1
|
Tiwari C, Khan H, Grewal AK, Dhankhar S, Chauhan S, Dua K, Gupta G, Singh TG. Opiorphin: an endogenous human peptide with intriguing application in diverse range of pathologies. Inflammopharmacology 2024; 32:3037-3056. [PMID: 39164607 DOI: 10.1007/s10787-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Mammalian zinc ectopeptidases have significant functions in deactivating neurological and hormonal peptide signals on the cell surface. The identification of Opiorphin, a physiological inhibitor of zinc ectopeptidases that inactivate enkephalin, has revealed its strong analgesic effects in both chemical and mechanical pain models. Opiorphin achieves this by increasing the transmission of endogenous opioids, which are dependent on the body's own opioid system. The function of opiorphin is closely linked to the rat sialorphin peptide, which inhibits pain perception by enhancing the activity of naturally occurring enkephalinergic pathways that depend on μ- and δ-opioid receptors. Opiorphin is highly intriguing in terms of its physiological implications within the endogenous opioidergic pathways, particularly in its ability to regulate mood-related states and pain perception. Opiorphin can induce antidepressant-like effects by influencing the levels of naturally occurring enkephalin, which are released in response to specific physical and/or psychological stimuli. This effect is achieved through the modulation of delta-opioid receptor-dependent pathways. Furthermore, research has demonstrated that opiorphin's impact on the cardiovascular system is facilitated by the renin-angiotensin system (RAS), sympathetic ganglia, and adrenal medulla, rather than the opioid system. Hence, opiorphin shows great potential as a solitary candidate for the treatment of several illnesses such as neurodegeneration, pain, and mood disorders.
Collapse
Affiliation(s)
- Chanchal Tiwari
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Sanchit Dhankhar
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Thakur Gurjeet Singh
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
2
|
Reyes-Serratos E, Ramielle L. Santos J, Puttagunta L, Lewis SJ, Watanabe M, Gonshor A, Buck R, Befus AD, Marcet-Palacios M. Identification and characterization of calcium binding protein, spermatid-associated 1 (CABS1)# in selected human tissues and fluids. PLoS One 2024; 19:e0301855. [PMID: 38753592 PMCID: PMC11098423 DOI: 10.1371/journal.pone.0301855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/22/2024] [Indexed: 05/18/2024] Open
Abstract
Calcium binding protein, spermatid associated 1 (CABS1) is a protein most widely studied in spermatogenesis. However, mRNA for CABS1 has been found in numerous tissues, albeit with little information about the protein. Previously, we identified CABS1 mRNA and protein in human salivary glands and provided evidence that in humans CABS1 contains a heptapeptide near its carboxyl terminus that has anti-inflammatory activities. Moreover, levels of an immunoreactive form of CABS1 were elevated in psychological stress. To more fully characterize human CABS1 we developed additional polyclonal and monoclonal antibodies to different sections of the protein and used these antibodies to characterize CABS1 in an overexpression cell lysate, human salivary glands, saliva, serum and testes using western blot, immunohistochemistry and bioinformatics approaches exploiting the Gene Expression Omnibus (GEO) database. CABS1 appears to have multiple molecular weight forms, consistent with its recognition as a structurally disordered protein, a protein with structural plasticity. Interestingly, in human testes, its cellular distribution differs from that in rodents and pigs, and includes Leydig cells, primary spermatogonia, Sertoli cells and developing spermatocytes and spermatids, Geodata suggests that CABS1 is much more widely distributed than previously recognized, including in the urogenital, gastrointestinal and respiratory tracts, as well as in the nervous system, immune system and other tissues. Much remains to be learned about this intriguing protein.
Collapse
Affiliation(s)
- Eduardo Reyes-Serratos
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Joy Ramielle L. Santos
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lakshmi Puttagunta
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J. Lewis
- Departments of Pediatrics and Pharmacology, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Mechiko Watanabe
- Departments of Pediatrics and Pharmacology, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
- Division of Pediatric Cardiology, Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | | | - Robert Buck
- GB Diagnostics, Montreal, Quebec, Canada
- GB Diagnostics, Albuquerque, New Mexico, United States of America
| | - A. Dean Befus
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Marcelo Marcet-Palacios
- Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
- Northern Alberta Institute of Technology, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Masuku NP, Unuofin JO, Lebelo SL. Advances in Nanoparticle Delivery System for Erectile Dysfunction: An Updated Review. Sex Med 2021; 9:100420. [PMID: 34388420 PMCID: PMC8498961 DOI: 10.1016/j.esxm.2021.100420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The use of current available treatment for male erectile dysfunction (ED) has some limitations that are related to efficacy and adverse effects. Nanotechnology has been used as a new tool in medicine to improve these limitations and new medications potentially to alleviate and cure ED. AIM To review the currently literature on new nano medications for ED based on scientific and clinical studies, efficacy, safety, mechanisms of action, and to identify gaps for future research. METHODS A comprehensive literature review was conducted via Google Scholar, Science Direct, and PubMed on English publications using different keywords such as "erectile dysfunction", "emerging treatments", "nanotechnology", and "herbal medicine". The retrieved papers were organized into groups according to the sections covered in this review paper. MAIN OUTCOMES MEASURES We reviewed novel ED treatments such as nanotechnological phosphodiesterase inhibitors, papaverine hydrochloride, sialorphin, adipose tissue-derived stem cells, sonic hedgehog, and herbal medicine. RESULTS Numerous preclinical studies have addressed novel phosphodiesterase 5 inhibitors nanoparticle, and their recent delivery systems. Nitric oxide, sialorphin, sonic hedgehog, and herbal medicine loaded nanoparticles and nano adipose tissue-derived stem cells as a potential new treatment for ED. In addition, papaverine-containing nanoparticles have been reported. A limited number of randomized clinical studies have determined the mechanism of these treatments. CONCLUSION A literature review on the application of nanotechnology in ED therapy was successfully conducted. New nano medications are promising to treat ED. However, further studies are warranted to further assess their efficacy and safety. Masuku NP, Unuofin JO, Lebelo SL. Advances in Nanoparticle Delivery System for Erectile Dysfunction: An Updated Review. Sex Med 2021;XX:XXXXXX.
Collapse
Affiliation(s)
| | | | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, South Africa
| |
Collapse
|
4
|
Mukherjee A, Park A, Wang L, Davies KP. Role of opiorphin genes in prostate cancer growth and progression. Future Oncol 2021; 17:2209-2223. [PMID: 33593085 PMCID: PMC8293029 DOI: 10.2217/fon-2020-1299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
Background: We describe the first studies investigating a role for opiorphin genes (PROL1, SMR3A and SMR3B) in prostate cancer (PrCa). Materials & methods: Databases and PrCa tissue arrays were screened for opiorphin expression. Xenografted tumor growth of human PrCa cells overexpressing PROL1 was compared with controls in nude mice. Modulated gene expression by overexpression of PROL1 was determined by RNA sequencing. Results: PrCa is associated with overexpression of opiorphin genes. Xenografted androgen-sensitive PrCa cells overexpressing PROL1 developed into tumors in castrated male mice (in contrast to parental cells). PROL1 overexpression modulates expression of genes in angiogenesis, steroid and hypoxic response pathways. Conclusions: Opiorphins promote the development of androgen-insensitive PrCa and activate pathways that potentially overcome the hypoxic barrier generated during tumor growth.
