified at the species level, and approximately 945 OTUs were shared across the different sampling sites. Multivariate principal coordinate data analysis separated the MG-DBI site from the MG-AR and MG-MS cluster. Specific bacterial taxa were enriched at each location, and in particular, the genera Pseudoalteromonas and Cobetia were predominantly identified in the MG-DBI site compared with the anthropogenically influenced coastal sites.
Collapse
Affiliation(s)
- Riaz Ullah
- a Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,b Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- a Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Khan
- a Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,b Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fehmida Bibi
- a Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sayed Sartaj Sohrab
- a Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Al-Ansari
- c Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Al-Abbasi
- b Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin A Al-Sofyani
- d Marine Biology Department, Faculty of Marine Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ihsanullah Daur
- e Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seon-Woo Lee
- f Department of Applied Biology, Dong-A University, Busan 49315, Republic of Korea
| | - Esam I Azhar
- a Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,g Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use. Sci Rep 2016; 6:36357. [PMID: 27819304 PMCID: PMC5098255 DOI: 10.1038/srep36357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/13/2016] [Indexed: 01/06/2023] Open
Abstract
Plateau lakes are important ecosystems with diverse ecological functions. Cyanobacteria play a key role in plateau lakes as primary producers. However, they are threatening when dense blooms occur. Identifying cyanobacteiral biogeography and the mechanism of assembly processes shaping the distribution of cyanobacteria in plateau lakes is critical for understanding cyanobacterial ecology and applying it to lake management. In the present study, the biogeographic pattern and importance of neutral and niche processes in assembly of cyanobacteria in 21 lakes on Yungui Plateau, China were examined. Results showed that cyanobacteria exhibit unique biogeographic pattern, and most of them have a narrow habitat preference in plateau lakes. They were assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use, which explained 62.4% of the biological variation. Neutral processes were not at play. Water physicochemical property (key variables - dissolved oxygen, salinity, trophic status and pH) was the most dominant driver shaping its unique biogeographic pattern. Watershed land-use especially urban land, water body and agricultural land also exhibited a strong impact on cyanobacterial distribution, followed by lake morphology. As most of the cyanobacteiral genus detected in these plateau lakes were potential toxin-producers, this study indicated that in order to protect waters from toxic-bloom in the future, reducing nutrient loading and land-use practices are two practical approaches in plateau lake management.
Collapse
|
16
|
Wu P, Xiong X, Xu Z, Lu C, Cheng H, Lyu X, Zhang J, He W, Deng W, Lyu Y, Lou Q, Hong Y, Fang H. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China. PLoS One 2016; 11:e0164082. [PMID: 27695084 PMCID: PMC5047532 DOI: 10.1371/journal.pone.0164082] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/19/2016] [Indexed: 01/28/2023] Open
Abstract
The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.
Collapse
Affiliation(s)
- Peng Wu
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Xiaofei Xiong
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Zhanzhou Xu
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Chuqian Lu
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiangli Lyu
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Jinghuai Zhang
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Wei He
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Wei Deng
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Yihua Lyu
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Quansheng Lou
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
| | - Yiguo Hong
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (YH); (HF)
| | - Hongda Fang
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou, China
- * E-mail: (YH); (HF)
| |
Collapse
|
17
|
Two new Beggiatoa species inhabiting marine mangrove sediments in the Caribbean. PLoS One 2015; 10:e0117832. [PMID: 25689402 PMCID: PMC4331518 DOI: 10.1371/journal.pone.0117832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022] Open
Abstract
Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves.
Collapse
|
18
|
Guidi-Rontani C, Jean MR, Gonzalez-Rizzo S, Bolte-Kluge S, Gros O. Description of new filamentous toxicCyanobacteria(Oscillatoriales) colonizing the sulfidic periphyton mat in marine mangroves. FEMS Microbiol Lett 2014; 359:173-81. [DOI: 10.1111/1574-6968.12551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Chantal Guidi-Rontani
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- Equipe Biologie de la Mangrove; UMR 7138 - Evolution Paris-Seine; Paris France
| | - Maïtena R.N. Jean
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| | - Silvina Gonzalez-Rizzo
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| | - Susanne Bolte-Kluge
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- Plateform: Cellular Imaging Facility-Department of Platforms and Technology Development; Paris France
| | - Olivier Gros
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| |
Collapse
|
19
|
Silva CSP, Genuário DB, Vaz MGMV, Fiore MF. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 2014; 37:100-12. [PMID: 24461713 DOI: 10.1016/j.syapm.2013.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/23/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches.
Collapse
Affiliation(s)
- Caroline Souza Pamplona Silva
- University of São Paulo, Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of Cyanobacteria, 13400-970 Piracicaba, São Paulo, Brazil
| | - Diego Bonaldo Genuário
- University of São Paulo, Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of Cyanobacteria, 13400-970 Piracicaba, São Paulo, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- University of São Paulo, Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of Cyanobacteria, 13400-970 Piracicaba, São Paulo, Brazil
| | - Marli Fátima Fiore
- University of São Paulo, Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of Cyanobacteria, 13400-970 Piracicaba, São Paulo, Brazil.
| |
Collapse
|
20
|
Varon-Lopez M, Dias ACF, Fasanella CC, Durrer A, Melo IS, Kuramae EE, Andreote FD. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Environ Microbiol 2013; 16:845-55. [DOI: 10.1111/1462-2920.12237] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/20/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Maryeimy Varon-Lopez
- Department of Soil Science; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba SP Brazil
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO/KNAW); Wageningen The Netherlands
| | | | - Cristiane Cipolla Fasanella
- Department of Soil Science; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba SP Brazil
| | - Ademir Durrer
- Department of Soil Science; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba SP Brazil
| | - Itamar Soares Melo
- Laboratory of Environmental Microbiology; Embrapa Environment; Jaguariúna SP Brazil
| | - Eiko Eurya Kuramae
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO/KNAW); Wageningen The Netherlands
| | - Fernando Dini Andreote
- Department of Soil Science; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba SP Brazil
| |
Collapse
|