1
|
Kumar N, Mattoo SS, Sanghvi S, Ellendula MP, Mahajan S, Planner C, Bednash JS, Khan M, Ganesan LP, Singh H, Lafuse WP, Wozniak DJ, Rajaram MVS. Pseudomonas aeruginosa- mediated cardiac dysfunction is driven by extracellular vesicles released during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624948. [PMID: 39651123 PMCID: PMC11623511 DOI: 10.1101/2024.11.22.624948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Pseudomonas aeruginosa (P.a.) is a gram-negative, opportunistic bacterium abundantly present in the environment. Often P.a. infections cause severe pneumonia, if left untreated. Surprisingly, up to 30% of patients admitted to the hospital for community- acquired pneumonia develop adverse cardiovascular complications such as myocardial infarction, arrhythmia, left ventricular dysfunction, and heart failure. However, the underlying mechanism of infection-mediated cardiac dysfunction is not yet known. Recently, we demonstrated that P.a. infection of the lungs led to severe cardiac electrical abnormalities and left ventricular dysfunction with limited P.a. dissemination to the heart tissue. To understand the mechanism of cardiac dysfunction during P.a. infection, we utilized both in vitro and in vivo models. Our results revealed that inflammatory cytokines contribute but are not solely responsible for severe contractile dysfunction in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Instead, exposure of hiPSC-CMs with conditioned media from P.a. infected human monocyte-derived macrophages (hMDMs) was sufficient to cause severe contractile dysfunction and arrhythmia in hiPSC-CMs. Specifically, exosomes released from infected hMDMs and bacterial outer membrane vesicles (OMVs) are the major drivers of cardiomyocyte contractile dysfunction. By using LC-MS/MS, we identified bacterial proteins, including toxins that are packaged in the exosomes and OMVs, which are responsible for contractile dysfunction. Furthermore, we demonstrated that systemic delivery of bacterial OMVs to mice caused severe cardiac dysfunction, mimicking the natural bacterial infection. In summary, we conclude that OMVs released during infection enter circulation and drive cardiac dysfunction.
Collapse
|
2
|
Sahu SK, Maurya RK, Kulkarni HS. The Role of Complement Component C3 in Protection Against Pseudomonas Pneumonia-Induced Lung Injury. DNA Cell Biol 2024; 43:153-157. [PMID: 38324102 PMCID: PMC11002327 DOI: 10.1089/dna.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024] Open
Abstract
The complement system is a family of proteins that facilitate immune resistance by attacking microbes to decrease pathogen burden. As a result, deficiencies of certain complement proteins result in recurrent bacterial infections, and can also result in acute lung injury (ALI). We and others have shown that C3 is present in both immune and nonimmune cells, and modulates cellular functions such as metabolism, differentiation, cytokine production, and survival. Although the emerging roles of the complement system have implications for host responses to ALI, key questions remain vis-a-vis the lung epithelium. In this review, we summarize our recent article in which we reported that during Pseudomonas aeruginosa-induced ALI, lung epithelial cell-derived C3 operates independent of liver-derived C3. Specifically, we report the use of a combination of human cell culture systems and global as well as conditional knockout mouse models to demonstrate the centrality of lung epithelial cell-derived C3. We also summarize recent articles that have interrogated the role of intracellular and/or locally derived C3 in host defense. We propose that C3 is a highly attractive candidate for enhancing tissue resilience in lung injury as it facilitates the survival and function of the lung epithelium, a key cell type that promotes barrier function.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rahul K. Maurya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Chongsaritsinsuk J, Steigmeyer AD, Mahoney KE, Rosenfeld MA, Lucas TM, Smith CM, Li A, Ince D, Kearns FL, Battison AS, Hollenhorst MA, Judy Shon D, Tiemeyer KH, Attah V, Kwon C, Bertozzi CR, Ferracane MJ, Lemmon MA, Amaro RE, Malaker SA. Glycoproteomic landscape and structural dynamics of TIM family immune checkpoints enabled by mucinase SmE. Nat Commun 2023; 14:6169. [PMID: 37794035 PMCID: PMC10550946 DOI: 10.1038/s41467-023-41756-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key regulators in cellular immunity. However, their dense O-glycosylation remains enigmatic, primarily due to the challenges associated with studying mucin domains. Here, we demonstrate that the mucinase SmE has a unique ability to cleave at residues bearing very complex glycans. SmE enables improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we perform molecular dynamics (MD) simulations of TIM-3 and -4 to understand how glycosylation affects structural features of these proteins. Finally, we use these models to investigate the functional relevance of glycosylation for TIM-3 function and ligand binding. Overall, we present a powerful workflow to better understand the detailed molecular structures and functions of the mucinome.