Collapse
Affiliation(s)
- Amarnath Mukherjee
- Department of Urology, Albert Einstein College of Medicine/Montefiore Medical Center, NY 10461, USA
| | - Augene Park
- Department of Urology, Albert Einstein College of Medicine/Montefiore Medical Center, NY 10461, USA
| | - Li Wang
- Department of Urology, Albert Einstein College of Medicine/Montefiore Medical Center, NY 10461, USA
| | - Kelvin P Davies
- Department of Urology, Albert Einstein College of Medicine/Montefiore Medical Center, NY 10461, USA
- Department of Physiology & Biophysics, Albert Einstein College of Medicine/Montefiore Medical Center, NY 10461, USA
| |
Collapse
|
5
|
Musicki B, Burnett AL. Mechanisms underlying priapism in sickle cell disease: targeting and key innovations on the preclinical landscape. Expert Opin Ther Targets 2020; 24:439-450. [PMID: 32191546 DOI: 10.1080/14728222.2020.1745188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Priapism is prolonged penile erection in the absence of sexual arousal or desire and is a devastating condition affecting millions of patients with sickle cell disease (SCD) globally. Available drug treatments for SCD-related priapism remain limited and have been primarily reactive rather than preventive. Hence, there is an unmet need for new drug targets and pharmacologic therapies.Areas covered: We examine the molecular mechanisms underlying SCD-associated priapism evaluated mostly in animal models. In mouse models of SCD, molecular defects of priapism operating at the cavernous tissue level include reduced tonic NO/cGMP signaling, elevated oxidative/nitrosative stress, vascular adhesion molecule derangements, excessive adenosine and opiorphin signaling, dysregulated vasoconstrictive RhoA/ROCK signaling, and testosterone deficiency. We discuss the consequences of downregulated cGMP-dependent phosphodiesterase type 5 (PDE5) activity in response to these molecular signaling derangements, as the main effector mechanism causing unrestrained cavernous tissue relaxation that results in priapism.Expert opinion: Basic science studies are crucial for understanding the underlying pathophysiology of SCD-associated priapism. Understanding the molecular mechanisms could unearth new therapeutic targets for this condition based on these mechanisms. Treatment options should aim to improve deranged erection physiology regulatory signaling to prevent priapism and potentially restore or preserve erectile function.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
1-Substituted sialorphin analogues-synthesis, molecular modelling and in vitro effect on enkephalins degradation by NEP. Amino Acids 2019; 51:1201-1207. [PMID: 31302778 DOI: 10.1007/s00726-019-02760-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
Rat sialorphin (Gln-His-Asn-Pro-Arg) is a natural blocker of neprilysin (NEP) that belongs to the family of endogenous opioid peptide-degrading enzymes. Studies have confirmed the efficiency of sialorphin in blocking the activity of NEP, both in vitro and in vivo. It has been demonstrated that this inhibitor has a strong analgesic, anti-inflammatory, immunological and metabolic effect either directly or indirectly by affecting the level of Met/Leu-enkephalins. In this work, sialorphin and their 12 analogues were synthesised using the solid-phase method. The effect of the peptides on the degradation of Met-enkephalin by NEP and metabolic degradation in human plasma was investigated in vitro. We show that the change in the N-terminal amino acid configuration from L to D in almost all peptides, except D-Arg-His-Asn-Pro-Arg (peptide XI), led to the abolition of their inhibitory activity. With molecular modelling technique we explained the structural properties of the L and D-arginine located on the N-terminal part of the peptide. The detailed analysis of the protein binding pocket allowed us to explain why D-arginine is so unique among all D residues. Peptide XI showed the highest stability among the tested peptides in human plasma. For instance sialorphin after a 2-hour incubation in human plasma was almost completely decomposed, while the level of peptide XI dropped to 45% after 48 h under these conditions.
Collapse
|
7
|
Alanine scan of sialorphin and its hybrids with opiorphin: synthesis, molecular modelling and effect on enkephalins degradation. Amino Acids 2018; 50:1083-1088. [PMID: 29752565 PMCID: PMC6060874 DOI: 10.1007/s00726-018-2585-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/02/2018] [Indexed: 11/28/2022]
Abstract
Enkephalins are involved in a number of physiological processes. However, these peptides are quickly degraded by peptidases, e.g. the neutral endopeptidase (NEP). Inhibition of the enzymatic degradation of enkephalins is one of the possible approaches to prolong their activity. Selective inhibitor of NEP, sialorphin, is the attractive lead compound for enkephalins degradation studies. In this work, an alanine scan of sialorphin and a series of its hybrids with opiorphin, synthesised by the solid phase method, were performed. The effect of the peptides on degradation of Met-enkephalin by NEP in vitro was investigated. Molecular modelling technique was used to identify residues responsible for protein–ligand interactions. We showed that substitution of amino acids Gln1, Pro4 and Arg5 of sialorphin for Ala significantly reduced the half-life of Met-enkephalin in the presence of NEP. [Ala3]sialorphin displayed a higher inhibitory potency against NEP than sialorphin. Substitution of His2 for Ala led to a compound which was as active as lead compound. Sialorphin has a structure which hardly tolerates substitution in its sequence at positions 1, 4 and 5. The conversion of His2 for alanine in sialorphin is tolerated very well. The higher inhibitory potency of [Ala3]sialorphin than sialorphin against NEP is caused by removal of the hydrophilic residue (Asn) and a better fit of the peptide to the enzyme-binding pocket. The role of side chains of sialorphin in degradation of enkephalin by NEP has been explored. This study also provides an important SAR information essential for further drug design.
Collapse
|
8
|
Draganski A, Tar MT, Villegas G, Friedman JM, Davies KP. Topically Applied Curcumin-Loaded Nanoparticles Treat Erectile Dysfunction in a Rat Model of Type-2 Diabetes. J Sex Med 2018; 15:645-653. [DOI: 10.1016/j.jsxm.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/16/2018] [Accepted: 03/09/2018] [Indexed: 12/22/2022]
|
9
|
The Coordination Abilities of Three Novel Analogues of Saliva Peptides: The Influence of Structural Modification on the Copper Binding. Int J Pept Res Ther 2017; 23:409-418. [PMID: 29170620 PMCID: PMC5681609 DOI: 10.1007/s10989-016-9569-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 11/16/2022]
Abstract
Three novel analogues of salivary peptides as sialorphin (QHNPR) and opiorphin (QRFSR) were synthesized by the solid-phase method. The sequences of these ligands were following: AHNPR, QANPR and QRFPR. The aim of our work was investigation in what way some structural modifications may impact on coordination abilities of studied peptides. In this work we presented the interaction of pentapeptides with copper(II) ions in wide range of pH. To determine the coordination model of ligands there were carried out several studies by spectroscopy (UV–Vis, CD) methods and potentiometric measurements.
