1
|
Maalouf N, Gur C, Yutkin V, Scaiewicz V, Mandelboim O, Bachrach G. High mannose level in bladder cancer enhances type 1 fimbria–mediated attachment of uropathogenic E. coli. Front Cell Infect Microbiol 2022; 12:968739. [PMID: 36118038 PMCID: PMC9470858 DOI: 10.3389/fcimb.2022.968739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Bladder cancer is the 4th leading cancer in men. Tumor resection followed by bladder instillation of Bacillus Calmette-Guérin (BCG) is the primary treatment for high-risk patients with Non-Muscle Invasive Bladder Cancer (NMIBC) to prevent recurrence and progression to muscle-invasive disease. This treatment, however, lacks efficiency and causes severe adverse effects. Mannose residues are expressed on bladder surfaces and their levels were indicated to be higher in bladder cancer. Intravesical instillations of a recombinant Pseudomonas aeruginosa (PA) overexpressing the mannose-sensitive hemagglutination fimbriae (PA-MSHA), and of a mannose-specific lectin-drug conjugate showed efficiency against NMIBC in murine models of bladder cancer. Urothelial mannosylation facilitates bladder colonization by Uropathogenic E. coli (UPEC) via the interaction with the FimH mannose lectin, positioned at the tip of type 1 fimbria. A recombinant BCG strain overexpressing FimH on its outer surface, exhibited higher attachment and internalization to bladder cancer cells and increased effectivity in treating bladder cancer in mice. Investigating the pattern of mannose expression in NMIBC is important for improving treatment. Here, using tissue microarrays containing multiple normal and cancerous bladder samples, and lectins, we confirm that human bladder cancer cells express high mannose levels. Using UPEC mutants lacking or overexpressing type 1 fimbria, we also demonstrate that tumor-induced hypermannosylation increases type 1 fimbria mediated UPEC attachment to human and mouse bladder cancer. Our results provide an explanation for the effectiveness of PA-MSHA and the FimH-overexpressing BCG and support the hypothesis that mannose-targeted therapy holds potential for improving bladder cancer treatment.
Collapse
Affiliation(s)
- Naseem Maalouf
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Chamutal Gur
- Department of Rheumatology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Vladimir Yutkin
- Department of Urology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Viviana Scaiewicz
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- *Correspondence: Ofer Mandelboim, ; Gilad Bachrach,
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- *Correspondence: Ofer Mandelboim, ; Gilad Bachrach,
| |
Collapse
|
2
|
Peskar D, Kuret T, Jeruc J, Erman A. Lectins as Biomarkers of IC/BPS Disease: A Comparative Study of Glycosylation Patterns in Human Pathologic Urothelium and IC/BPS Experimental Models. Diagnostics (Basel) 2022; 12:1078. [PMID: 35626233 PMCID: PMC9140099 DOI: 10.3390/diagnostics12051078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 01/02/2023] Open
Abstract
Pathophysiology of interstitial cystitis/bladder pain syndrome (IC/BPS) remains poorly understood, as well as its effective diagnosis and therapy. Studying changes in tissue glycosylation patterns under pathological conditions is a promising way of discovering novel biomarkers and therapeutic targets. The glycobiology of IC/BPS is largely understudied, therefore we compared glycosylation patterns of normal human urothelium with the urothelium of IC/BPS patients using a selection of 10 plant-based lectins with different monosaccharide preferences. We also compared lectin binding to human urothelium with the two most cited experimental models of IC/BPS, specifically, TNFα-treated human urothelial cell line RT4 and cyclophosphamide-induced chronic cystitis in C57BL6/J mice. Furthermore, binding of four of the selected lectins (ConA, DSL, Jacalin and WGA) was evaluated qualitatively by means of fluorescence microscopy, and quantitatively by fluorescence intensity (F.I.) measurements. Our results reveal a significant reduction in F.I. of Jacalin, as well as a prominent change in the WGA labeling pattern in the urothelium of IC/BPS patients, suggesting their potential use as promising additional biomarkers for histopathological diagnosis of IC/BPS. We have also shown that urothelial glycosylation patterns between selected experimental models and patients with IC/BPS are similar enough to offer an adequate platform for preclinical study of IC/BPS glycobiology.