Collapse
Affiliation(s)
| | | | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Taryn M Lucas
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Courtney M Smith
- Yale Cancer Biology Institute and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alice Li
- Yale Cancer Biology Institute and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Deniz Ince
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Marie A Hollenhorst
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, 94305, USA
| | - D Judy Shon
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Katherine H Tiemeyer
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Victor Attah
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Catherine Kwon
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | | | - Mark A Lemmon
- Yale Cancer Biology Institute and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
4
|
Wardman JF, Sim L, Liu J, Howard TA, Geissner A, Danby PM, Boraston AB, Wakarchuk WW, Withers SG. A high-throughput screening platform for enzymes active on mucin-type O-glycoproteins. Nat Chem Biol 2023; 19:1246-1255. [PMID: 37592157 DOI: 10.1038/s41589-023-01405-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Mucin-type O-glycosylation is a post-translational modification present at the interface between cells where it has important roles in cellular communication. However, deciphering the function of O-glycoproteins and O-glycans can be challenging, especially as few enzymes are available for their assembly or selective degradation. Here, to address this deficiency, we developed a genetically encoded screening methodology for the discovery and engineering of the diverse classes of enzymes that act on O-glycoproteins. The method uses Escherichia coli that have been engineered to produce an O-glycosylated fluorescence resonance energy transfer probe that can be used to screen for O-glycopeptidase activity. Subsequent cleavage of the substrate by O-glycopeptidases provides a read-out of the glycosylation state of the probe, allowing the method to also be used to assay glycosidases and glycosyltransferases. We further show the potential of this methodology in the first ultrahigh-throughput-directed evolution of an O-glycopeptidase.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Lyann Sim
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Teresa A Howard
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Geissner
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Phillip M Danby
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Suttapitugsakul S, Matsumoto Y, Aryal RP, Cummings RD. Large-Scale and Site-Specific Mapping of the Murine Brain O-Glycoproteome with IMPa. Anal Chem 2023; 95:13423-13430. [PMID: 37624755 PMCID: PMC10501376 DOI: 10.1021/acs.analchem.3c00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/16/2023] [Indexed: 08/27/2023]
Abstract
Altered protein glycosylation is typically associated with cognitive defects and other phenotypes, but there is a lack of knowledge about the brain glycoproteome. Here, we used the newly available O-glycoprotease IMPa from Pseudomonas aeruginosa for comprehensive O-glycoproteomic analyses of the mouse brain. In this approach, total tryptic glycopeptides were prepared, extracted, purified, and conjugated to a solid support before an enzymatic cleavage by IMPa. O-glycopeptides were analyzed by electron-transfer/higher-energy collision dissociation (EThcD), which permits site-specific and global analysis of all types of O-glycans. We developed two complementary approaches for the analysis of the total O-glycoproteome using HEK293 cells and derivatives. The results demonstrated that IMPa and EThcD facilitate the confident localization of O-glycans on glycopeptides. We then applied these approaches to characterize the O-glycoproteome of the mouse brain, which revealed the high frequency of various sialylated O-glycans along with the unusual presence of the Tn antigen. Unexpectedly, the results demonstrated that glycoproteins in the brain O-glycoproteome only partly overlap with those reported for the brain N-glycoproteome. These approaches will aid in identifying the novel O-glycoproteomes of different cells and tissues and foster clinical and translational insights into the functions of protein O-glycosylation in the brain and other organs.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts 02215, United States
| | | | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts 02215, United States
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Rios Galicia B, Sáenz JS, Yergaliyev T, Camarinha-Silva A, Seifert J. Host specific adaptations of Ligilactobacillus aviarius to poultry. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100199. [PMID: 37727231 PMCID: PMC10505982 DOI: 10.1016/j.crmicr.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The genus Ligilactobacillus encompasses species adapted to vertebrate hosts and fermented food. Their genomes encode adaptations to the host lifestyle. Reports of gut microbiota from chicken and turkey gastrointestinal tract have shown a high persistence of Ligilactobacillus aviarius along the digestive system compared to other species found in the same host. However, its adaptations to poultry as a host has not yet been described. In this work, the pan-genome of Ligilactobacillus aviarius was explored to describe the functional adaptability to the gastrointestinal environment. The core genome is composed of 1179 gene clusters that are present at least in one copy that codifies to structural, ribosomal and biogenesis proteins. The rest of the identified regions were classified into three different functional clusters of orthologous groups (clusters) that codify carbohydrate metabolism, envelope biogenesis, viral defence mechanisms, and mobilome inclusions. The pan-genome of Ligilactobacillus aviarius is a closed pan-genome, frequently found in poultry and highly prevalent across chicken faecal samples. The genome of L. aviarius codifies different clusters of glycoside hydrolases and glycosyltransferases that mediate interactions with the host cells. Accessory features, such as antiviral mechanisms and prophage inclusions, variate amongst strains from different GIT sections. This information provides hints about the interaction of this species with viral particles and other bacterial species. This work highlights functional adaptability traits present in L. aviarius that make it a dominant key member of the poultry gut microbiota and enlightens the convergent ecological relation of this species to the poultry gut environment.
Collapse
Affiliation(s)
- Bibiana Rios Galicia
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Johan Sebastian Sáenz
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Timur Yergaliyev
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| |
Collapse
|
7
|
O-Mucin-degrading carbohydrate-active enzymes and their possible implication in inflammatory bowel diseases. Essays Biochem 2023; 67:331-344. [PMID: 36912232 PMCID: PMC10154620 DOI: 10.1042/ebc20220153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/14/2023]
Abstract
Inflammatory bowel diseases (IBD) are modern diseases, with incidence rising around the world. They are associated with perturbation of the intestinal microbiota, and with alteration and crossing of the mucus barrier by the commensal bacteria that feed on it. In the process of mucus catabolism and invasion by gut bacteria, carbohydrate-active enzymes (CAZymes) play a critical role since mucus is mainly made up by O- and N-glycans. Moreover, the occurrence of IBD seems to be associated with low-fiber diets. Conversely, supplementation with oligosaccharides, such as human milk oligosaccharides (HMOs), which are structurally similar to intestinal mucins and could thus compete with them towards bacterial mucus-degrading CAZymes, has been suggested to prevent inflammation. In this mini-review, we will establish the current state of knowledge regarding the identification and characterization of mucus-degrading enzymes from both cultured and uncultured species of gut commensals and enteropathogens, with a particular focus on the present technological opportunities available to further the discovery of mucus-degrading CAZymes within the entire gut microbiome, by coupling microfluidics with metagenomics and culturomics. Finally, we will discuss the challenges to overcome to better assess how CAZymes targeting specific functional oligosaccharides could be involved in the modulation of the mucus-driven cross-talk between gut bacteria and their host in the context of IBD.
Collapse
|
8
|
Chongsaritsinsuk J, Steigmeyer AD, Mahoney KE, Rosenfeld MA, Lucas TM, Ince D, Kearns FL, Battison AS, Hollenhorst MA, Shon DJ, Tiemeyer KH, Attah V, Kwon C, Bertozzi CR, Ferracane MJ, Amaro RE, Malaker SA. Glycoproteomic landscape and structural dynamics of TIM family immune checkpoints enabled by mucinase SmE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526488. [PMID: 36778266 PMCID: PMC9915616 DOI: 10.1101/2023.02.01.526488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key checkpoint inhibitors in cancer. However, their dense O-glycosylation remains enigmatic both in terms of glycoproteomic landscape and structural dynamics, primarily due to the challenges associated with studying mucin domains. Here, we present a mucinase (SmE) and demonstrate its ability to selectively cleave along the mucin glycoprotein backbone, similar to others of its kind. Unlike other mucinases, though, SmE harbors the unique ability to cleave at residues bearing extremely complex glycans which enabled improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we performed molecular dynamics (MD) simulations of TIM-3 and -4 to demonstrate how glycosylation affects structural features of these proteins. Overall, we present a powerful workflow to better understand the detailed molecular structures of the mucinome.
