1
|
Yanar S, Bal Albayrak MG, Kasap M, Akpinar G. From Androgen Dependence to Independence in Prostate Cancer: Unraveling Therapeutic Potential and Proteomic Landscape of Hydroxychloroquine as an Autophagy Inhibitor. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:246-255. [PMID: 38722704 DOI: 10.1089/omi.2024.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Prostate cancer is a major planetary health challenge wherein new ways of thinking drug discovery and therapeutics innovation are much needed. Numerous studies have shown that autophagy inhibition holds a significant role as an adjunctive intervention in prostate cancer. Hydroxychloroquine (HCQ) has gained considerable attention due to its established role as an autophagy inhibitor across diverse cancer types, but its proteomics landscape and systems biology in prostate cancer are currently lacking in the literature. This study reports the proteomic responses to HCQ in prostate cancer cells, namely, androgen-dependent LNCaP and androgen-independent PC3 cells. Differentially expressed proteins and proteome in HCQ-treated cells were determined by label-free quantification with nano-high-performance liquid chromatography and tandem mass spectrometry (nHPLC-MS/MS), and harnessing bioinformatics tools. In PC3 cells, there was a marked shift toward metabolic reprogramming, highlighted by an upregulation of mitochondrial proteins in oxidative phosphorylation and tricarboxylic acid cycle, suggesting an adaptive mechanism to maintain energy production under therapeutic stress. In contrast, LNCaP cells prioritized proteostasis and cell cycle regulation, indicating a more conservative adaptation strategy. To the best of our knowledge, this study is the first to demonstrate the differential responses of prostate cancer cells to autophagy inhibition by HCQ, suggesting that a combination therapy approach, targeting distinct pathways in androgen-independent and androgen-dependent cells, could represent a promising treatment strategy. Moreover, the varied proteomic responses observed between these cell lines underscore the importance of personalized medicine in cancer therapy. Future translational and clinical research on HCQ and prostate cancer are called for.
Collapse
Affiliation(s)
- Sevinc Yanar
- Department of Histology and Embryology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | | | - Murat Kasap
- Department of Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| |
Collapse
|
2
|
Luo M, Ye L, Chang R, Ye Y, Zhang Z, Liu C, Li S, Jing Y, Ruan H, Zhang G, He Y, Liu Y, Xue Y, Chen X, Guo AY, Liu H, Han L. Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nat Commun 2022; 13:6345. [PMID: 36289218 PMCID: PMC9606020 DOI: 10.1038/s41467-022-33946-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/07/2022] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a major contributor to anti-cancer therapy resistance. Many efforts have been made to understand and overcome autophagy-mediated therapy resistance, but these efforts have been unsuccessful in clinical applications. In this study, we establish an autophagy signature to estimate tumor autophagy status. We then classify approximately 10,000 tumor samples across 33 cancer types from The Cancer Genome Atlas into autophagy score-high and autophagy score-low groups. We characterize the associations between multi-dimensional molecular features and tumor autophagy, and further analyse the effects of autophagy status on drug response. In contrast to the conventional view that the induction of autophagy serves as a key resistance mechanism during cancer therapy, our analysis reveals that autophagy induction may also sensitize cancer cells to anti-cancer drugs. We further experimentally validate this phenomenon for several anti-cancer drugs in vitro and in vivo, and reveal that autophagy inducers potentially sensitizes tumor cells to etoposide through downregulating the expression level of DDIT4. Our study provides a comprehensive landscape of molecular alterations associated with tumor autophagy and highlights an opportunity to leverage multi-omics analysis to utilize multiple drug sensitivity induced by autophagy.
Collapse
Affiliation(s)
- Mei Luo
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lin Ye
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruimin Chang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Chunjie Liu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shengli Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Guanxiong Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaoming Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yu Xue
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hong Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
3
|
Loizzo D, Pandolfo SD, Rogers D, Cerrato C, di Meo NA, Autorino R, Mirone V, Ferro M, Porta C, Stella A, Bizzoca C, Vincenti L, Spilotros M, Rutigliano M, Battaglia M, Ditonno P, Lucarelli G. Novel Insights into Autophagy and Prostate Cancer: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23073826. [PMID: 35409187 PMCID: PMC8999129 DOI: 10.3390/ijms23073826] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Autophagy is a complex process involved in several cell activities, including tissue growth, differentiation, metabolic modulation, and cancer development. In prostate cancer, autophagy has a pivotal role in the regulation of apoptosis and disease progression. Several molecular pathways are involved, including PI3K/AKT/mTOR. However, depending on the cellular context, autophagy may play either a detrimental or a protective role in prostate cancer. For this purpose, current evidence has investigated how autophagy interacts within these complex interactions. In this article, we discuss novel findings about autophagic machinery in order to better understand the therapeutic response and the chemotherapy resistance of prostate cancer. Autophagic-modulation drugs have been employed in clinical trials to regulate autophagy, aiming to improve the response to chemotherapy or to anti-cancer treatments. Furthermore, the genetic signature of autophagy has been found to have a potential means to stratify prostate cancer aggressiveness. Unfortunately, stronger evidence is needed to better understand this field, and the application of these findings in clinical practice still remains poorly feasible.
Collapse
Affiliation(s)
- Davide Loizzo
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
- Division of Urology, Virginia Commonwealth University Health, Richmond, VA 23298, USA; (S.D.P.); (D.R.); (R.A.)
| | - Savio Domenico Pandolfo
- Division of Urology, Virginia Commonwealth University Health, Richmond, VA 23298, USA; (S.D.P.); (D.R.); (R.A.)