Collapse
|
10
|
Salaga M, Mokrowiecka A, Jacenik D, Cygankiewicz AI, Malecka-Panas E, Kordek R, Krajewska WM, Sobocinska MK, Kamysz E, Fichna J. Systemic Administration of Sialorphin Attenuates Experimental Colitis in Mice via Interaction With Mu and Kappa Opioid Receptors. J Crohns Colitis 2017; 11:988-998. [PMID: 28333341 DOI: 10.1093/ecco-jcc/jjx043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Pharmacological treatment and/or maintenance of remission in inflammatory bowel disease [IBD] is currently one of the biggest challenges in the field of gastroenterology. Here we aimed to assess the anti-inflammatory effect and the mechanism of action of sialorphin, the natural blocker of the endogenous opioid peptide-degrading enzymes neprilysin [NEP] and aminopeptidase N [APN], in mouse models of IBD and the changes in the expression of these enzymes in IBD patients. METHODS We used two models of experimental colitis in mice [2,4,6-trinitrobenzene sulphonic acid [TNBS]- and dextran sulphate sodium [DSS]-induced]. Macroscopic score, ulcer score, colonic wall thickness, and myeloperoxidase [MPO] activity were recorded. Additionally, we measured the expression of NEP and APN in the colon of IBD patients and healthy controls. RESULTS We showed that sialorphin attenuated acute, semichronic, and relapsing TNBS-induced colitis in mice after systemic administration, and its anti-inflammatory action is associated with mu and kappa opioid receptors. CONCLUSIONS We show that indirect stimulation of opioid receptors by the blockade of NEP and APN is a promising pharmacological strategy for the treatment of IBD, and may become of greater importance than the use of classical opioid agonists.
Collapse
Affiliation(s)
- M Salaga
- Department Biochemistry, Medical University of Lodz, Lodz, Poland
| | - A Mokrowiecka
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - D Jacenik
- Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - A I Cygankiewicz
- Department of Molecular Biotechnology, University of Gdansk, Gdansk, Poland
| | - E Malecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - R Kordek
- Department of Pathology, Faculty of Medicine,Lodz, Poland
| | - W M Krajewska
- Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - M K Sobocinska
- Department of Molecular Biotechnology, University of Gdansk, Gdansk, Poland
| | - E Kamysz
- Department of Molecular Biotechnology, University of Gdansk, Gdansk, Poland
| | - J Fichna
- Department Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Kamysz E, Smolarczyk R, Cichoń T, Jarosz-Biej M, Sikorska E, Sobocińska M, Jaśkiewicz M, Kamysz W. Antitumor activity of opiorphin, sialorphin and their conjugates with a peptide klaklakklaklak. J Pept Sci 2016; 22:723-730. [DOI: 10.1002/psc.2936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 01/04/2023]
Affiliation(s)
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer; Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch; Gliwice Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer; Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch; Gliwice Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer; Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch; Gliwice Poland
| | | | | | | | - Wojciech Kamysz
- Medical University of Gdansk; Faculty of Pharmacy; Gdansk Poland
| |
Collapse
|
12
|
Um J, Yu J, Dubon MJ, Park KS. Substance P and thiorphan synergically enhance angiogenesis in wound healing. Tissue Eng Regen Med 2016; 13:149-154. [PMID: 30603394 DOI: 10.1007/s13770-016-9089-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/03/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Impaired angiogenesis is a common pathological characteristic of chronic wounds. Therefore, the regulation of angiogenesis is important for proper tissue repair. It was reported that substance P (SP) accelerates wound healing in a skin injury model. SP is degraded by neutral endopeptidase (NEP). Our study shows that systemic co-treatment of SP and thiorphan, an inhibitor of NEP synergically increased the number of α-smooth muscle actin positive-blood vessels in skin wounds. However, there was no synergic improvement in wound contraction and extracellular matrix deposition. Therefore, inhibition of endogenous NEP activity by thiorphan treatment might modulate the effects of SP treatment specifically on accelerating angiogenesis during wound healing. However, the molecular mechanism(s) of the synergic increase in angiogenesis by SP and thiorphan treatment is still unknown.
Collapse
Affiliation(s)
- Jihyun Um
- 1Graduate School of Biotechnology & Department of Genetic Engineering, Kyung Hee University, Yongin, Korea
| | - Jinyeong Yu
- 1Graduate School of Biotechnology & Department of Genetic Engineering, Kyung Hee University, Yongin, Korea
| | - Maria Jose Dubon
- 1Graduate School of Biotechnology & Department of Genetic Engineering, Kyung Hee University, Yongin, Korea
| | - Ki-Sook Park
- 2East-West Medical Research Institute & College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
13
|
Anele UA, Burnett AL. Nitrergic Mechanisms for Management of Recurrent Priapism. Sex Med Rev 2015; 3:160-168. [PMID: 26478814 DOI: 10.1002/smrj.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Priapism is a condition involving prolonged penile erection unrelated to sexual interest or desire. The ischemic type, including its recurrent variant, is often associated with both physical and psychological complications. As such, management is of critical importance. Ideal therapies for recurrent priapism should address its underlying pathophysiology. AIM To review the available literature on priapism management approaches particularly related to nitrergic mechanisms. METHODS A literature review of the pathophysiology and management of priapism was performed using PubMed. MAIN OUTCOME MEASURE Publications pertaining to mechanisms of the molecular pathophysiology of priapism. RESULTS Nitrergic mechanisms are characterized as major players in the molecular pathophysiology of priapism. PDE5 inhibitors represent an available therapeutic option with demonstrated ability in attenuating these underlying nitrergic derangements. Several additional signaling pathways have been found to play a role in the molecular pathophysiology of priapism and have also been associated with these nitrergic mechanisms. CONCLUSION An increasing understanding of the molecular pathophysiology of priapism has led to the discovery of new potential targets. Several mechanism-based therapeutic approaches may become available in the future.
Collapse
Affiliation(s)
- Uzoma A Anele
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 20817
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 20817
| |
Collapse
|
14
|
Fu S, Davies KP. Opiorphin-dependent upregulation of CD73 (a key enzyme in the adenosine signaling pathway) in corporal smooth muscle cells exposed to hypoxic conditions and in corporal tissue in pre-priapic sickle cell mice. Int J Impot Res 2015; 27:140-5. [PMID: 25833166 PMCID: PMC4504813 DOI: 10.1038/ijir.2015.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/08/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023]
Abstract
The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that up-regulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, play an important role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5-prime-nucleotidase (5-prime-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homologue mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life-stage prior to the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose and time dependent fashion. Using siRNA to knock-down sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic up-regulation of CD73 is dependent on the up-regulation of sialorphin. Overall our data provides further evidence to support a role for opiorphin in CSM in regulating the cellular response regulating response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways.