Collapse
Affiliation(s)
- Dominika Peskar
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.P.); (T.K.)
| | - Tadeja Kuret
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.P.); (T.K.)
| | - Jera Jeruc
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andreja Erman
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.P.); (T.K.)
| |
Collapse
|
3
|
Zupančič D, Kreft ME, Sterle I, Romih R. Combined lectin- and immuno-histochemistry (CLIH) for applications in cell biology and cancer diagnosis: Analysis of human urothelial carcinomas. Eur J Histochem 2020; 64. [PMID: 32613817 PMCID: PMC7341074 DOI: 10.4081/ejh.2020.3141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
Lectin histochemistry (LHC) and immunohistochemistry (IHC), which demonstrate the composition and localisation of sugar residues and proteins in cell membranes, respectively, are generally used separately. Using these two methods, we previously demonstrated that malignant transformation of urothelial cells results in the alterations of protein glycosylation and reduced expression of urothelium-specific integral membrane proteins uroplakins (UPs). However, the correlation between these changes was not studied yet. To evaluate this correlation, we developed innovative method, which we named Combined Lectin- and Immuno-Histochemistry (CLIH). We used human biopsies of 6 normal urothelia and 9 papillary urothelial carcinomas, i.e. 3 papillary urothelial neoplasms of low malignant potential (PUNLMP), 3 non-invasive papillary urothelial carcinomas of low grade (pTa, l.g.), and 3 invasive papillary urothelial carcinomas of high grade (pT1, h.g.). We tested five different protocols (numbered 1-5) of CLIH on paraffin and cryosemithin sections and compared them with LHC and IHC performed separately. Additionally, we carried out western and lectin blotting with antibodies against UPs and lectins Amaranthus caudatus agglutinin (ACA), Datura stramonium agglutinin (DSA), and jacalin, respectively. We showed that incubation with primary antibodies first, followed by the mixture of secondary antibodies and lectins is the most efficient CLIH method (protocol number 5). Additionally, 300 nm thick cryo-semithin sections enabled better resolution of co-localisation between sugar residues and proteins than 5 mm thick paraffin sections. In the normal urothelium, CLIH showed co-localisation of lectins ACA and jacalin with UPs in the apical plasma membrane (PM) of superficial umbrella cells. In papillary urothelial carcinomas, all three lectins (ACA, DSA and jacalin) labelled regions of apical PM, where they occasionally co-localised with UPs. Western and lectin blotting confirmed the differences between normal urothelium and papillary urothelial carcinomas. Our results show that CLIH, when used with various sets of lectins and antigens, is a useful, quick, and reliable method that could be applied for basic cell biology research as well as detailed subtyping of human urothelial carcinomas.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana.
| | | | - Igor Sterle
- Department of Urology, University Medical Centre Ljubljana.
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana.
| |
Collapse
|
4
|
Višnjar T, Romih R, Zupančič D. Lectins as possible tools for improved urinary bladder cancer management. Glycobiology 2019; 29:355-365. [PMID: 30689891 DOI: 10.1093/glycob/cwz001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/06/2023] Open
Abstract
Urinary bladder cancer is the ninth most common cancer in developed countries with poor prognosis and outcome for the patient due to the challenging diagnosis and limited treatment possibilities. Bladder cancer arises mainly from urothelial cells lining the lumen. Urothelial cells form a three- to five-layered urothelium, which maintains the blood-urine barrier. The carbohydrates that cover the apical surface of superficial urothelial cells, i.e. umbrella cells, are crucial for this function. The composition of the carbohydrate covering is altered during urothelial cancer transformation. These bladder cancer-associated carbohydrate changes are a promising field for diagnosis, therapy and management. Lectins, which are carbohydrate-binding proteins, can be used to detect subtle alterations in carbohydrate composition during urothelial cancer transformation. Extensive research into various lectin applications has already been conducted, but the results are often contradictory and confusing. None of these applications have reached clinical trials. We review the literature and discuss (i) current bladder cancer management, (ii) lectin-based assays for detection of various cancer subtypes, (iii) lectin-based strategies for innovative bladder cancer treatment and finally (iv) lectins in nanotheranostics for personalized bladder cancer management.