- Division of Urology, Università degli Studi di Napoli “Federico II”, 80100 Napoli, Italy;
| | - Devin Rogers
- Division of Urology, Virginia Commonwealth University Health, Richmond, VA 23298, USA; (S.D.P.); (D.R.); (R.A.)
| | - Clara Cerrato
- Department of Urology, University of California San Diego, La Jolla, CA 92037, USA;
| | - Nicola Antonio di Meo
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Riccardo Autorino
- Division of Urology, Virginia Commonwealth University Health, Richmond, VA 23298, USA; (S.D.P.); (D.R.); (R.A.)
| | - Vincenzo Mirone
- Division of Urology, Università degli Studi di Napoli “Federico II”, 80100 Napoli, Italy;
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy;
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy; (C.P.); (A.S.)
| | - Alessandro Stella
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy; (C.P.); (A.S.)
| | - Cinzia Bizzoca
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70124 Bari, Italy; (C.B.); (L.V.)
| | - Leonardo Vincenti
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70124 Bari, Italy; (C.B.); (L.V.)
| | - Marco Spilotros
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Monica Rutigliano
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Pasquale Ditonno
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation–Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (D.L.); (N.A.d.M.); (M.S.); (M.R.); (M.B.); (P.D.)
- Correspondence: or
| |
Collapse
|
4
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|
5
|
Ehsani M, David FO, Baniahmad A. Androgen Receptor-Dependent Mechanisms Mediating Drug Resistance in Prostate Cancer. Cancers (Basel) 2021; 13:1534. [PMID: 33810413 PMCID: PMC8037957 DOI: 10.3390/cancers13071534] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Androgen receptor (AR) is a main driver of prostate cancer (PCa) growth and progression as well as the key drug target. Appropriate PCa treatments differ depending on the stage of cancer at diagnosis. Although androgen deprivation therapy (ADT) of PCa is initially effective, eventually tumors develop resistance to the drug within 2-3 years of treatment onset leading to castration resistant PCa (CRPC). Castration resistance is usually mediated by reactivation of AR signaling. Eventually, PCa develops additional resistance towards treatment with AR antagonists that occur regularly, also mostly due to bypass mechanisms that activate AR signaling. This tumor evolution with selection upon therapy is presumably based on a high degree of tumor heterogenicity and plasticity that allows PCa cells to proliferate and develop adaptive signaling to the treatment and evolve pathways in therapy resistance, including resistance to chemotherapy. The therapy-resistant PCa phenotype is associated with more aggressiveness and increased metastatic ability. By far, drug resistance remains a major cause of PCa treatment failure and lethality. In this review, various acquired and intrinsic mechanisms that are AR‑dependent and contribute to PCa drug resistance will be discussed.
Collapse
Affiliation(s)
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany; (M.E.); (F.O.D.)
| |
Collapse
|
6
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
7
|
Lin C, Blessing AM, Pulliam TL, Shi Y, Wilkenfeld SR, Han JJ, Murray MM, Pham AH, Duong K, Brun SN, Shaw RJ, Ittmann MM, Frigo DE. Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling. Oncogene 2021; 40:1690-1705. [PMID: 33531625 PMCID: PMC7935762 DOI: 10.1038/s41388-021-01658-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023]
Abstract
Previous work has suggested androgen receptor (AR) signaling mediates prostate cancer progression in part through the modulation of autophagy. However, clinical trials testing autophagy inhibition using chloroquine derivatives in men with castration-resistant prostate cancer (CRPC) have yet to yield promising results, potentially due to the side effects of this class of compounds. We hypothesized that identification of the upstream activators of autophagy in prostate cancer could highlight alternative, context-dependent targets for blocking this important cellular process during disease progression. Here, we used molecular, genetic, and pharmacological approaches to elucidate an AR-mediated autophagy cascade involving Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2; a kinase with a restricted expression profile), 5'-AMP-activated protein kinase (AMPK), and Unc-51 like autophagy activating kinase 1 (ULK1), but independent of canonical mechanistic target of rapamycin (mTOR) activity. Increased CAMKK2-AMPK-ULK1 signaling correlated with disease progression in genetic mouse models and patient tumor samples. Importantly, CAMKK2 disruption impaired tumor growth and prolonged survival in multiple CRPC preclinical mouse models. Similarly, an inhibitor of AMPK-ULK1 blocked autophagy, cell growth, and colony formation in prostate cancer cells. Collectively, our findings converge to demonstrate that AR can co-opt the CAMKK2-AMPK-ULK1 signaling cascade to promote prostate cancer by increasing autophagy. Thus, this pathway may represent an alternative autophagic target in CRPC.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alicia M Blessing
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Yan Shi
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jenny J Han
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mollianne M Murray
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander H Pham
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Kevin Duong
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sonja N Brun
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael M Ittmann
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
8
|
Bungaro M, Buttigliero C, Tucci M. Overcoming the mechanisms of primary and acquired resistance to new generation hormonal therapies in advanced prostate cancer: focus on androgen receptor independent pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:726-741. [PMID: 35582226 PMCID: PMC8992570 DOI: 10.20517/cdr.2020.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/25/2022]
Abstract
In recent years, many therapeutic advances have been made in the management of castration-resistant prostate cancer, with the development and approval of many new drugs. The androgen receptor (AR) is the main driver in prostate cancer growth and progression and the most effective therapeutic agents are still directed against this pathway. Among these, new generation hormonal agents (NHA) including enzalutamide, abiraterone acetate, apalutamide, and darolutamide have shown to improve overall survival and quality of life of prostate cancer patients. Unfortunately, despite the demonstrated benefit, not all patients respond to treatment and almost all are destined to develop a resistant phenotype. Although the resistance mechanisms are not fully understood, the most studied ones include the activation of both dependent and independent AR signalling pathways. Recent findings about multiple growth-promoting and survival pathways in advanced prostate cancer suggest the presence of alternative mechanisms involved in disease progression, and an interplay between these pathways and AR signalling. In this review we discuss the possible mechanisms of primary and acquired resistance to NHA with a focus on AR independent pathways.