Collapse
Affiliation(s)
- S Fu
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - K P Davies
- 1] Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
15
|
Effects and underlying mechanisms of human opiorphin on cardiovascular activity in anesthetized rats. Eur J Pharmacol 2015; 749:32-8. [DOI: 10.1016/j.ejphar.2014.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 11/22/2022]
|
16
|
St Laurent CD, St Laurent KE, Mathison RD, Befus AD. Calcium-binding protein, spermatid-specific 1 is expressed in human salivary glands and contains an anti-inflammatory motif. Am J Physiol Regul Integr Comp Physiol 2015; 308:R569-75. [PMID: 25632019 DOI: 10.1152/ajpregu.00153.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022]
Abstract
Salivary glands are involved in the production and exocrine and endocrine secretion of biologically active proteins, polypeptides, and hormones involved in growth and differentiation, homeostasis, and digestion. We have previously studied the prohormone submandibular rat 1 (SMR1), product of the Vcsa1 gene, which is highly expressed in the testes and salivary glands of rats, and can be cleaved to produce polypeptides with analgesic, erectile function, and anti-inflammatory activities. Humans lack the Vcsa1 gene, but homologous sequences and functions for analgesia and erectile function exist in the human genes Prol1, SMR3a, and SMR3b located on the human chromosomal region close to where Vcsa1 lies in the rat. Here we show the human protein calcium-binding protein spermatid-specific 1 (CABS1) contains a similar sequence to the anti-inflammatory sequence in rat SMR1, thus CABS1 may be another human gene with homologous function to Vcsa1. Using Western blot and PCR, we discovered that the human protein CABS1, previously thought to only be expressed in the testes, is also expressed in the salivary glands and lung, in a tissue-specific manner. Peptides derived from CABS1 were tested in an in vivo mouse model of lipopolysaccharide (LPS)-induced neutrophilia and an ex vivo rat model of antigen-induced intestinal anaphylaxis and significantly reduced both neutrophil accumulation in bronchoalveolar lavage fluid and antigen-induced ileal contractions, respectively. Thus human CABS1 has a peptide motif homologous to the anti-inflammatory peptide sequence of rat SMR1. Whether this similarity of CABS1 extends to the neuroendocrine regulation of the anti-inflammatory activity seen for SMR1 remains to be determined.
Collapse
Affiliation(s)
- Chris D St Laurent
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Katherine E St Laurent
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Ron D Mathison
- Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| |
Collapse
|
17
|
Fu S, Tar MT, Melman A, Davies KP. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells. FASEB J 2014; 28:3633-44. [PMID: 24803544 DOI: 10.1096/fj.13-248708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM "relaxant" pathways; excessive activation of these pathways results in priapism.
Collapse
Affiliation(s)
| | | | | | - Kelvin Paul Davies
- Department of Urology and Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
18
|
Tar MT, Martinez LR, Nosanchuk JD, Davies KP. The effect of methamphetamine on an animal model of erectile function. Andrology 2014; 2:531-6. [PMID: 24706617 DOI: 10.1111/j.2047-2927.2014.00212.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 12/01/2022]
Abstract
In the US methamphetamine is considered a first-line treatment for attention-deficit hyperactivity disorder. It is also a common drug of abuse. Reports in patients and abusers suggest its use results in impotence. The efficacy of phosphodiesterase-5 inhibitors (PDE5i) to restore erectile function in these patient groups also has not been determined. In these studies, we determined if the rat is a suitable animal model for the physiological effects of methamphetamine on erectile function, and if a PDE5i (tadalafil) has an effect on erectile function following methamphetamine treatment. In acute phase studies, erectile function was measured in male Sprague-Dawley rats, before and after administration of 10 mg/kg methamphetamine i.p. Chronically treated animals received escalating doses of methamphetamine [2.5 mg/kg (1st week), 5 mg/kg (2nd week), and 10 mg/kg (3rd week)] i.p. daily for 3 weeks and erectile function compared with untreated controls. The effect of co-administration of tadalafil was also investigated in rats acutely and chronically treated with methamphetamine. Erectile function was determined by measuring the intracorporal pressure/blood pressure ratio (ICP/BP) following cavernous nerve stimulation. In both acute and chronic phase studies, we observed a significant increase in the rates of spontaneous erections after methamphetamine administration. In addition, following stimulation of the cavernous nerve at 4 and 6 mA, there was a significant decrease in the ICP/BP ratio (approximately 50%), indicative of impaired erectile function. Tadalafil treatment reversed this effect. In chronically treated animals, the ICP/BP ratio following 4 and 6 mA stimulation decreased by approximately 50% compared with untreated animals and erectile dysfunction (ED) was also reversed by tadalafil. Overall, our data suggest that the rat is a suitable animal model to study the physiological effect of methamphetamine on erectile function. Our work also provides a rationale for treating patients that report ED associated with therapeutics-containing methamphetamine or amphetamine with PDE5i.
Collapse
Affiliation(s)
- M T Tar
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
19
|
Kamysz E, Kotynia A, Czyżnikowska Ż, Jaremko M, Jaremko Ł, Nowakowski M, Brasun J. Sialorphin and its analog as ligands for copper(II) ions. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.10.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Kamysz E, Sałaga M, Sobczak M, Kamysz W, Fichna J. Characterization of the effects of opiorphin and sialorphin and their analogs substituted in position 1 with pyroglutamic acid on motility in the mouse ileum. J Pept Sci 2013; 19:166-72. [PMID: 23381913 DOI: 10.1002/psc.2486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 12/30/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022]
Abstract
Opiorphin and sialorphin are two recently discovered endogenous enkephalin-degrading enzyme inhibitors. Our aim was to characterize their effect on the mouse ileum motility and to investigate the role of glutamine in position 1. Opiorphin, sialorphin, and their analogs substituted in position 1 with pyroglutamic acid (pGlu) were synthesized by the solid-phase method using Fmoc chemistry. The effect of peptides on gastrointestinal (GI) motility was characterized using in vitro assays and in mouse model of upper GI transit. Opiorphin and sialorphin, but not their analogs, significantly increased electrical field-stimulated contractions in the mouse ileum in a δ-opioid receptor-dependent manner. Opiorphin, sialorphin, and their analogs did not influence the effect of [Met(5)]enkephalin on smooth muscle contractility in the mouse ileum in vitro. [Met(5)]enkephalin and sialorphin, but not opiorphin injected intravenously (1 mg/kg), significantly inhibited the upper GI transit. The intraperitoneal administration of peptides (3 mg/kg) did not change the mouse upper GI transit. In conclusion, this is the first study investigating the effect of opiorphin and sialorphin on the mouse ileum motility and demonstrating that glutamine in position 1 is crucial for their pharmacological action. Our results may be important for further structure-activity relationship studies on opiorphin and sialorphin and future development of potent clinical therapeutics aiming at the enkephalinergic system.