Collapse
Affiliation(s)
- Tanja Višnjar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| |
Collapse
|
5
|
Ambrose SR, Gordon NS, Goldsmith JC, Wei W, Zeegers MP, James ND, Knowles MA, Bryan RT, Ward DG. Use of Aleuria alantia Lectin Affinity Chromatography to Enrich Candidate Biomarkers from the Urine of Patients with Bladder Cancer. Proteomes 2015; 3:266-282. [PMID: 28248271 PMCID: PMC5217382 DOI: 10.3390/proteomes3030266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/22/2022] Open
Abstract
Developing a urine test to detect bladder tumours with high sensitivity and specificity is a key goal in bladder cancer research. We hypothesised that bladder cancer-specific glycoproteins might fulfill this role. Lectin-ELISAs were used to study the binding of 25 lectins to 10 bladder cell lines and serum and urine from bladder cancer patients and non-cancer controls. Selected lectins were then used to enrich glycoproteins from the urine of bladder cancer patients and control subjects for analysis by shotgun proteomics. None of the lectins showed a strong preference for bladder cancer cell lines over normal urothlelial cell lines or for urinary glycans from bladder cancer patients over those from non-cancer controls. However, several lectins showed a strong preference for bladder cell line glycans over serum glycans and are potentially useful for enriching glycoproteins originating from the urothelium in urine. Aleuria alantia lectin affinity chromatography and shotgun proteomics identified mucin-1 and golgi apparatus protein 1 as proteins warranting further investigation as urinary biomarkers for low-grade bladder cancer. Glycosylation changes in bladder cancer are not reliably detected by measuring lectin binding to unfractionated proteomes, but it is possible that more specific reagents and/or a focus on individual proteins may produce clinically useful biomarkers.
Collapse
Affiliation(s)
- Sarah R Ambrose
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Naheema S Gordon
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - James C Goldsmith
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Maurice P Zeegers
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht 6200 MD, The Netherlands.
| | - Nicholas D James
- Clinical Trials Unit, University of Warwick, Coventry CV4 7AL, UK.
| | - Margaret A Knowles
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's' University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| | - Richard T Bryan
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Douglas G Ward
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
Arrighi S. The urothelium: anatomy, review of the literature, perspectives for veterinary medicine. Ann Anat 2014; 198:73-82. [PMID: 25533627 DOI: 10.1016/j.aanat.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/13/2023]
Abstract
Over time, much knowledge has been accumulated about the active role of the urothelium, principally in rodents and human. Far from being a mere passive barrier, this specialized epithelium can alter the ion and protein composition of the urine, is able to sense and respond to mechanical stimuli such as pressure, and react to mechanical stimuli by epithelial cell communication with the nervous system. Most of the specialized functions of the urothelium are linked to a number of morpho-physiologic properties exhibited by the superficial umbrella cells, including specialized membrane lipids, asymmetric unit membrane particles and a plasmalemma with stiff plaques which function as a barrier to most substances found in urine, thus protecting the underlying tissues. Moreover, the entire mucosa lining the low urinary tract, composed of urothelium and sub-urothelium, forms a functional transduction unit, able to respond to eso- and endogenous physical and chemical stimuli in a manner assuring an adequate functional response. This review will summarize the available information on each area of inquiry from a morpho-functional point of view. Possible considerations pertaining to species of veterinary interest are reviewed as well. The review was prepared consulting the electronic databases PubMed and Cab Abstracts and retrieving all pertinent reports and the relative reference lists, in order to identify any potential additional studies that could be included. Full-length research articles and thematic reviews were considered. Information on the urothelium of some domestic animal species was also included.