Collapse
Affiliation(s)
| | | | - Keira E. Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Mia A. Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Taryn M. Lucas
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Deniz Ince
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Fiona L. Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Marie A. Hollenhorst
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA 94305, USA
| | - D. Judy Shon
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Katherine H. Tiemeyer
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Victor Attah
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Catherine Kwon
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Abstract
O-Glycoproteases are an emerging class of enzymes that selectively digest glycoproteins at positions decorated with specific O-linked glycans. O-Glycoprotease substrates range from any O-glycoprotein (albeit with specific O-glycan modifications) to only glycoproteins harboring specific O-glycosylated sequence motifs, such as those found in mucin domains. Their utility for multiple glycoproteomic applications is driving the search to both discover new O-glycoproteases and to understand how structural features of characterized O-glycoproteases influence their substrate specificities. One challenge of defining O-glycoprotease specificity restraints is the need to characterize O-glycopeptides with site-specific analysis of O-glycosites. Here, we demonstrate how O-Pair Search, a recently developed O-glycopeptide-centric identification platform that enables rapid searches and confident O-glycosite localization, can be used to determine substrate specificities of various O-glycoproteases de novo from LC-MS/MS data of O-glycopeptides. Using secreted protease of C1 esterase inhibitor (StcE) from enterohemorrhagic Escherichia coli and O-endoprotease OgpA from Akkermansia mucinophila, we explore numerous settings that effect O-glycopeptide identification and show how non-specific and semi-tryptic searches of O-glycopeptide data can produce candidate cleavage motifs. These putative motifs can be further used to define new protease cleavage settings that lower search times and improve O-glycopeptide identifications. We use this platform to generate a consensus motif for the recently characterized immunomodulating metalloprotease (IMPa) from Pseudomonas aeruginosa and show that IMPa is a favorable O-glycoprotease for characterizing densely O-glycosylated mucin-domain glycoproteins.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Sarafan ChEM-H, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Sarafan ChEM-H, Stanford University, Stanford, California, USA.
- Howard Hughes Medical Institute, Stanford, California, USA
| |
Collapse
|
10
|
Structure-guided mutagenesis of a mucin-selective metalloprotease from Akkermansia muciniphila alters substrate preferences. J Biol Chem 2022; 298:101917. [PMID: 35405095 PMCID: PMC9118916 DOI: 10.1016/j.jbc.2022.101917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Akkermansia muciniphila, a mucin-degrading microbe found in the human gut, is often associated with positive health outcomes. The abundance of A. muciniphila is modulated by the presence and accessibility of nutrients, which can be derived from diet or host glycoproteins. In particular, the ability to degrade host mucins, a class of proteins carrying densely O-glycosylated domains, provides a competitive advantage in the sustained colonization of niche mucosal environments. Although A. muciniphila is known to rely on mucins as a carbon and nitrogen source, the enzymatic machinery used by this microbe to process mucins in the gut is not yet fully characterized. Here, we focus on the mucin-selective metalloprotease, Amuc_0627 (AM0627), which is known to cleave between adjacent residues carrying truncated core 1 O-glycans. We showed that this enzyme is capable of degrading purified mucin 2 (MUC2), the major protein component of mucus in the gut. An X-ray crystal structure of AM0627 (1.9 Å resolution) revealed O-glycan–binding residues that are conserved between structurally characterized enzymes from the same family. We further rationalized the substrate cleavage motif using molecular modeling to identify nonconserved glycan-interacting residues. We conclude that mutagenesis of these residues resulted in altered substrate preferences down to the glycan level, providing insight into the structural determinants of O-glycan recognition.
Collapse
|
11
|
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 2022; 20:542-556. [PMID: 35347288 DOI: 10.1038/s41579-022-00712-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The 1013-1014 microorganisms present in the human gut (collectively known as the human gut microbiota) dedicate substantial percentages of their genomes to the degradation and uptake of carbohydrates, indicating the importance of this class of molecules. Carbohydrates function not only as a carbon source for these bacteria but also as a means of attachment to the host, and a barrier to infection of the host. In this Review, we focus on the diversity of carbohydrate-active enzymes (CAZymes), how gut microorganisms use them for carbohydrate degradation, the different chemical mechanisms of these CAZymes and the roles that these microorganisms and their CAZymes have in human health and disease. We also highlight examples of how enzymes from this treasure trove have been used in manipulation of the microbiota for improved health and treatment of disease, in remodelling the glycans on biopharmaceuticals and in the potential production of universal O-type donor blood.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rajneesh K Bains
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Allsopp LP, Collins ACZ, Hawkins E, Wood TE, Filloux A. RpoN/Sfa2-dependent activation of the Pseudomonas aeruginosa H2-T6SS and its cognate arsenal of antibacterial toxins. Nucleic Acids Res 2022; 50:227-243. [PMID: 34928327 PMCID: PMC8855297 DOI: 10.1093/nar/gkab1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa uses three type six secretion systems (H1-, H2- and H3-T6SS) to manipulate its environment, subvert host cells and for microbial competition. These T6SS machines are loaded with a variety of effectors/toxins, many being associated with a specific VgrG. How P. aeruginosa transcriptionally coordinates the main T6SS clusters and the multiple vgrG islands spread through the genome is unknown. Here we show an unprecedented level of control with RsmA repressing most known T6SS-related genes. Moreover, each of the H2- and H3-T6SS clusters encodes a sigma factor activator (SFA) protein called, Sfa2 and Sfa3, respectively. SFA proteins are enhancer binding proteins necessary for the sigma factor RpoN. Using a combination of RNA-seq, ChIP-seq and molecular biology approaches, we demonstrate that RpoN coordinates the T6SSs of P. aeruginosa by activating the H2-T6SS but repressing the H1- and H3-T6SS. Furthermore, RpoN and Sfa2 control the expression of the H2-T6SS-linked VgrGs and their effector arsenal to enable very effective interbacterial killing. Sfa2 is specific as Sfa3 from the H3-T6SS cannot complement loss of Sfa2. Our study further delineates the regulatory mechanisms that modulate the deployment of an arsenal of T6SS effectors likely enabling P. aeruginosa to adapt to a range of environmental conditions.