Collapse
Affiliation(s)
- Maristella Bungaro
- Medical Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Consuelo Buttigliero
- Medical Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Marcello Tucci
- Medical Oncology, Cardinal Massaia Hospital, Asti 14100, Italy
| |
Collapse
|
9
|
Qin X, Lu A, Ke M, Zhu W, Ye X, Wang G, Weng G. DJ-1 inhibits autophagy activity of prostate cancer cells by repressing JNK-Bcl2-Beclin1 signaling. Cell Biol Int 2020; 44:937-946. [PMID: 31868268 DOI: 10.1002/cbin.11290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Abstract
The regulation of DJ-1 on AR signaling plays an important role in the pathogenesis of prostate cancer (PCa). DJ-1 could alter autophagy and regulate Beclin1-involved autophagy response through JNK-dependent pathway. JNK is known to mediate autophagy through Bcl2-Beclin1 complex. Therefore, this study aimed to investigate the significance of autophagy in DJ-1-modulated PCa cells. The current studies showed that DJ-1 overexpression in LNCaP decreased LC3 transformation and autophagosome formation. However, DJ-1 knockdown exerted the opposite effect. Moreover, DJ-1 silencing inhibited survival and promoted death in LNCaP, which was recovered by autophagy inhibition with 3-MA. In addition, DJ-1 overexpression inhibited the phosphorylation of JNK and Bcl2, and the dissociation of Beclin1 and Bcl2; while the effect of silencing DJ-1 was completely opposite. More important, JNK activated by anisimycin inhibited the proliferation and promoted death of DJ-1-overexpressed LNCaP while increasing LC3 transformation and LC3-puncta formation, but these results were reversed by the decrease of Beclin1 (by spautin-1). In contrast, when DJ-1 was silenced, the death of LNCaP, LC3 transformation, and LC3-puncta formation were inhibited by JNK inhibitor SP600125, which promoted cell proliferation. However, Bcl2 inhibition (by ABT737) reversed all the effects of SP600125. Our results suggested that DJ-1 in PCa cells could promote the growth of PCa through autophagy inhibition, and JNK-Bcl2-Beclin1 signaling played an important role in it. The study provided new insights into the role of DJ-1 in the development of PCa.
Collapse
Affiliation(s)
- Xiangcheng Qin
- Department of Urology, Ningbo Urology & Nephrology Hospital, Ningbo, 315192, Zhejiang, China
| | - Aimei Lu
- Department of Ultrasonography, Ningbo Urology & Nephrology Hospital, Ningbo, 315192, Zhejiang, China
| | - Meilin Ke
- Operating Room, Ningbo Urology & Nephrology Hospital, Ningbo, 315192, Zhejiang, China
| | - Weizhi Zhu
- Department of Urology, Ningbo Urology & Nephrology Hospital, Ningbo, 315192, Zhejiang, China
| | - Xiaolei Ye
- Department of Cytobiology, Ningbo Institute of Medical Science, Ningbo, 315020, Zhejiang, China
| | - Gang Wang
- Department of Urology, Ningbo Urology & Nephrology Hospital, Ningbo, 315192, Zhejiang, China
| | - Guobin Weng
- Department of Urology, Ningbo Urology & Nephrology Hospital, Ningbo, 315192, Zhejiang, China
| |
Collapse
|
10
|
Jia J, Zhang HB, Shi Q, Yang C, Ma JB, Jin B, Wang X, He D, Guo P. KLF5 downregulation desensitizes castration-resistant prostate cancer cells to docetaxel by increasing BECN1 expression and inducing cell autophagy. Am J Cancer Res 2019; 9:5464-5477. [PMID: 31534497 PMCID: PMC6735397 DOI: 10.7150/thno.33282] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
KLF5 is frequently deleted or downregulated in prostate cancer. However, it is not known whether downregulation of KLF5 is associated with the response of prostate cancer cells to chemotherapy and/or prognosis of patients. Methods: We monitored cell growth by MTT and colony formation assays, and cell autophagy through tandem fluorescence microscopy and transmission electron microscopy. Gene expression was analyzed by RT-qPCR and Western blotting. We determined the binding of KLF5 together with HDAC3 on the beclin-1 (BECN1) promoter by the ChIP assay, oligonucleotides pulldown, and co-immunoprecipitation. The effect of docetaxel on cell growth in vivo was examined in a CWR22RV1 xenograft tumor mouse model. Results: In the present study, we found that KLF5 down-regulation was associated with progression of prostate cancer and poor prognosis of patients. KLF5 knockdown reduced the sensitivity of prostate cancer cells to docetaxel in vitro and in vivo, and docetaxel treatment decreased the expression of KLF5. Moreover, we confirmed that docetaxel treatment inhibited cell death by inducing autophagy in prostate cancer cells. Thus, we hypothesized that KLF5 could be a regulator of cell autophagy. Interestingly, KLF5 could inhibit prostate cancer cell autophagy by suppressing the transcription of BECN1 cooperatively with HDAC3. Another significant finding was that docetaxel treatment repressed KLF5 expression through AMPK/mTOR/p70S6K signaling pathway resulting in increased BECN1, induction of cell autophagy, and promotion of cell survival in castration-resistant prostate cancer cells. Conclusions: Our results indicated that downregulation of KLF5 promoted cell autophagy in prostate cancer. Furthermore, reduced KLF5 also facilitated cell autophagy induced by docetaxel resulting in desensitization to the drug and cell survival. Decreased levels of KLF5 led to increased BECN1 via AMPK/mTOR/p70S6K signaling. Thus, repression of BECN1 and cell autophagy was critical for KLF5 to increase the sensitivity of prostate cancer cells to docetaxel.