Collapse
Affiliation(s)
- Elżbieta Kamysz
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | | | | | | |
Collapse
|
21
|
Brkljačić L, Sabalić M, Salarić I, Jerić I, Alajbeg I, Nemet I. Development and validation of a liquid chromatography–tandem mass spectrometry method for the quantification of opiorphin in human saliva. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3920-6. [DOI: 10.1016/j.jchromb.2011.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/12/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
22
|
Fonteles MC, do Nascimento NRF. Guanylin peptide family: history, interactions with ANP, and new pharmacological perspectives. Can J Physiol Pharmacol 2011; 89:575-85. [PMID: 21815750 DOI: 10.1139/y11-050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The guanylin family of peptides has 3 subclasses of peptides containing either 3 intramolecular disulfide bonds found in bacterial heat-stable enterotoxins (ST), or 2 disulfides observed in guanylin and uroguanylin, or a single disulfide exemplified by lymphoguanylin. These peptides bind to and activate cell-surface receptors that have intrinsic guanylate cyclase (GC) activity. These hormones are synthesized in the intestine and released both luminally and into the circulation, and are also produced within the kidney. Stimulation of renal target cells by guanylin peptides in vivo or ex vivo elicits a long-lived diuresis, natriuresis, and kaliuresis by both cGMP-dependent and independent mechanisms. Uroguanylin may act as a hormone in a novel endocrine axis linking the digestive system and kidney as well as a paracrine system intrarenally to increase sodium excretion in the postprandial period. This highly integrated and redundant mechanism allows the organism to maintain sodium balance by eliminating excess sodium in the urine. In addition, small concentrations of the atrial natriuretic peptide (ANP) can synergize with low concentrations of both guanylin or uroguanylin, which do not induce natriuresis per se, to promote significant natriuresis. Interestingly, the activation of the particulate guanylate cyclase receptors by natriuretic peptides can promote relaxation of animal and human penile erectile tissue and increase intracavernosal pressure to induce penile erection. These peptides can be prototypes for new drugs to treat erectile dysfunction, especially in patients with endothelial and nitrergic dysfunction, such as in diabetes.
Collapse
Affiliation(s)
- Manassés Claudino Fonteles
- Instituto Superior de Ciências Biomédicas (ISCB), Laboratório de Farmacologia - Universidade Estadual do Ceará (UECE), Avenida Paranjana 1700, Campus do Itaperi, CEP 60740-000, Fortaleza-CE, Brazil.
| | | |
Collapse
|
23
|
Calenda G, Tong Y, Kanika ND, Tar MT, Suadicani SO, Zhang X, Melman A, Rougeot C, Davies KP. Reversal of diabetic vasculopathy in a rat model of type 1 diabetes by opiorphin-related peptides. Am J Physiol Heart Circ Physiol 2011; 301:H1353-9. [PMID: 21784987 DOI: 10.1152/ajpheart.00383.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes results in a myriad of vascular complications, often referred to as diabetic vasculopathy, which encompasses both microvascular [erectile dysfunction (ED), retinopathy, neuropathy, and nephropathy] and macrovascular complications (hypertension, coronary heart disease, and myocardial infarction). In diabetic animals and patients with ED, there is decreased opiorphin or opiorphin-related gene expression in corporal tissue. Both opiorphin and the rat homologous peptide sialorphin are found circulating in the plasma. In the present study, we investigated if diabetes induced changes in plasma sialorphin levels and if changes in these levels could modulate the biochemistry and physiology of vascular smooth muscle. We show that circulating sialorphin levels are reduced in a rat model of type I diabetes. Intracorporal injection of plasmids expressing sialorphin into diabetic rats restores sialorphin levels to those seen in the blood of nondiabetic animals and results in both improved erectile function and blood pressure. Sialorphin modulated the ability of C-type natriuretic peptide to relax both corporal and aortic smooth muscle strips and of bradykinin to regulate intracellular calcium levels in both corporal and aortic smooth muscle cells. We have previously shown that expression of genes encoding opiorphins is increased when erectile function is improved. Our findings thus suggest that by affecting circulating levels of opiorphin-related peptides, proper erectile function is not only an indicator but also a modulator of overall vascular health of a man.
Collapse
Affiliation(s)
- Giulia Calenda
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
With the development and marketing of oral pharmacotherapy that is both noninvasive and successful in treating erectile dysfunction (ED), the quest to identify markers of organic ED lost ground. Indeed, the multi-factorial nature of ED may have led many researchers to conclude that searching for a universal marker of ED was futile. However, the realization that ED is strongly correlated with the overall health of men, and may act as a predictor for the development of cardiovascular disease (CVD) and diabetes, has stimulated interest in identifying genes that can distinguish organic ED. In addition, the potential ability to suggest to the patient that ED is reversible (i.e., psychogenic) with a simple test would be of significance to both the physician and patient, as well as for reimbursement issues for therapy by insurance companies. Such a marker may also act as a non-subjective measure of the degree of ED and the efficacy of treatment. This review discusses the importance of identifying such markers and recent work identifying potential markers in human patients.
Collapse
Affiliation(s)
- Kelvin P Davies
- Institute of Smooth Muscle Biology and Department of Urology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY10461, USA
| | | |
Collapse
|
25
|
Sousa CM, Havt A, Santos CF, Arnaud-Batista FJ, Cunha KMA, Cerqueira JBG, Fonteles MC, Nascimento NRF. The relaxation induced by uroguanylin and the expression of natriuretic peptide receptors in human corpora cavernosa. J Sex Med 2011; 7:3610-9. [PMID: 20102442 DOI: 10.1111/j.1743-6109.2009.01672.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Receptors for natriuretic peptides have been demonstrated as potential targets for the treatment of male erectile dysfunction. AIM This study investigates the relaxant effects of the atrial natriuretic peptide (ANP) and uroguanylin (UGN), and expression of natriuretic peptide receptors on strips of human corpora cavernosa (HCC). MAIN OUTCOME MEASURES Quantitative analysis of natriuretic receptor expression and relaxation of precontracted strips were used to assess the membrane-bound guanylate cyclase-cyclic guanosine monophosphate (cGMP) pathway in HCC strips. METHODS HCC was obtained from a cadaver donor at the time of collection of organs for transplantation (14-47 years) and strips were mounted in organ baths for isometric studies. RESULTS ANP and UGN both induced concentration-dependent relaxation on HCC strips with a maximal response attained at 300 nM, corresponding to 45.4±4.0% and 49±4.8%, respectively. The relaxation is not affected by 30 µM 1H-[1,2,4]oxaolodiazolo[4,3-a]quinoxalin-1-one (ODQ) (a soluble guanylate cyclase inhibitor), but it is significantly blocked by 10 µM isatin, a nonspecific particulate guanylate cyclase (pGC) inhibitor. UGN was unable to potentiate electrical field stimulation (EFS) or acetylcholine-induced relaxations. The potential role of pGC activation and cGMP generation in this effect is reinforced by the potentiation of this effect by phosphodiesterase-5 inhibitor vardenafil (55.0±7.5-UGN vs. 98.6±1.4%-UGN+vardenafil; P<0.05). The relaxant effect was also partially (37.6%) blocked by the combination iberitoxin-apamin but was insensitive to glybenclamide. The expression of guanylate cyclase receptors (GC-A, GC-B, GC-C) and the expression of the natriuretic peptide "clearance" receptor (NPR-C) were confirmed by real-time polymerase chain reaction. The exposure of HCC strips to ANP (1 µM) and UGN (10 µM) significantly increased cGMP, but not cyclic adenosine monophosphate (cAMP) levels. CONCLUSIONS UGN relaxes HCC strips by a guanylate cyclase and K(ca)-channel-dependent mechanism. These findings obtained in HCC reveal that the natriuretic peptide receptors are potential targets for the development of new drugs for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Clauber M Sousa