Collapse
Affiliation(s)
- Luke P Allsopp
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
- National Heart and Lung Institute, Imperial College
London, London, UK
| | - Alice C Z Collins
- National Heart and Lung Institute, Imperial College
London, London, UK
| | - Eleanor Hawkins
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| | - Thomas E Wood
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| |
Collapse
|
13
|
Prediction of Potential Drug Targets and Vaccine Candidates Against Antibiotic-Resistant Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28:160. [PMCID: PMC9640888 DOI: 10.1007/s10989-022-10463-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections, characterized by increasing antibiotic resistance, severity and mortality. Therefore, numerous efforts have been made nowadays to identify new therapeutic targets. This study aimed to find potential drug targets and vaccine candidates in drug-resistant strains of P. aeruginosa. Extensive antibiotic-resistant and carbapenem-resistant strains of P. aeruginosa with complete genome were selected and ten common hypothetical proteins (HPs) containing more than 200 amino acids were obtained. The structural, functional and immunological predictions of these HPs were performed with the utility of bioinformatics approaches. Two common HPs (Gene ID: 2877781645 and 2877781936) among other investigated proteins were revealed as potential candidates for pharmaceutical and vaccine purposes based on structural and physicochemical properties, functional domains, subcellular localizations, signal peptides, toxicity, virulence factor, antigenicity, allergenicity and immunoinformatic predictions. The consequence of this predictive study will assist in novel drug and vaccine design through experimental investigations.
Collapse
|
14
|
Vainauskas S, Guntz H, McLeod E, McClung C, Ruse C, Shi X, Taron CH. A Broad-Specificity O-Glycoprotease That Enables Improved Analysis of Glycoproteins and Glycopeptides Containing Intact Complex O-Glycans. Anal Chem 2021; 94:1060-1069. [PMID: 34962767 DOI: 10.1021/acs.analchem.1c04055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Characterization of mucin-type O-glycans linked to serine/threonine of glycoproteins is technically challenging, in part, due to a lack of effective enzymatic tools that enable their analysis. Recently, several O-glycan-specific endoproteases that can cleave the protein adjacent to the appended glycan have been described. Despite significant progress in understanding the biochemistry of these enzymes, known O-glycoproteases have specificity constraints, such as inefficient cleavage of glycoproteins bearing sialylated O-glycans, high selectivity for certain types of glycoproteins, or protein sequence bias. These factors limit their analytical application. In this study, we examined the capabilities of an immunomodulating metalloprotease (IMPa) from Pseudomonas aeruginosa. Peptide sequence selectivity and its impact on IMPa activity were interrogated using an array of synthetic peptides and their glycoforms. We show that IMPa has no specific P1 residue preference and can tolerate most amino acids at the P1 position, except aspartic acid. The enzyme does not cleave between two adjacent O-glycosites, indicating that O-glycosylated serine/threonine is not allowed at position P1. Glycopeptides with as few as two amino acids on either side of an O-glycosite were cleaved by IMPa. Finally, IMPa efficiently cleaved peptides and proteins carrying sialylated and asialylated O-glycans of varying complexity. We present the use of IMPa in a one-step O-glycoproteomic workflow for glycoprofiling of the purified glycoproteins granulocyte colony-stimulating factor and receptor-type tyrosine-protein phosphatase C without the need for glycopeptide enrichment. In these examples, IMPa enabled both the identification of O-glycosites and the range of complex O-glycan structures at each site.
Collapse
Affiliation(s)
- Saulius Vainauskas
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Hélène Guntz
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Elizabeth McLeod
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Colleen McClung
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Cristian Ruse
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Xiaofeng Shi
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Christopher H Taron
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| |
Collapse
|
15
|
Calprotectin-Mediated Zinc Chelation Inhibits Pseudomonas aeruginosa Protease Activity in Cystic Fibrosis Sputum. J Bacteriol 2021; 203:e0010021. [PMID: 33927050 DOI: 10.1128/jb.00100-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa induces pathways indicative of low zinc availability in the cystic fibrosis (CF) lung environment. To learn more about P. aeruginosa zinc access in CF, we grew P. aeruginosa strain PAO1 directly in expectorated CF sputum. The P. aeruginosa Zur transcriptional repressor controls the response to low intracellular zinc, and we used the NanoString methodology to monitor levels of Zur-regulated transcripts, including those encoding a zincophore system, a zinc importer, and paralogs of zinc containing proteins that do not require zinc for activity. Zur-controlled transcripts were induced in sputum-grown P. aeruginosa compared to those grown in control cultures but not if the sputum was amended with zinc. Amendment of sputum with ferrous iron did not reduce expression of Zur-regulated genes. A reporter fusion to a Zur-regulated promoter had variable activity in P. aeruginosa grown in sputum from different donors, and this variation inversely correlated with sputum zinc concentrations. Recombinant human calprotectin (CP), a divalent-metal binding protein released by neutrophils, was sufficient to induce a zinc starvation response in P. aeruginosa grown in laboratory medium or zinc-amended CF sputum, indicating that CP is functional in the sputum environment. Zinc metalloproteases comprise a large fraction of secreted zinc-binding P. aeruginosa proteins. Here, we show that recombinant CP inhibited both LasB-mediated casein degradation and LasA-mediated lysis of Staphylococcus aureus, which was reversible with added zinc. These studies reveal the potential for CP-mediated zinc chelation to posttranslationally inhibit zinc metalloprotease activity and thereby affect the protease-dependent physiology and/or virulence of P. aeruginosa in the CF lung environment. IMPORTANCE The factors that contribute to worse outcomes in individuals with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infections are not well understood. Therefore, there is a need to understand environmental factors within the CF airway that contribute to P. aeruginosa colonization and infection. We demonstrate that growing bacteria in CF sputum induces a zinc starvation response that inversely correlates with sputum zinc levels. Additionally, both calprotectin and a chemical zinc chelator inhibit the proteolytic activities of LasA and LasB proteases, suggesting that extracellular zinc chelators can influence proteolytic activity and thus P. aeruginosa virulence and nutrient acquisition in vivo.