Collapse
|
11
|
Kranzbühler B, Salemi S, Mortezavi A, Sulser T, Eberli D. Combined N-terminal androgen receptor and autophagy inhibition increases the antitumor effect in enzalutamide sensitive and enzalutamide resistant prostate cancer cells. Prostate 2019; 79:206-214. [PMID: 30345525 DOI: 10.1002/pros.23725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/25/2018] [Indexed: 11/12/2022]
Abstract
INTRODUCTION AND OBJECTIVES Multiple androgen receptor (AR)-dependent and -independent resistance mechanisms limit the efficacy of current castration-resistant prostate cancer (CRPC) treatment. Novel N-terminal domain (NTD) binding AR-targeting compounds, including EPI-001 (EPI), have the promising ability to block constitutively active splice variants, which represent a major resistance mechanism in CRPC. Autophagy is a conserved lysosomal degradation pathway that acts as survival mechanism in cells exposed to anticancer treatments. We hypothesized, that promising NTD-AR treatment may upregulate autophagy and that a combination of NTD-AR and autophagy inhibition might therefore increase antitumor effects. METHODS AR-expressing prostate cancer cell lines (LNCaP, LNCaP-EnzR) were treated with different concentrations of EPI (10, 25, 50 μM) and in combination with the autophagy inhibitors chloroquine (CHQ, 20 μM) or 3-methyladenine (3-MA, 5 mM). Cell proliferation was assessed by WST-1-assays after 1 and 7 days. Ethidium bromide and Annexin V were used to measure viability and apoptosis on day 7 after treatment. Autophagosome formation was detected by AUTOdot staining. In addition, autophagic activity was monitored by immunocytochemistry and Western blot (WES) for the expression of ATG5, Beclin1, LC3-I/II and p62. RESULTS Treatment with EPI resulted in a dose-dependent reduction of cell growth and increased apoptosis in both cancer cell lines on day 7. In addition, EPI treatment demonstrated an upregulated autophagosome formation in LNCaP and LNCaP-EnzR cells. Assessment of autophagic activity by immunocytochemistry and WES revealed an increase of ATG5 and LC3-II expression and a decreased p62 expression in all EPI-treated cells. A combined treatment of EPI with autophagy inhibitors led to a further significant reduction of cell viability in both cell lines. CONCLUSIONS Our results demonstrate that NTD targeting AR inhibition using EPI leads to an increased autophagic activity in LNCaP and LNCaP-EnzR prostate cancer cells. A combination of NTD AR blockage with simultaneous autophagy inhibition increases the antitumor effect of EPI in prostate cancer cells. Double treatment may offer a promising strategy to overcome resistance mechanisms in advanced prostate cancer.
Collapse
Affiliation(s)
- Benedikt Kranzbühler
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Souzan Salemi
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ashkan Mortezavi
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Tullio Sulser
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Ricci M, Frantellizzi V, Bulzonetti N, De Vincentis G. Reversibility of castration resistance status after Radium-223 dichloride treatment: clinical evidence and review of the literature. Int J Radiat Biol 2019; 95:554-561. [PMID: 30557063 DOI: 10.1080/09553002.2019.1558301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the history of prostate cancer, some of the patients progressed to castration-resistant prostate cancer (CRPC) stage and, although new drugs and treatment protocols have been introduced, CRPC presents poor prognosis. This review is focused on biological mechanisms, underlying CRPC described in scientific literature in order to explain the reversion of resistance to castration. We present the case of a 73-year-old man, affected by bone metastatic CRPC, early treated with Radium-223 with a complete response. After 15 months from Radium-223 treatment, prostate-specific antigen increased with radiological progression. Androgen deprivation therapy was again performed and was effective, despite previous CRPC condition and no known mechanisms that may explain the reversion of this condition. Therefore, to our knowledge, he is the unique described case of the reversion of resistance to castration. Nevertheless, promising aspects may be lack of intrametastatic production of androgen or the suppression of bypass androgen receptor signaling pathways. Furthermore, the cytotoxic action of Radium-223 on cancer stem cell (CSC), due to surrounding clones with high-bone turnover, or the immune response that underlying the abscopal effect, may also modulate the reversion of CRPC after Radium-223. If confirmed by multicenter trials, the reversion of CRPC may impact on the management of prostate cancer.