Collapse
Affiliation(s)
- S Arrighi
- Department of Health, Animal Science and Food Safety, Laboratory of Anatomy and Confocal Microscopy, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
7
|
Glycan-targeted drug delivery for intravesical therapy: in the footsteps of uropathogenic bacteria. Ther Deliv 2014; 5:537-53. [DOI: 10.4155/tde.14.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human urothelium belongs to the most efficient biobarriers, and represents a highly rewarding but challenging target for local drug administration. Inadequate urothelial bioavailability is a major obstacle for successful treatment of bladder cancer and other diseases, yet little research has addressed the development of advanced delivery concepts for the intravesical route. A prominent example of how to overcome the urothelial barrier by means of specific biorecognition is the efficient cytoinvasion of UPEC bacteria, mediated by the mannose-targeted lectin domain FimH. Similar mechanisms of non-bacterial origin may be exploited for enhancing drug uptake from the bladder cavity. This review covers the current status in the development of lectin-based delivery strategies for the urinary tract. Different concepts for preparing and optimizing carbohydrate-targeted delivery systems are presented, along with important design parameters, benefits and shortcomings. Bioconjugate- and nano-/microparticle-based systems are discussed in further detail with regard to their performance in preclinical testing.
Collapse
|
8
|
Zupančič D, Kreft ME, Romih R. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models. PROTOPLASMA 2014; 251:49-59. [PMID: 23828036 DOI: 10.1007/s00709-013-0524-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/19/2013] [Indexed: 05/07/2023]
Abstract
Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research.
Collapse
Affiliation(s)
- Daša Zupančič
- Faculty of Medicine, Institute of Cell Biology, Vrazov trg 2, 1000, Ljubljana, Slovenia,
| | | | | |
Collapse
|
9
|
Neutsch L, Eggenreich B, Herwig E, Marchetti-Deschmann M, Allmaier G, Gabor F, Wirth M. Biomimetic Delivery Strategies at the Urothelium: Targeted Cytoinvasion in Bladder Cancer Cells via Lectin Bioconjugates. Pharm Res 2013; 31:819-32. [DOI: 10.1007/s11095-013-1204-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/12/2013] [Indexed: 10/25/2022]
|
10
|
Desantis S, Accogli G, Zizza S, Arrighi S. In situ characterization of glycans in the urothelium of donkey bladder: evidence of secretion of sialomucins. Acta Histochem 2013; 115:712-8. [PMID: 23523263 DOI: 10.1016/j.acthis.2013.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder.
Collapse
|
11
|
Lectin bioconjugates trigger urothelial cytoinvasion – A glycotargeted approach for improved intravesical drug delivery. Eur J Pharm Biopharm 2012; 82:367-75. [DOI: 10.1016/j.ejpb.2012.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/06/2012] [Accepted: 07/24/2012] [Indexed: 12/23/2022]
|
12
|
Neutsch L, Plattner VE, Polster-Wildhofen S, Zidar A, Chott A, Borchard G, Zechner O, Gabor F, Wirth M. Lectin Mediated Biorecognition as a Novel Strategy for Targeted Delivery to Bladder Cancer. J Urol 2011; 186:1481-8. [DOI: 10.1016/j.juro.2011.05.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Indexed: 01/03/2023]
Affiliation(s)
- Lukas Neutsch
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Verena E. Plattner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | | | - Agnes Zidar
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Andreas Chott
- Department of Pathology and Microbiology, Wilhelminenspital, Vienna, Austria
| | - Gerrit Borchard
- Laboratory of Pharmaceutics and Biopharmaceutics, University of Geneva, Switzerland
| | - Othmar Zechner
- Department of Urology, Wilhelminenspital, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Michael Wirth
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| |
Collapse
|
13
|
Vinter-Jensen L, Smerup M, Jørgensen PE, Juhl CO, Orntoft T, Poulsen SS, Nexø E. Chronic treatment with epidermal growth factor stimulates growth of the urinary tract in the rat. UROLOGICAL RESEARCH 1996; 24:15-21. [PMID: 8966836 DOI: 10.1007/bf00296727] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Twenty-four male Wistar rats, 8 weeks old, were allocated into three groups and treated with human recombinant epidermal growth factor (EGF) administered subcutaneously in doses of 0, 30, and 150 micrograms/kg per day for 4 weeks. Blood sampling was done every 2nd week and urine sampling was done for 2 consecutive days every week. The most striking finding was that the ureters were dose dependently enlarged, due to growth of all layers of the ureteric wall. The urothelium of the bladder showed considerable hyperplasticity with a widening of the basal proliferative compartment and a normal differentiation pattern as observed by the expression of carbohydrate epitopes, characterized with lectinohistochemistry. Blood examination revealed a decrease in blood haemoglobin concentration and a slight increase in serum creatinine concentration in the high-dose group. There were no effects of EGF on the urinary excretion of electrolytes, proteins, and endogenous EGF.