Collapse
|
16
|
Classification, structural biology, and applications of mucin domain-targeting proteases. Biochem J 2021; 478:1585-1603. [DOI: 10.1042/bcj20200607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Epithelial surfaces throughout the body are coated by mucins, a class of proteins carrying domains characterized by a high density of O-glycosylated serine and threonine residues. The resulting mucosal layers form crucial host-microbe interfaces that prevent the translocation of microbes while also selecting for distinct bacteria via the presented glycan repertoire. The intricate interplay between mucus production and breakdown thus determines the composition of the microbiota maintained within these mucosal environments, which can have a large influence on the host during both homeostasis and disease. Most research to date on mucus breakdown has focused on glycosidases that trim glycan structures to release monosaccharides as a source of nutrients. More recent work has uncovered the existence of mucin-type O-glycosylation-dependent proteases that are secreted by pathogens, commensals, and mutualists to facilitate mucosal colonization and penetration. Additionally, immunoglobulin A (IgA) proteases promote bacterial colonization in the presence of neutralizing secretory IgA through selective cleavage of the heavily O-glycosylated hinge region. In this review, we summarize families of O-glycoproteases and IgA proteases, discuss known structural features, and review applications of these enzymes to glycobiology.
Collapse
|
17
|
Noach I, Boraston AB. Structural evidence for a proline-specific glycopeptide recognition domain in an O-glycopeptidase. Glycobiology 2020; 31:385-390. [PMID: 33030205 DOI: 10.1093/glycob/cwaa095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The glycosylation of proteins is typically considered as a stabilizing modification, including resistance to proteolysis. A class of peptidases, referred to as glycopeptidases or O-glycopeptidases, circumvent the protective effect of glycans against proteolysis by accommodating the glycans in their active sites as specific features of substrate recognition. IMPa from Pseudomonas aeruginosa is such an O-glycopeptidase that cleaves the peptide bond immediately preceding a site of O-glycosylation, and through this glycoprotein-degrading function contributes to the host-pathogen interaction. IMPa, however, is a relatively large multidomain protein and how its additional domains may contribute to its function remains unknown. Here, through the determination of a crystal structure of IMPa in complex with an O-glycopeptide, we reveal that the N-terminal domain of IMPa, which is classified in Pfam as IMPa_N_2, is a proline recognition domain that also shows the properties of recognizing an O-linked glycan on the serine/threonine residue following the proline. The proline is bound in the center of a bowl formed by four functionally conserved aromatic amino acid side chains while the glycan wraps around one of the tyrosine residues in the bowl to make classic aromatic ring-carbohydrate CH-π interactions. This structural evidence provides unprecedented insight into how the ancillary domains in glycoprotein-specific peptidases can noncatalytically recognize specific glycosylated motifs that are common in mucin and mucin-like molecules.
Collapse
Affiliation(s)
- Ilit Noach
- Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| | - Alisdair B Boraston
- Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
18
|
The Glycoprotease CpaA Secreted by Medically Relevant Acinetobacter Species Targets Multiple O-Linked Host Glycoproteins. mBio 2020; 11:mBio.02033-20. [PMID: 33024038 PMCID: PMC7542363 DOI: 10.1128/mbio.02033-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CpaA is a glycoprotease expressed by members of the Acinetobacter baumannii-calcoaceticus complex, and it is the first bona fide secreted virulence factor identified in these species. Here, we show that CpaA cleaves multiple targets precisely at O-glycosylation sites preceded by a Pro residue. This feature, together with the observation that sialic acid does not impact CpaA activity, makes this enzyme an attractive tool for the analysis of O-linked human protein for biotechnical and diagnostic purposes. Previous work identified proteins involved in blood coagulation as targets of CpaA. Our work broadens the set of targets of CpaA, pointing toward additional roles in bacterium-host interactions. We propose that CpaA belongs to an expanding class of functionally defined glycoproteases that targets multiple O-linked host glycoproteins. Glycans decorate proteins and affect their biological function, including protection against proteolytic degradation. However, pathogenic, and commensal bacteria have evolved specific glycoproteases that overcome the steric impediment posed by carbohydrates, cleaving glycoproteins precisely at their glycosylation site(s). Medically relevant Acinetobacter strains employ their type II secretion system (T2SS) to secrete the glycoprotease CpaA, which contributes to virulence. Previously, CpaA was shown to cleave two O-linked glycoproteins, factors V and XII, leading to reduced blood coagulation. In this work, we show that CpaA cleaves a broader range of O-linked human glycoproteins, including several glycoproteins involved in complement activation, such as CD55 and CD46. However, only CD55 was removed from the cell surface, while CD46 remained unaltered during the Acinetobacter nosocomialis infection assay. We show that CpaA has a unique consensus target sequence that consists of a glycosylated serine or threonine residue after a proline residue (P-S/T), and its activity is not affected by sialic acids. Molecular modeling and mutagenesis analysis of CpaA suggest that the indole ring of Trp493 and the ring of the Pro residue in the substrate form a key interaction that contributes to CpaA sequence selectivity. Similar bacterial glycoproteases have recently gained attention as tools for proteomic analysis of human glycoproteins, and CpaA appears to be a robust and attractive new component of the glycoproteomics toolbox. Combined, our work provides insight into the function and possible application of CpaA, a member of a widespread class of broad-spectrum bacterial glycoproteases involved in host-pathogen interactions.