- Superior Institute of Biomedical Sciences, Ceara State University, Fortaleza, Ceara, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Human opiorphin: The lack of physiological dependence, tolerance to antinociceptive effects and abuse liability in laboratory mice. Behav Brain Res 2010; 213:88-93. [DOI: 10.1016/j.bbr.2010.04.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 04/23/2010] [Indexed: 11/20/2022]
|
27
|
Mathison RD, Davison JS, Befus AD, Gingerich DA. Salivary gland derived peptides as a new class of anti-inflammatory agents: review of preclinical pharmacology of C-terminal peptides of SMR1 protein. JOURNAL OF INFLAMMATION-LONDON 2010; 7:49. [PMID: 20920210 PMCID: PMC2955637 DOI: 10.1186/1476-9255-7-49] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/28/2010] [Indexed: 02/02/2023]
Abstract
The limitations of steroidal and non steroidal anti-inflammatory drugs have prompted investigation into other biologically based therapeutics, and identification of immune selective anti-inflammatory agents of salivary origin. The traditional view of salivary glands as accessory digestive structures is changing as their importance as sources of systemically active immunoregulatory and anti-inflammatory factors is recognized. Salivary gland involvement in maintenance of whole body homeostasis is regulated by the nervous system and thus constitutes a "neuroendocrine axis". The potent anti-inflammatory activities, both in vivo and in vitro, of the tripeptide Phe-Glu-Gly (FEG) are reviewed. FEG is a carboxyl terminal peptide of the prohormone SMR1 identified in the rat submandibular salivary gland, The D-isomeric form (feG) mimics the activity of its L-isomer FEG. Macropharmacologically, feG attenuates the cardiovascular and inflammatory effects of endotoxemia and anaphylaxis, by inhibition of hypotension, leukocyte migration, vascular leak, and disruption of pulmonary function and intestinal motility. Mechanistically, feG affects activated inflammatory cells, especially neutrophils, by regulating integrins and inhibiting intracellular production of reactive oxygen species. Pharmacodynamically, feG is active at low doses (100 μg/kg) and has a long (9-12 hour) biological half life. As a therapeutic agent, feG shows promise in diseases characterized by over exuberant inflammatory responses such as systemic inflammatory response syndrome and other acute inflammatory diseases. Arthritis, sepsis, acute pancreatitis, asthma, acute respiratory inflammation, inflammatory bowel disease, and equine laminitis are potential targets for this promising therapeutic peptide. The term "Immune Selective Anti-Inflammatory Derivatives" (ImSAIDs) is proposed for salivary-derived peptides to distinguish this class of agents from corticosteroids and nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ronald D Mathison
- Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | |
Collapse
|
28
|
Lysiak JJ, Kavoussi PK, Ellati RT, Steers WD, Annex BH. Angiogenesis Therapy for the Treatment of Erectile Dysfunction. J Sex Med 2010; 7:2554-63. [DOI: 10.1111/j.1743-6109.2010.01830.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Kanika ND, Tar M, Tong Y, Kuppam DSR, Melman A, Davies KP. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway. Am J Physiol Cell Physiol 2009; 297:C916-27. [PMID: 19657052 PMCID: PMC2770744 DOI: 10.1152/ajpcell.00656.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 07/27/2009] [Indexed: 12/27/2022]
Abstract
Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism.
Collapse
Affiliation(s)
- Nirmala Devi Kanika
- Department of Urology and Institute of Smooth Muscle Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
30
|
Han G, Tar M, Kuppam DSR, Friedman A, Melman A, Friedman J, Davies KP. Nanoparticles as a novel delivery vehicle for therapeutics targeting erectile dysfunction. J Sex Med 2009; 7:224-33. [PMID: 19765204 DOI: 10.1111/j.1743-6109.2009.01507.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Nanoparticles represent a potential novel mechanism for transdermal delivery of erectogenic agents directly to the penis. AIM To determine if nanoparticles encapsulating known erectogenic agents (tadalafil, sialorphin, and nitric oxide [NO]) can improve erectile function in a rat model of erectile dysfunction (ED) as a result of aging (the Sprague-Dawley retired breeder rat). METHODS Nanoparticles encapsulating the erectogenic agents were applied as a gel to the glans and penile shaft of anesthetized Sprague-Dawley rats and the intracorporal pressure/blood pressure (ICP/BP) monitored for up to 2 hours with or without stimulation of the cavernous nerve. Control nanoparticles were made without encapsulating erectogenic agents and applied in a similar manner in separate experiments. RESULTS Nanoparticles encapsulating NO caused spontaneous visible erections in the rat, with an average time of onset of 4.5 minutes, duration of 1.42 minutes, and ICP/BP of 0.67 +/- 0.14. The sialorphin nanoparticles also caused visible spontaneous erections after an average of 4.5 minutes, with a duration of 8 minutes and ICP/BP ratio of 0.72 +/- 0.13. The difference in the erectile response between groups of animals treated with NO or sialorphin nanoparticles was significantly different from the control group treated with empty nanoparticles (P < 0.05) Tadalafil nanoparticles showed a significant increase in the mean ICP/BP (0.737 +/- 0.029) following stimulation of the cavernous nerve (4 mA) 1 hour after application of the nanoparticles with a visibly improved erectile response. CONCLUSIONS Nanoparticles encapsulating three different erectogenic agents resulted in increased erectile function when applied to the penis of a rat model of ED. Nanoparticles represent a potential novel route for topical delivery of erectogenic agents which could improve the safety profile for existing orally administered drugs by avoiding effects of absorption and first-pass metabolism, and would be less hazardous than injection.
Collapse
Affiliation(s)
- George Han
- Department of Biophysics and Physiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Vlachopoulos C, Ioakeimidis N, Terentes-Printzios D, Rokkas K, Aznaouridis K, Baou K, Bratsas A, Fassoulakis C, Stefanadis C. Amino-Terminal Pro-C-Type Natriuretic Peptide is Associated with the Presence, Severity, and Duration of Vasculogenic Erectile Dysfunction. Eur Urol 2009; 56:552-8. [DOI: 10.1016/j.eururo.2008.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 11/12/2008] [Indexed: 01/31/2023]
|
32
|
Chua RG, Calenda G, Zhang X, Siragusa J, Tong Y, Tar M, Aydin M, DiSanto ME, Melman A, Davies KP. Testosterone regulates erectile function and Vcsa1 expression in the corpora of rats. Mol Cell Endocrinol 2009; 303:67-73. [PMID: 19428993 PMCID: PMC2694216 DOI: 10.1016/j.mce.2009.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/13/2009] [Accepted: 02/02/2009] [Indexed: 11/25/2022]
Abstract
Vcsa1 plays an important role in the erectile physiology of the rat. We conducted experiments to determine if erectile function, testosterone levels and Vcsa1 expression were correlated. In orchiectomized rats, total testosterone in blood fell from an average of 4 ng/ml to <0.04 ng/ml. Erectile function was significantly lower compared to controls and Vcsa1 expression was significantly (>6-fold) decreased. Injection of orchiectomized animals with testosterone (2 mg in 100ml sesame oil every 4 days for 2 weeks) restored average levels of testosterone to 2 ng/ml, increased erectile function and significantly increased Vcsa1 expression. In isolated corporal cells there was testosterone dependent Vcsa1 expression. However, intracorporal injection of orchiectomized animals with a plasmid expressing Vcsa1 or its gene product Sialorphin (previously demonstrated to improve erectile function in old animals) gave no significant improvement in erectile function. Also, the ability of Sialorphin to reduce tension in corporal smooth muscle strips isolated from orchiectomized animals was impaired compared to controls.