Collapse
Affiliation(s)
- L Vinter-Jensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Juhl CO, Vinter-Jensen L, Poulsen SS, Orntoft TF, Dajani EZ. Chronic treatment with epidermal growth factor causes esophageal epithelial hyperplasia in pigs and rats. Dig Dis Sci 1995; 40:2717-23. [PMID: 8536536 DOI: 10.1007/bf02220465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epidermal growth factor (EGF) is an important factor for maintaining the esophageal functional integrity. Goettingen minipigs were treated with either placebo or subcutaneous EGF (30 micrograms/kg/day) for four weeks. Wistar rats were treated with either placebo or subcutaneous EGF (150 micrograms/kg/day) for four weeks. At sacrifice, esophageal samples were obtained for histology, immunochemistry, and lectin characterization. In pigs, the thickness of the esophageal epithelium was almost doubled in the EGF-treated animals. Characterization with lectins revealed a normal pattern of differentiation. Subcutaneously administered EGF was visualized on cells located basally in the esophageal epithelium. In rats, EGF-treatment increased the esophageal volume of the epithelium, the lamina propria of the mucosa, and the submucosa. In conclusion, systemic EGF challenge induces growth of the esophageal epithelium with an unaltered pattern of differentiation. This supports previous studies demonstrating a beneficial effects of systemic EGF-treatment on sclerotherapy-induced esophageal damage.
Collapse
Affiliation(s)
- C O Juhl
- Institute of Experimental Clinical Research, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
15
|
Brown JL, Russell PJ, Philips J, Wotherspoon J, Raghavan D. Clonal analysis of a bladder cancer cell line: an experimental model of tumour heterogeneity. Br J Cancer 1990; 61:369-76. [PMID: 2328200 PMCID: PMC1971293 DOI: 10.1038/bjc.1990.81] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The continuous cell line UCRU BL 17CL was derived from a human invasive bladder cancer and expresses elements of transitional, squamous and glandular differentiation. Nine clones of this line were established by limit dilution and have been extensively characterised. Only six of these clones grew subcutaneously in nude mice. Of these, three have exhibited local invasion, each in one of five implanted mice. Although all xenografts expressed transitional, squamous and glandular elements, different histological subtypes predominated within each clone. Only clones which grew in nude mice formed colonies in semi-solid medium, and each responded differently to the influence of medium that had been conditioned by the growth of UCRU BL 17CL, suggesting the possible secretion of a growth factor by these cells. The DNA content and lectin binding profiles of the clones also reflected the heterogeneity of the line. UCRU BL 17CL and the nine clones provide a unique model for the study of tumour heterogeneity, progression and differentiation, and the potential autocrine regulation of growth of bladder cancer.
Collapse
Affiliation(s)
- J L Brown
- Urological Cancer Research Unit, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | | | | | | |
Collapse
|