Collapse
|
19
|
Tromp AT, Zhao Y, Jongerius I, Heezius ECJM, Abrial P, Ruyken M, van Strijp JAG, de Haas CJC, Spaan AN, van Kessel KPM, Henry T, Haas PJA. Pre-existing antibody-mediated adverse effects prevent the clinical development of a bacterial anti-inflammatory protein. Dis Model Mech 2020; 13:dmm045534. [PMID: 32471891 PMCID: PMC7541340 DOI: 10.1242/dmm.045534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial pathogens have evolved to secrete strong anti-inflammatory proteins that target the immune system. It was long speculated whether these virulence factors could serve as therapeutics in diseases in which abnormal immune activation plays a role. We adopted the secreted chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) as a model virulence factor-based therapeutic agent for diseases in which C5AR1 stimulation plays an important role. We show that the administration of CHIPS in human C5AR1 knock-in mice successfully dampens C5a-mediated neutrophil migration during immune complex-initiated inflammation. Subsequent CHIPS toxicology studies in animal models were promising. However, during a small phase I trial, healthy human volunteers showed adverse effects directly after CHIPS administration. Subjects showed clinical signs of anaphylaxis with mild leukocytopenia and increased C-reactive protein concentrations, which are possibly related to the presence of relatively high circulating anti-CHIPS antibodies and suggest an inflammatory response. Even though our data in mice show CHIPS as a potential anti-inflammatory agent, safety issues in human subjects temper the use of CHIPS in its current form as a therapeutic candidate. The use of staphylococcal proteins, or other bacterial proteins, as therapeutics or immune-modulators in humans is severely hampered by pre-existing circulating antibodies.
Collapse
Affiliation(s)
- Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Yuxi Zhao
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- Sanquin Research, Department of Immunopathology, 1006AD Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Erik C J M Heezius
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Pauline Abrial
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- Sanquin Research, Department of Immunopathology, 1006AD Amsterdam, The Netherlands
| | - Pieter-Jan A Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
20
|
The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in Pseudomonas aeruginosa. mSystems 2020; 5:5/4/e00495-20. [PMID: 32753509 PMCID: PMC7406228 DOI: 10.1128/msystems.00495-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that >30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to >1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as >30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that >30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule.
Collapse
|
21
|
Pseudomonas aeruginosa ExsA Regulates a Metalloprotease, ImpA, That Inhibits Phagocytosis of Macrophages. Infect Immun 2019; 87:IAI.00695-19. [PMID: 31527124 DOI: 10.1128/iai.00695-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium whose type III secretion system (T3SS) plays a critical role in acute infections. Translocation of the T3SS effectors into host cells induces cytotoxicity. In addition, the T3SS promotes the intracellular growth of P. aeruginosa during host infections. The T3SS regulon genes are regulated by an AraC-type regulator, ExsA. In this study, we found that an extracellular metalloprotease encoded by impA (PA0572) is under the regulation of ExsA. An ExsA consensus binding sequence was identified upstream of the impA gene, and direct binding of the site by ExsA was demonstrated via an electrophoretic mobility shift assay. We further demonstrate that secreted ImpA cleaves the macrophage surface protein CD44, which inhibits the phagocytosis of the bacterial cells by macrophages. Combined, our results reveal a novel ExsA-regulated virulence factor that cooperatively inhibits the functions of macrophages with the T3SS.
Collapse
|
22
|
Osei-Owusu P, Charlton TM, Kim HK, Missiakas D, Schneewind O. FPR1 is the plague receptor on host immune cells. Nature 2019; 574:57-62. [PMID: 31534221 PMCID: PMC6776691 DOI: 10.1038/s41586-019-1570-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/14/2019] [Indexed: 01/07/2023]
Abstract
The plague agent, Yersinia pestis, employs a type III secretion system (T3SS) to selectively destroy human immune cells, thereby enabling its replication in the bloodstream and transmission to new hosts via fleabite. The host factors responsible for the selective destruction of immune cells by plague bacteria were not known. Here we show that LcrV, the needle cap protein of the Y. pestis T3SS, binds N-formylpeptide receptor (FPR1) on human immune cells to promote the translocation of bacterial effectors. Plague infection in mice is characterized by high mortality, however N-formylpeptide receptor deficient animals exhibit increased survival and plague-protective antibody responses. We identified FPR1 p.R190W as a candidate human resistance allele that protects neutrophils from Y. pestis T3SS. These findings reveal the plague receptor on immune cells and show that FPR1 mutations provide for plague survival, which appears to have shaped human immune responses towards other infectious diseases and malignant neoplasms.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Thomas M Charlton
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Hwan Keun Kim
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA. .,Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Fernández M, Corral-Lugo A, Krell T. The plant compound rosmarinic acid induces a broad quorum sensing response in Pseudomonas aeruginosa PAO1. Environ Microbiol 2018; 20:4230-4244. [PMID: 30051572 DOI: 10.1111/1462-2920.14301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023]
Abstract
The interference of plant compounds with bacterial quorum sensing (QS) is a major mechanism through which plants and bacteria communicate. However, little is known about the modes of action and effects on signal integrity during this type of communication. We have recently shown that the plant compound rosmarinic acid (RA) specifically binds to the Pseudomonas aeruginosa RhlR QS receptor. To determine the effect of RA on expression patterns, we carried out global RNA-seq analysis. The results show that RA induces the expression of 128 genes, amongst which many virulence factor genes. RA triggers a broad QS response because 88% of the induced genes are known to be controlled by QS, and because RA stimulated genes were found to be involved in all four QS signalling systems within P. aeruginosa. This finding was confirmed through the analysis of transcriptional fusions transferred to wt and a rhlI/lasI double mutant. RA did not induce gene expression in the rhlI/lasI/rhlR triple mutant indicating that the effects observed are due to the RA-RhlR interaction. Furthermore, RA induced seven sRNAs that were all encoded in regions close to QS and/or RA induced genes. This work significantly enhances our understanding of plant bacteria interaction.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Gif-Sur-Yvette, France
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
24
|
Lewis ML, Surewaard BGJ. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus. Cell Tissue Res 2017; 371:489-503. [PMID: 29204747 DOI: 10.1007/s00441-017-2737-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023]
Abstract
Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.