Collapse
Affiliation(s)
- Rowena G Chua
- Department of Urology and Institute of Smooth Muscle Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
INTRODUCTION The opiorphins are a newly characterized class of peptides that act as potent endogenous neutral endopeptidase (NEP) inhibitors. Recent reports have suggested that they play an important role in erectile physiology. AIM This article reviews recent developments that increase our understanding of the role of the opiorphin family of peptides in erectile physiology. METHODS During a microarray screen of gene changes that occur in a rat diabetic model of erectile dysfunction (ED), Vcsa1 was one of the most down-regulated genes in the rat corpora. Quantitative real-time polymerase chain reaction demonstrated that in at least three models of diseases that result in ED (diabetes, aging, and cavernous nerve [CN] transection), Vcsa1 was down-regulated in the rat corpora. The human opiorphin family of genes (hSMR3A/B and ProL1) also acts as markers of erectile function in patients with ED. MAIN OUTCOME MEASURES The reader will be informed of the most current research regarding the role of opiorphins in urogenital smooth muscle biology. RESULTS These observations led to the suggestion that genes encoding opiorphins (and potentially their peptide products) can act as markers of ED. Gene transfer of plasmids overexpressing Vcsa1 in aging rats, as well as intracorporal injection of sialorphin, led to an improvement in erectile function. In organ bath studies, we demonstrated that sialorphin can cause increased rates of relaxation of corporal smooth muscle (CSM). We have also demonstrated that in vitro, Vcsa1 causes changes in the expression of G-protein-coupled receptors (GPCRs). This has led us to suggest that the action of Vcsa1 on erectile physiology may act through relaxation of CSM by its ability to act as an inhibitor of NEP, therefore prolonging the action of peptide agonists at their GPCRs. CONCLUSIONS Overall, there is a growing body of evidence that the opiorphins play a role in regulating CSM tone and thereby erectile function.
Collapse
Affiliation(s)
- Kelvin Paul Davies
- Albert Einstein College of Medicine, Department of Urology and Institute of Smooth Muscle Biology, Bronx, NY 10461, USA.
| |
Collapse
|
34
|
Morris KE, St Laurent CD, Hoeve RS, Forsythe P, Suresh MR, Mathison RD, Befus AD. Autonomic nervous system regulates secretion of anti-inflammatory prohormone SMR1 from rat salivary glands. Am J Physiol Cell Physiol 2008; 296:C514-24. [PMID: 19109528 DOI: 10.1152/ajpcell.00214.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The autonomic nervous system regulates the secretion of bioactive proteins and peptides from salivary glands that can be important in systemic physiological responses. The prohormone submandibular rat-1, which is highly expressed in rat submandibular glands, can be cleaved to produce polypeptides with analgesic and anti-inflammatory activities. Human genes related to submandibular rat-1 have conserved biological functions and are potentially important in pain suppression, erectile function, and inflammation. In this study we describe the differential expression and posttranslational modification of submandibular rat-1 protein in salivary glands, the urogenital tract, lung, blood, and saliva in male Sprague-Dawley and Brown Norway rats. Submandibular rat-1 protein is secreted into saliva after the administration of beta-adrenergic or cholinergic agonists. Removal of the sympathetic ganglion that innervates the salivary glands results in increased levels of submandibular rat-1 protein in salivary glands. The secretion of submandibular rat-1 in response to physiological stress may provide a large pool of submandibular rat-1-derived peptide products that can promote analgesia and decrease inflammation locally and systemically. This pathway may be conserved among mammals and may constitute an important anti-inflammatory and analgesic response to stress.
Collapse
Affiliation(s)
- K E Morris
- 550A Heritage Medical Research Ctr., Pulmonary Research Group, Dept. of Medicine, Faculty of Medicine and Dentistry, Univ. of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
OBJECTIVE To determine if ProL1, a member of the opiorphin family of genes, can modulate erectile physiology, as it encodes a peptide which acts as a neutral endopeptidase inhibitor, other examples of which (Vcsa1, hSMR3A) modulate erectile physiology. MATERIALS AND METHODS We cloned members of the opiorphin family of genes into the same mammalian expression backbone (pVAX); 100 microg of these plasmids (pVAX-Vcsa1, -hSMR3A, -hSMR3B and -ProL1) were injected intracorporally into retired breeder rats and the affect on erectile physiology assessed visually, by histology and by measuring the intracavernous pressure (ICP) and blood pressure (BP). As a positive control, rats were treated with pVAX-hSlo (expressing the MaxiK potassium channel) and as a negative control the empty backbone plasmid was injected (pVAX). We also compared the level of expression of ProL1 in corporal tissue of patients not reporting erectile dysfunction (ED), ED associated with diabetes and ED not caused by diabetes. RESULTS Gene transfer of plasmids expressing all members of the opiorphin family had a similar and significant effect on erectile physiology. At the concentration used in these experiments (100 microg) they resulted in higher resting ICP, and histological and visual analysis showed evidence of a priapic-like condition. After electrostimulation of the cavernous nerve, rats had significantly better ICP/BP than the negative control (pVAX). Gene transfer of pVAX-hSlo increased the ICP/BP ratio to a similar extent to the opiorphin homologues, but with no evidence for a priapic-like condition. Corpora cavernosa tissue samples obtained from men with ED, regardless of underlying causes, had significant down-regulation of both hSMR3A and ProL1. CONCLUSION All members of the human opiorphin family of genes can potentially modulate erectile physiology. Both hSMR3 and ProL1 are down-regulated in the corpora of men with ED, and therefore both genes can potentially act as markers of ED.
Collapse
Affiliation(s)
- Yuehong Tong
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | | | | |
Collapse
|
36
|
Tong Y, Tiplitsky SI, Tar M, Melman A, Davies KP. Transcription of G-protein coupled receptors in corporeal smooth muscle is regulated by the endogenous neutral endopeptidase inhibitor sialorphin. J Urol 2008; 180:760-6. [PMID: 18554633 PMCID: PMC2744426 DOI: 10.1016/j.juro.2008.03.187] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Indexed: 01/05/2023]
Abstract
PURPOSE Several reports suggest that the rat Vcsa1 gene is down-regulated in models of erectile dysfunction. The Vcsa protein product sialorphin is an endogenous neutral endopeptidase inhibitor and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated whether Vcsa1 down-regulation could result in an adaptive change in GPCR (G-protein coupled receptor) expression. MATERIALS AND METHODS Gene expression in cultured rat corporeal smooth muscle cells following treatment with siRNA directed against Vcsa1 or the neutral endopeptidase gene was analyzed using microarray and quantitative reverse transcriptase-polymerase chain reaction. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernous nerves. In that animal model we also investigated whether Vcsa1 down-regulation was accompanied by similar changes in gene expression in corporeal smooth muscle cells in which Vcsa1 was knocked down in vitro. RESULTS Microarray analysis and quantitative reverse transcriptase-polymerase chain reaction demonstrated that corporeal smooth muscle cells treated in vitro with siRNA against Vcsa1 resulted in GPCR up-regulation as a functional group. In contrast, treatment of corporeal smooth muscle cells that lowered neutral endopeptidase activity resulted in decreased GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on neutral endopeptidase. In animals with bilaterally transected cavernous nerves the decreased Vcsa1 expression is accompanied by increased GPCR expression in cavernous tissue. CONCLUSIONS These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression.