Collapse
Affiliation(s)
- Maria Ricci
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy
| | - Viviana Frantellizzi
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy.,b PhD Program: Angio-Cardio-Thoracic Pathophisiology and Imaging , "Sapienza" University of Rome , Rome , Italy
| | - Nadia Bulzonetti
- c Department of Radiotherapy , Policlinico Umberto I, Sapienza University of Rome , Rome , Italy
| | - Giuseppe De Vincentis
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
13
|
Chen Z, Jiang Q, Zhu P, Chen Y, Xie X, Du Z, Jiang L, Tang W. NPRL2 enhances autophagy and the resistance to Everolimus in castration-resistant prostate cancer. Prostate 2019; 79:44-53. [PMID: 30178500 DOI: 10.1002/pros.23709] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/01/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nitrogen permease regulator-like 2 (NPRL2) is reported to be a tumor suppressor candidate gene and involved in the mTOR signaling and drug resistance in several cancers. However, the role of NPRL2 in regulating the resistance to Everolimus (EVS), an inhibitor of the mTOR, in castration-resistant prostate cancer (CRPC) is still unclear. Therefore, in present study, we evaluated the role of NPRL2 and its potential resistance to EVS in CRPC. METHODS NPRL2 expression levels in prostate tissues, including benign prostate hyperplasia (BPH) tissues, primary prostate cancer (PCa) tissues, CRPC tissues, and several PCa cell lines (LNCaP, PC3, and enzalutamide-resistant LNCaP, named LNPER) were be evaluated by immunohistochemistry, RT-PCR, and Western blot. Furthermore, we employed the loss or gain function of NPRL2 to determine the role of NPRL2 in regulating the proliferation, sensitivity to EVS, the mTOR signaling, autophagy in CRPC. Lastly, relationship between NPRL2 expression level and the efficacy of EVS were evaluated in mice tumor xenograft models. RESULTS NPRL2 expression level is upregulated in PCa, particularly in the CRPC. NPRL2 over-expression promoted the proliferation, resistance to EVS, and NPRL2 silencing inhibited proliferation, enhanced sensitivity to EVS in PC3 and LNPER cells. Moreover, NPRL2-silencing increased the activity of mTOR signaling, and the autophagy attenuation induced by NPRL2-silencing in EVS-treated CRPC cells was associated with the increase of apoptosis. In addition, the growth prevention of NPRL2-silencing LNPER tumors in mice induced by EVS-treatment was associated with the autophagy attenuation and apoptosis increase. CONCLUSIONS NPRL2 may act as a pro-growth factor in PCa. The high levels of NPRL2 expression in CRPC promote resistance to EVS by enhancing autophagy. NPRL2 may be a new therapeutic target for intervention of CRPC and a biomarker for predicting resistance to EVS in CRPC.
Collapse
Affiliation(s)
- Zhixiong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qilong Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Pingyu Zhu
- Department of Urology, The Affiliated Hospital of North Sichuan Medical College,, Nanchong, P. R. China
| | - Yanlin Chen
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xuemei Xie
- Molecular and Pathological Diagnosis Center, Chongqing Medical University, Chongqing, P. R. China
| | - Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Wei Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
14
|
Tucci M, Zichi C, Buttigliero C, Vignani F, Scagliotti GV, Di Maio M. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther 2018; 11:7353-7368. [PMID: 30425524 PMCID: PMC6204864 DOI: 10.2147/ott.s153764] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The new-generation hormonal agent enzalutamide has been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC), in both post- and predocetaxel setting, due to the significant improvement in overall survival. More recently, enzalutamide also showed impressive results in the treatment of men with nonmetastatic CRPC. Unfortunately, not all patients with CRPC are responsive to enzalutamide, and even in responders, benefits are limited by the development of drug resistance. Adaptive resistance of metastatic prostate cancer to enzalutamide treatment can be due to the activation of both androgen receptor (AR)-dependent pathways (expression of constitutively active AR splice variants, AR point mutations, gene amplification and overexpression) and mechanisms independent of AR signaling pathway (altered steroidogenesis, upregulation of the glucocorticoid receptor, epithelial–mesenchymal transition, neuroendocrine transformation, autophagy and activation of the immune system). In this review, we focus on resistance mechanisms to enzalutamide, exploring how we could overcome them through novel therapeutic options.
Collapse
Affiliation(s)
- Marcello Tucci
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Clizia Zichi
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Consuelo Buttigliero
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Francesca Vignani
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| | - Giorgio V Scagliotti
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Massimo Di Maio
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| |
Collapse
|
15
|
Xu Y, Cai X, Zong B, Feng R, Ji Y, Chen G, Li Z. Qianlie Xiaozheng Decoction Induces Autophagy in Human Prostate Cancer Cells via Inhibition of the Akt/mTOR Pathway. Front Pharmacol 2018; 9:234. [PMID: 29670523 PMCID: PMC5893804 DOI: 10.3389/fphar.2018.00234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Qianlie Xiaozheng decoction (QLXZD), a traditional Chinese medicinal formula, has been used clinically to treat advanced prostate cancer (PCa) for more than 10 years. However, experimental evidence supporting its efficacy is lacking. Here, we investigated the anticancer properties and molecular mechanism of QLXZD in vitro in a human PCa cell line (PC3) and in vivo using PC3 xenografts in nude mice. We confirmed the antineoplastic activity of QLXZD by analyzing cell viability and tumor volume growth, which decreased significantly compared to that of the controls. Autophagy following QLXZD treatment was detected morphologically using transmission electron microscopy and was confirmed by measuring the expression of autophagy markers (LC3-II and p62) using fluorescence analysis, flow cytometry, and western blotting. Increasing autophagic flux induced by QLXZD was monitored via pmCherry-GFP-LC3 fluorescence analysis. QLXZD-induced autophagic cell death was alleviated by the autophagy inhibitors, 3-methyl adenine and hydroxychloroquine. We evaluated the total expression and phosphorylation levels of proteins involved in the Akt/mTOR pathway regulating autophagy. Phosphorylation of Akt, mTOR, and p70S6K, but not total protein levels, decreased following treatment. This is the first study to demonstrate the autophagy-related mechanistic pathways utilized during QLXZD-mediated antitumor activity both in vitro and in vivo. These findings support the clinical use of QLXZD for PCa treatment.