Collapse
Affiliation(s)
- Megan L Lewis
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bas G J Surewaard
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada. .,Department of Medical Microbiology, University Medical Centre, Utrecht, Netherlands.
| |
Collapse
|
25
|
Recognition of protein-linked glycans as a determinant of peptidase activity. Proc Natl Acad Sci U S A 2017; 114:E679-E688. [PMID: 28096352 DOI: 10.1073/pnas.1615141114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vast majority of proteins are posttranslationally altered, with the addition of covalently linked sugars (glycosylation) being one of the most abundant modifications. However, despite the hydrolysis of protein peptide bonds by peptidases being a process essential to all life on Earth, the fundamental details of how peptidases accommodate posttranslational modifications, including glycosylation, has not been addressed. Through biochemical analyses and X-ray crystallographic structures we show that to hydrolyze their substrates, three structurally related metallopeptidases require the specific recognition of O-linked glycan modifications via carbohydrate-specific subsites immediately adjacent to their peptidase catalytic machinery. The three peptidases showed selectivity for different glycans, revealing protein-specific adaptations to particular glycan modifications, yet always cleaved the peptide bond immediately preceding the glycosylated residue. This insight builds upon the paradigm of how peptidases recognize substrates and provides a molecular understanding of glycoprotein degradation.
Collapse
|
26
|
Kida Y, Taira J, Kuwano K. EprS, an autotransporter serine protease, plays an important role in various pathogenic phenotypes of Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2015; 162:318-329. [PMID: 26678838 DOI: 10.1099/mic.0.000228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa possesses an arsenal of both cell-associated (flagella, pili, alginate, etc.) and extracellular (exotoxin A, proteases, type III secretion effectors, etc.) virulence factors. Among them, secreted proteases that damage host tissues are considered to play an important role in the pathogenesis of P. aeruginosa infections. We previously reported that EprS, an autotransporter protease of P. aeruginosa, induces host inflammatory responses through protease-activated receptors. However, little is known about the role of EprS as a virulence factor of P. aeruginosa. In this study, to investigate whether EprS participates in the pathogenicity of P. aeruginosa, we characterized various pathogenic phenotypes of the wild-type PAO1 strain and its eprS-disrupted mutant. The growth assays demonstrated that the growth of the eprS mutant was somewhat lower than that of the wild-type strain in a minimal medium containing BSA as the sole carbon and nitrogen source. Thus, these results indicate that eprS would have a role in the growth of P. aeruginosa in the presence of limited nutrients, such as a medium containing proteinaceous materials as a sole nutrient source. Furthermore, disruption of eprS resulted in a decreased production of elastase, pigments, autoinducers and surfactants, and a reduction of swimming and swarming motilities. In addition, the eprS mutant exhibited a reduction in the ability to associate with A549 cells and an attenuation of virulence in leucopenic mice as compared with the wild-type strain. Collectively, these results suggest that EprS exerts pleiotropic effects on various pathogenic phenotypes of P. aeruginosa.
Collapse
Affiliation(s)
- Y Kida
- Division of Microbiology, Department of Infectious Medicine,Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011,Japan
| | - J Taira
- Department of Bioscience and Bioinformatics,Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502,Japan
| | - K Kuwano
- Division of Microbiology, Department of Infectious Medicine,Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011,Japan
| |
Collapse
|
27
|
Golovkine G, Faudry E, Bouillot S, Voulhoux R, Attrée I, Huber P. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog 2014; 10:e1003939. [PMID: 24626230 PMCID: PMC3953407 DOI: 10.1371/journal.ppat.1003939] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023] Open
Abstract
Infection of the vascular system by Pseudomonas aeruginosa (Pa) occurs during bacterial dissemination in the body or in blood-borne infections. Type 3 secretion system (T3SS) toxins from Pa induce a massive retraction when injected into endothelial cells. Here, we addressed the role of type 2 secretion system (T2SS) effectors in this process. Mutants with an inactive T2SS were much less effective than wild-type strains at inducing cell retraction. Furthermore, secretomes from wild-types were sufficient to trigger cell-cell junction opening when applied to cells, while T2SS-inactivated mutants had minimal activity. Intoxication was associated with decreased levels of vascular endothelial (VE)-cadherin, a homophilic adhesive protein located at endothelial cell-cell junctions. During the process, the protein was cleaved in the middle of its extracellular domain (positions 335 and 349). VE-cadherin attrition was T3SS-independent but T2SS-dependent. Interestingly, the epithelial (E)-cadherin was unaffected by T2SS effectors, indicating that this mechanism is specific to endothelial cells. We showed that one of the T2SS effectors, the protease LasB, directly affected VE-cadherin proteolysis, hence promoting cell-cell junction disruption. Furthermore, mouse infection with Pa to induce acute pneumonia lead to significant decreases in lung VE-cadherin levels, whereas the decrease was minimal with T2SS-inactivated or LasB-deleted mutant strains. We conclude that the T2SS plays a pivotal role during Pa infection of the vascular system by breaching the endothelial barrier, and propose a model in which the T2SS and the T3SS cooperate to intoxicate endothelial cells.
Collapse
Affiliation(s)
- Guillaume Golovkine
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Eric Faudry
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Stéphanie Bouillot
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Romé Voulhoux
- CNRS and Aix-Marseille Univ, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
| | - Ina Attrée
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Philippe Huber
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| |
Collapse
|
28
|
Abstract
UNLABELLED Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. IMPORTANCE The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics active against this bacterium. The pathogenic power of P. aeruginosa is mediated by an arsenal of extracellular virulence factors, most of which are stabilized by disulfide bonds. Thus, targeting the machinery that introduces disulfide bonds appears to be a promising strategy to combat P. aeruginosa. Here, we unraveled the oxidative protein folding system of P. aeruginosa in full detail. The system uniquely consists of two membrane proteins that generate disulfide bonds de novo to deliver them to P. aeruginosa DsbA1 (PaDsbA1), a soluble oxidoreductase. PaDsbA1 in turn donates disulfide bonds to secreted proteins, including virulence factors. Disruption of the disulfide bond formation machinery dramatically decreases P. aeruginosa virulence, confirming that disulfide formation systems are valid targets for the design of antimicrobial drugs.