Collapse
Affiliation(s)
- Yuehong Tong
- Department of Urology and Institute of Smooth Muscle Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The potential clinical advantages of a gene transfer therapy-based approach to treatment of genitourinary smooth muscle-based disorders are several: potential single therapy for restoration of normal bladder or erectile function; eliminating the need for daily medication; use in combination with other therapies to reduce dose requirements and side effects; and development of mechanism-based, patient-specific treatment approaches. With the safe administration of hMax-K to men with erectile dysfunction in the first human phase 1 trial and the initiation of the phase 1 trial of hMaxi-K for patients who have detrusor overactivity, we have entered an exciting new era in the development of safe enduring therapies for genitourinary disorders.
Collapse
|
38
|
Tong Y, Tar M, Monrose V, DiSanto M, Melman A, Davies KP. hSMR3A as a marker for patients with erectile dysfunction. J Urol 2007; 178:338-43. [PMID: 17512016 PMCID: PMC2094360 DOI: 10.1016/j.juro.2007.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Indexed: 11/23/2022]
Abstract
PURPOSE We recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in 3 distinct models of erectile dysfunction. Since gene transfer of plasmids expressing Vcsa1 or intracorporeal injection of its mature peptide product sialorphin into the corpora of aging rats was shown to restore erectile function, we proposed that the Vcsa1 gene has a direct role in erectile function. To determine if similar changes in gene expression occur in the corpora of human subjects with erectile dysfunction we identified a human homologue of Vcsa1 (hSMR3A) and determined the level of expression of hSMR3A in patients. MATERIALS AND METHODS hSMR3A was identified as a homologue of Vcsa1 by searching protein databases for proteins with similarity. hSMR3A cDNA was generated and subcloned into the plasmid pVAX to generate pVAX-hSMR3A. pVAX-hSMR3A (25 or 100 microg) was intracorporeally injected into aging rats. The effect on erectile physiology was compared histologically and by measuring intracorporeal pressure/blood pressure with controls treated with the empty plasmid pVAX. Total RNA was extracted from human corporeal tissue obtained from patients undergoing previously scheduled penile surgery. Patients were grouped according to normal erectile function (3), erectile dysfunction and diabetes (5) and patients without diabetes but with erectile dysfunction (5). Quantitative reverse-transcriptase polymerase chain reaction was used to determine the hSMR3A expression level. RESULTS Intracorporeal injection of 25 microg pVAX-hSMR3A was able to significantly increase the intracorporeal pressure-to-blood pressure ratio in aging rats compared to age matched controls. Higher amounts (100 microg) of gene transfer of the plasmid caused less of an improvement in the intracorporeal pressure-to-blood pressure ratio compared to controls, although there was histological and visual evidence that the animals were post-priapitic. These physiological effects were similar to previously reported effects of intracorporeal injection of pVAX-Vcsa1 into the corpora of aging rats, establishing hSMR3A as a functional homologue of Vcsa1. More than 10-fold down-regulation in hSMR3A transcript expression was observed in the corpora of patients with vs without erectile dysfunction. In patients with diabetes associated and nondiabetes associated erectile dysfunction hSMR3A expression was found to be down-regulated. CONCLUSIONS These results suggest that hSMR3A can act as a marker for erectile dysfunction associated with diabetic and nondiabetic etiologies. Given that our previous studies demonstrated that gene transfer of the Vcsa1 gene and intracorporeal injection of its protein product in rats can restore erectile function, these results suggest that therapies that increase the hSMR3A gene and product expression could potentially have a positive impact on erectile function.
Collapse
Affiliation(s)
- Yuehong Tong
- From the Institute of Smooth Muscle Biology, Department of Urology, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Moses Tar
- From the Institute of Smooth Muscle Biology, Department of Urology, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Val Monrose
- From the Institute of Smooth Muscle Biology, Department of Urology, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Michael DiSanto
- From the Institute of Smooth Muscle Biology, Department of Urology, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Arnold Melman
- From the Institute of Smooth Muscle Biology, Department of Urology, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Kelvin P. Davies
- From the Institute of Smooth Muscle Biology, Department of Urology, Albert Einstein College of Medicine, Bronx, New York, New York
| |
Collapse
|
39
|
Xing DG, Huang X, Li CH, Li XL, Piao LH, Gao L, Zhang Y, Kim YC, Xu WX. Muscarinic activity modulated by C-type natriuretic peptide in gastric smooth muscles of guinea-pig stomach. ACTA ACUST UNITED AC 2007; 143:83-9. [PMID: 17466389 DOI: 10.1016/j.regpep.2007.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 03/16/2007] [Accepted: 03/18/2007] [Indexed: 02/07/2023]
Abstract
Natriuretic peptides (NPs) are a cyclic guanosine monophosphate (cGMP) generation system like nitric oxide (NO) and play an inhibitory regulation in gastrointestinal motility but the effect of NPs on muscarinic activity is still unclear. This study was designed to investigate effect of C-type natriuretic peptide (CNP) on muscarinic control of gastric motility and its ion channel mechanism. The spontaneous contraction of gastric smooth muscle strip was recorded by using physiograph in guinea-pig. Membrane currents and potential were recorded by using whole-cell patch-clamp technique. CNP significantly inhibited muscarinic M receptor agonist carbachol (Cch)-induced contractions of gastric smooth muscle strips and dramatically hyperpolarized Cch-induced depolarization of membrane potential in gastric single smooth muscle cell. Muscarinic currents induced by both Cch and GTPgammaS, a G-protein agonist were significantly suppressed by CNP. 8-Br-cGMP mimicked the effect of CNP on Cch-induced muscarinic currents, and the peak holding current was decreased from -200.66+/-54.35 pA of control to -67.35+/-24.82 pA. LY83583, a guanylate cyclase nonspecific inhibitor, significantly weakened the inhibitory effect of CNP on muscarinic current while zaprinast, a cGMP sensitive phosphoesterase inhibitor, potentiated the inhibitory effect of CNP on muscarinic current. cGMP production was dramatically enhanced by CNP and this effect was suppressed by LY83583 in gastric smooth muscle. These results suggest that CNP modulates muscarinic activity via CNP-NPR-particulate guanylate cyclase (pGC)-cGMP pathway in guinea-pig.
Collapse
Affiliation(s)
- De-gang Xing
- Department of Physiology, Shanghai Jiaotong University College of Medicine, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Catherine Rougeot
- Laboratoire de Pharmacologie des régulations neuroendocrines, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|