Collapse
Affiliation(s)
- Yuehua Xu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Bin Zong
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China
| | - Rui Feng
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China
| | - Yali Ji
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhongxing Li
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China
| |
Collapse
|
16
|
Huang Y, Jiang X, Liang X, Jiang G. Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett 2018; 15:6063-6076. [PMID: 29616091 PMCID: PMC5876469 DOI: 10.3892/ol.2018.8123] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
With increases in the mortality rate and number of patients with prostate cancer (PCa), PCa, particularly the advanced and metastatic disease, has been the focus of a number of studies globally. Over the past seven decades, androgen deprivation therapy has been the primary therapeutic option for patients with advanced PCa; however, the majority of patients developed a poor prognosis stage of castration resistant prostate cancer (CRPC), which eventually led to mortality. Due to CRPC being incurable, laboratory investigations and clinical studies focusing on CRPC have been conducted worldwide. Clarification of the molecular pathways that may lead to CRPC is important for discovering novel therapeutic strategies to delay or reverse the progression of disease. A sustained androgen receptor (AR) signal is still regarded as the main cause of CRPC. Increasing number of studies have proposed different potential mechanisms that cause CRPC, and this has led to the development of novel agents targeting the AR-dependent pathway or AR-independent signaling. In the present review, the major underlying mechanisms causing CRPC, including several major categories of AR-dependent mechanisms, AR bypass signaling, AR-independent mechanisms and other important hypotheses (including the functions of autophagy, PCa stem cell and microRNAs in CRPC progression), are summarized with retrospective pre-clinical or clinical trials to guide future research and therapy.
Collapse
Affiliation(s)
- Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xue Liang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
17
|
Aguirre-Hernández C, Maya-Pineda H, Millán JS, Man YKS, Lu YJ, Halldén G. Sensitisation to mitoxantrone-induced apoptosis by the oncolytic adenovirus Ad∆∆ through Bcl-2-dependent attenuation of autophagy. Oncogenesis 2018; 7:6. [PMID: 29362360 PMCID: PMC5833340 DOI: 10.1038/s41389-017-0020-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 01/29/2023] Open
Abstract
Anti-apoptotic Bcl-2 is frequently activated in human malignant cells to promote cell survival and inhibit cell death. Replication-selective oncolytic adenoviruses deleted in the functional Bcl-2 homologue E1B19K potently synergise with apoptosis-inducing chemotherapeutic drugs, including mitoxantrone for prostate cancer. Here, we demonstrate that our previously generated oncolytic mutant Ad∆∆ (E1B19K- and E1ACR2-deleted) caused potent synergistic apoptotic cell death in both drug-sensitive 22Rv1, and drug-insensitive PC3 and PC3M prostate cancer cells. The synergistic cell killing was dependent on Bcl-2 expression and was prevented by Bcl-2 knockdown, which led to activation of the autophagy pathway. Mitoxantrone-induced autophagy, which was decreased in combination with Ad∆∆-infection resulting in increased apoptosis. Expression of the viral E1A12S protein alone mimicked the synergistic effects with Ad∆∆ in combination with mitoxantrone while intact wild-type virus (Ad5) had no effect. Early and late-stage inhibition of autophagy by Atg7 knockdown and chloroquine respectively, promoted apoptotic cell killing with mitoxantrone similar to Ad∆∆. These findings revealed currently unexplored actions of E1B19K-deleted oncolytic adenoviruses and the central role of Bcl-2 in the synergistic cell killing. This study suggests that cancers with functional Bcl-2 expression may be selectively re-sensitised to drugs by Ad∆∆.
Collapse
Affiliation(s)
- Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Héctor Maya-Pineda
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Julia San Millán
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Y K Stella Man
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
18
|
Ling Z, Liu D, Zhang G, Liang Q, Xiang P, Xu Y, Han C, Tao T. miR-361-5p modulates metabolism and autophagy via the Sp1-mediated regulation of PKM2 in prostate cancer. Oncol Rep 2017; 38:1621-1628. [PMID: 29094170 DOI: 10.3892/or.2017.5852] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of death among men. The dysregulation of metabolism and autophagy contributes to the progression of PCa. The transcription factor specificity protein 1 (Sp1) is implicated in the regulation of metabolism and autophagy. We confirmed that Sp1 is overexpressed in castration-resistant prostate cancer (CRPC) cells. However, the roles of Sp1 in PCa metabolism and autophagy remain unclear. Thus, in the present study, we retrieved the GSE35988 dataset from Gene Expression Omnibus (GEO) database to reinvestigate Sp1 expression and its role in PCa.We found that in PCa, Sp1 knockdown significantly inhibited cell growth, aerobic glycolysis, and hypoxia-induced autophagy, which were accompanied by an increased G1 cell cycle arrest. Pearson correlation indicated that pyruvate kinase isoenzyme type M2 (PKM2) is positively correlated with Sp1 expression. Western blot analysis demonstrated that Sp1 directly regulates PKM2; therefore, Sp1 modulates metabolism and autophagy in CRPC. Western blot analysis and luciferase reporter assay also indicated that the tumor suppressor miR-361-5p inversely regulates Sp1 by directly targeting the binding site in the 3'UTR of Sp1. miR-361-5p overexpression presented effects that are similar to Sp1 depletion in PCa. In summary, this study is the first to demonstrate that miR-361-5p suppresses the Sp1/PKM2 axis, consequently affecting the progression of PCa and the metabolism and autophagy of PCa cells. Therefore, targeting the miR-361-5p/Sp1/PKM2 pathway has considerable clinical significance in preventing the malignant progression of PCa.