Collapse
|
29
|
Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJC, van Kessel KPM, Vandenesch F, Lina G, van Strijp JAG. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 2013; 13:584-594. [PMID: 23684309 DOI: 10.1016/j.chom.2013.04.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/15/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
Panton-Valentine Leukocidin (PVL) is a staphylococcal bicomponent pore-forming toxin linked to severe invasive infections. Target-cell and species specificity of PVL are poorly understood, and the mechanism of action of this toxin in Staphylococcus aureus virulence is controversial. Here, we identify the human complement receptors C5aR and C5L2 as host targets of PVL, mediating both toxin binding and cytotoxicity. Expression and interspecies variations of the C5aR determine cell and species specificity of PVL. The C5aR binding PVL component, LukS-PV, is a potent inhibitor of C5a-induced immune cell activation. These findings provide insight into leukocidin function and staphylococcal virulence and offer directions for future investigations into individual susceptibility to severe staphylococcal disease.
Collapse
Affiliation(s)
- András N Spaan
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | | | - Magali Perret
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | - Cédric Badiou
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Johan Kemmink
- Medicinal Chemistry and Chemical Biology, Utrecht University, 3584CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Gérard Lina
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
30
|
Surewaard BGJ, Trzciński K, Jacobino SR, Hansen IS, Vughs MM, Sanders EAM, van der Ende A, van Strijp JAG, de Haas CJC. Pneumococcal immune evasion: ZmpC inhibits neutrophil influx. Cell Microbiol 2013; 15:1753-65. [PMID: 23601501 DOI: 10.1111/cmi.12147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/21/2013] [Accepted: 04/04/2013] [Indexed: 12/24/2022]
Abstract
Neutrophil recruitment is essential in clearing pneumococcal infections. The first step in neutrophil extravasation involves the interaction between P-selectin on activated endothelium and P-Selectin Glycoprotein 1 (PSGL-1) on neutrophils. Here, we identify pneumococcal Zinc metalloproteinase C as a potent inhibitor of PSGL-1. ZmpC degrades the N-terminal domain of PSGL-1, thereby disrupting the initial rolling of neutrophils on activated human umbilical vein endothelial cells. Furthermore, mice infected with wild-type strain in the model of pneumococcal pneumonia showed lower lungs neutrophil infiltration compare to animals infected with ZmpC mutant. In addition, we confirmed the association of zmpC with serotype 8 and 11A and found it to be associated with serotype 33F as well. In conclusion, wereport PSGL-1 as a novel target for ZmpC and show that ZmpC inhibits neutrophil extravasation during pneumococcal pneumonia.
Collapse
Affiliation(s)
- Bas G J Surewaard
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kida Y, Taira J, Yamamoto T, Higashimoto Y, Kuwano K. EprS, an autotransporter protein of Pseudomonas aeruginosa, possessing serine protease activity induces inflammatory responses through protease-activated receptors. Cell Microbiol 2013; 15:1168-81. [PMID: 23311922 DOI: 10.1111/cmi.12106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 11/29/2022]
Abstract
PA3535 (EprS), an autotransporter (AT) protein of Pseudomonas aeruginosa, is predicted to contain a serine protease motif. The eprS encodes a 104.5 kDa protein with a 30-amino-acid-long signal peptide, a 51.2 kDa amino-terminal secreted passenger domain and a 50.1 kDa carboxyl-terminal outer membrane channel formed translocator. Although the majority of AT proteins have been reported to be virulence factors, little is known about the functions of EprS in the pathogenicity of P. aeruginosa. In this study, we performed functional analyses of recombinant EprS secreted by Escherichia coli. The proteolytic activity of EprS was markedly decreased by changing Ser to Ala at position 308 or by serine protease inhibitors. EprS preferred to cleave substrates that terminated with arginine or lysine residues. Thus, these results indicate that EprS, a serine protease, displays the substrate specificity, cleaving after basic residues. We demonstrated that EprS activates NF-κB-driven promoters through protease-activated receptor (PAR)-1, -2 or -4 and induces IL-8 production through PAR-2 in a human bronchiole epithelial cell line. Moreover, EprS cleaved the peptides corresponding to the tethered ligand region of PAR-1, -2 and -4 at a specific site with exposure oftheir tethered ligands. Collectively, these results suggest that EprS activates host inflammatory responses through PARs.
Collapse
Affiliation(s)
- Yutaka Kida
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | | | | | | | | |
Collapse
|
32
|
Bardoel BW, Vos R, Bouman T, Aerts PC, Bestebroer J, Huizinga EG, Brondijk THC, van Strijp JAG, de Haas CJC. Evasion of Toll-like receptor 2 activation by staphylococcal superantigen-like protein 3. J Mol Med (Berl) 2012; 90:1109-20. [PMID: 22714643 DOI: 10.1007/s00109-012-0926-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/02/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are crucial for our host defense against microbial infections. TLR2 is especially important to fight bacterial infections, as it specifically recognizes bacterial lipoproteins of both Gram-positive and Gram-negative origin. Present on a variety of immune cells, TLR2 is critical for host protection against several bacterial infections, including those caused by Staphylococcus aureus. This major human pathogen causes increasing health care problems due to its increased resistance to antibiotics. S. aureus secretes a wide variety of proteins that inhibit innate immune responses. Recently, several staphylococcal superantigen-like proteins (SSLs) have been described to mediate immune evasive properties. Here, we describe that SSL3 specifically binds and inhibits TLR2 activation on human and murine neutrophils and monocytes. Through binding of the extracellular TLR2 domain, SSL3 inhibits IL-8 production by HEK cells expressing TLR1/2 and TLR2/6 dimers, stimulated with their specific ligands. The SSL3-TLR2 interaction is partially glycan dependent as binding of SSL3 to TLR2 is affected upon removal of sialic acid residues. Moreover, the SSL3(R308A) mutant lacking glycan-binding properties shows lower TLR2 inhibition. An SSL3 mutant, lacking the N-terminal 126 amino acids, still retains full TLR2 inhibiting activity. Of other SSLs tested, only SSL4, which shares the highest homology with SSL3, blocks TLR2 activation. SSL3 is the first-described bacterial protein that blocks TLR2 activation through direct extracellular interaction with the receptor. This unique function of SSL3 adds to the arsenal of immune evasive molecules that S. aureus can employ to subvert both innate and adaptive immunity.
Collapse
Affiliation(s)
- B W Bardoel
- Medical Microbiology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|