Collapse
Affiliation(s)
- Zhixin Ling
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dachuang Liu
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Qing Liang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Ping Xiang
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yan Xu
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Tao Tao
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
19
|
Zhu X, Zhou M, Liu G, Huang X, He W, Gou X, Jiang T. Autophagy activated by the c-Jun N-terminal kinase-mediated pathway protects human prostate cancer PC3 cells from celecoxib-induced apoptosis. Exp Ther Med 2017; 13:2348-2354. [PMID: 28565848 PMCID: PMC5443255 DOI: 10.3892/etm.2017.4287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/03/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to investigate the role of autophagy in celecoxib-induced apoptosis in human hormone-insensitive prostate cancer cell line PC3 cells and to explore the underlying molecular mechanism leading to autophagic activation. A cell viability assay was applied to investigate the effect of various concentrations of celecoxib (0, 40, 60, 80, 100 and 120 µmol/l) on PC3 cells for 24 and 48 h, respectively. The 50% inhibitory concentration of celecoxib for 24 h was chosen for subsequent experiments. Annexin V-fluorescein isothiocyanate/propidium iodide double staining flow cytometry, as well as caspase 3 and poly (ADP-ribose) polymerase proteins detected by western blotting, were applied to analyze cellular apoptosis induced by celecoxib. Ultrastructural cellular changes observed by transmission electron microscopy and the level of LC-3 II and P62 detected by western blotting were used to determine the activation of autophagy. It was demonstrated that celecoxib induced apoptosis and activated autophagy in PC3 cells in a dose- and time-dependent manner. Furthermore, flow cytometry and western blotting were applied to elucidate whether the role of autophagy in celecoxib-induced apoptosis is protective or destructive. Blockade of autophagy markedly increased apoptosis, suggesting that celecoxib-activated autophagy was cytoprotective. Additionally, c-jun-N-terminal kinase (JNK) was demonstrated to have a role in autophagic activation, and suppression of JNK was able to reduce autophagy and increase apoptosis. In conclusion, the results of the present study indicate that celecoxib induces apoptosis in PC3 cells; however, celecoxib also activates JNK-mediated autophagy, which exerts cytoprotective effects in prostate cancer PC3 cells. Blockade of autophagy via the JNK-mediated pathway may provide a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mi Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guanyu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaolong Huang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
20
|
Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 2016; 4:365-80. [PMID: 26814148 PMCID: PMC4708226 DOI: 10.3978/j.issn.2223-4683.2015.05.02] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite advances in prostate cancer diagnosis and management, morbidity from prostate cancer remains high. Approximately 20% of men present with advanced or metastatic disease, while 29,000 men continue to die of prostate cancer each year. Androgen deprivation therapy (ADT) has been the standard of care for initial management of advanced or metastatic prostate cancer since Huggins and Hodges first introduced the concept of androgen-dependence in 1972, but progression to castration-resistant prostate cancer (CRPC) occurs within 2-3 years of initiation of ADT. CRPC, previously defined as hormone-refractory prostate cancer, is now understood to still be androgen dependent. Multiple mechanisms of resistance help contribute to the progression to castration resistant disease, and the androgen receptor (AR) remains an important driver in this progression. These mechanisms include AR amplification and hypersensitivity, AR mutations leading to promiscuity, mutations in coactivators/corepressors, androgen-independent AR activation, and intratumoral and alternative androgen production. More recently, identification of AR variants (ARVs) has been established as another mechanism of progression to CRPC. Docetaxel chemotherapy has historically been the first-line treatment for CRPC, but in recent years, newer agents have been introduced that target some of these mechanisms of resistance, thereby providing additional survival benefit. These include AR signaling inhibitors such as enzalutamide (Xtandi, ENZA, MDV-3100) and CYP17A1 inhibitors such as abiraterone acetate (Zytiga). Ultimately, these agents will also fail to suppress CRPC. While some of the mechanisms by which these agents fail are unique, many share similarities to the mechanisms contributing to CRPC progression. Understanding these mechanisms of resistance to ADT and currently approved CRPC treatments will help guide future research into targeted therapies.
Collapse
Affiliation(s)
| | - Joy C Yang
- Department of Urology, University of California, Davis, CA, USA
| | - Allen C Gao
- Department of Urology, University of California, Davis, CA, USA
| | | |
Collapse
|
21
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 605] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
22
|
Chandrasekar T, Yang JC, Gao AC, Evans CP. Targeting molecular resistance in castration-resistant prostate cancer. BMC Med 2015; 13:206. [PMID: 26329698 PMCID: PMC4556222 DOI: 10.1186/s12916-015-0457-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple mechanisms of resistance contribute to the inevitable progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). Currently approved therapies for CRPC include systemic chemotherapy (docetaxel and cabazitaxel) and agents targeting the resistance pathways leading to CRPC, including enzalutamide and abiraterone. While there is significant survival benefit, primary and secondary resistance to these therapies develops rapidly. Up to one-third of patients have primary resistance to enzalutamide and abiraterone; the remaining patients eventually progress on treatment. Understanding the mechanisms of resistance resulting in progression as well as identifying new targetable pathways remains the focus of current prostate cancer research. We review current knowledge of mechanisms of resistance to the currently approved treatments, development of adjunctive therapies, and identification of new pathways being targeted for therapeutic purposes.
Collapse
Affiliation(s)
| | - Joy C Yang
- Department of Urology, University of California, Davis, USA.
| | - Allen C Gao
- Department of Urology, University of California, Davis, USA.
| | - Christopher P Evans
- Department of Urology, University of California, Davis, USA. .,, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
23
|
Buttigliero C, Tucci M, Bertaglia V, Vignani F, Bironzo P, Di Maio M, Scagliotti GV. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat Rev 2015; 41:884-92. [PMID: 26342718 DOI: 10.1016/j.ctrv.2015.08.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/16/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023]
Abstract
In recent years, in castration resistant prostate cancer (CRPC), several new drugs have been approved that prolong overall survival, including enzalutamide and abiraterone, two new-generation hormonal therapies. Despite the demonstrated benefit of these agents, not all patients with CRPC are responsive to treatment, the gain in median progression-free survival with these therapies compared to standard of care is, rather disappointingly, still less than six months and the appearance of acquired resistance is almost universal. Approximately one third of patients treated with abiraterone and 25% of those treated with enzalutamide show primary resistance to these agents. Even if the mechanisms of resistance to these agents are not fully defined, many hypotheses are emerging, including systemic and intratumoral androgen biosynthesis up-regulation, androgen receptor (AR) gene mutations and amplifications, alteration of pathways involved in cross-talk with AR signaling, glucocorticoid receptor overexpression, neuroendocrine differentiation, immune system deregulation and others. The aim of this paper is to review currently available data about mechanisms of resistance to abiraterone and enzalutamide, and to discuss how these mechanisms could be potentially overcome through novel therapeutic agents.
Collapse
Affiliation(s)
- Consuelo Buttigliero
- Department of Oncology, Medical Oncology, University of Turin at San Luigi Hospital, Orbassano, Italy.
| | - Marcello Tucci
- Department of Oncology, Medical Oncology, University of Turin at San Luigi Hospital, Orbassano, Italy
| | - Valentina Bertaglia
- Department of Oncology, Medical Oncology, University of Turin at San Luigi Hospital, Orbassano, Italy
| | - Francesca Vignani
- Department of Oncology, Medical Oncology, University of Turin at San Luigi Hospital, Orbassano, Italy
| | - Paolo Bironzo
- Department of Oncology, Medical Oncology, University of Turin at San Luigi Hospital, Orbassano, Italy
| | - Massimo Di Maio
- Department of Oncology, Medical Oncology, University of Turin at San Luigi Hospital, Orbassano, Italy
| | | |
Collapse
|
24
|
Rajan P, Stockley J, Sudbery IM, Fleming JT, Hedley A, Kalna G, Sims D, Ponting CP, Heger A, Robson CN, McMenemin RM, Pedley ID, Leung HY. Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer. BMC Cancer 2014; 14:977. [PMID: 25519703 PMCID: PMC4301544 DOI: 10.1186/1471-2407-14-977] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although chemotherapy for prostate cancer (PCa) can improve patient survival, some tumours are chemo-resistant. Tumour molecular profiles may help identify the mechanisms of drug action and identify potential prognostic biomarkers. We performed in vivo transcriptome profiling of pre- and post-treatment prostatic biopsies from patients with advanced hormone-naive prostate cancer treated with docetaxel chemotherapy and androgen deprivation therapy (ADT) with an aim to identify the mechanisms of drug action and identify prognostic biomarkers. METHODS RNA sequencing (RNA-Seq) was performed on biopsies from four patients before and ~22 weeks after docetaxel and ADT initiation. Gene fusion products and differentially-regulated genes between treatment pairs were identified using TopHat and pathway enrichment analyses undertaken. Publically available datasets were interrogated to perform survival analyses on the gene signatures identified using cBioportal. RESULTS A number of genomic rearrangements were identified including the TMPRSS2/ERG fusion and 3 novel gene fusions involving the ETS family of transcription factors in patients, both pre and post chemotherapy. In total, gene expression analyses showed differential expression of at least 2 fold in 575 genes in post-chemotherapy biopsies. Of these, pathway analyses identified a panel of 7 genes (ADAM7, FAM72B, BUB1B, CCNB1, CCNB2, TTK, CDK1), including a cell cycle-related geneset, that were differentially-regulated following treatment with docetaxel and ADT. Using cBioportal to interrogate the MSKCC-Prostate Oncogenome Project dataset we observed a statistically-significant reduction in disease-free survival of patients with tumours exhibiting alterations in gene expression of the above panel of 7 genes (p = 0.015). CONCLUSIONS Here we report on the first "real-time" in vivo RNA-Seq-based transcriptome analysis of clinical PCa from pre- and post-treatment TRUSS-guided biopsies of patients treated with docetaxel chemotherapy plus ADT. We identify a chemotherapy-driven PCa transcriptome profile which includes the down-regulation of important positive regulators of cell cycle progression. A 7 gene signature biomarker panel has also been identified in high-risk prostate cancer patients to be of prognostic value. Future prospective study is warranted to evaluate the clinical value of this panel.
Collapse
Affiliation(s)
- Prabhakar Rajan
- />Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jacqueline Stockley
- />Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | - David Sims
- />MRC Functional Genomics Unit, Oxford, UK
| | | | | | | | - Rhona M McMenemin
- />Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Ian D Pedley
- />Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Hing Y Leung
- />Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, G61 1BD UK
| |
Collapse
|
25
|
Abstract
Autophagy, or 'self-eating', is an adaptive process that enables cells to cope with metabolic, toxic, and even infectious stressors. Although the adaptive capability of autophagy is generally considered beneficial, autophagy can also enhance nutrient utilization and improve growth characteristics of cancer cells. Moreover, autophagy can promote greater cellular robustness in the context of therapeutic intervention. In advanced prostate cancer, preclinical data provide evidence that autophagy facilitates both disease progression and therapeutic resistance. Notably, androgen deprivation therapy, taxane-based chemotherapy, targeted kinase inhibition, and nutrient restriction all induce significant cellular distress and, subsequently, autophagy. Understanding the context-dependent role of autophagy in cancer development and treatment resistance has the potential to improve current treatment of advanced prostate cancer. Indeed, preclinical studies have shown that the pharmacological inhibition of autophagy (with agents including chloroquine, hydroxychloroquine, metformin, and desmethylclomipramine) can enhance the cell-killing effect of cancer therapeutics, and a number of these agents are currently under investigation in clinical trials. However, many of these autophagy modulators are relatively nonspecific, and cytotoxicity in noncancerous tissues is still a concern. Moving forward, refinement of autophagy modulation is needed.
Collapse
|
26
|
Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PN, DeVere White RW, Gao AC, Evans CP. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene 2014; 33:4521-30. [PMID: 24662833 PMCID: PMC4155805 DOI: 10.1038/onc.2014.25] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 01/07/2023]
Abstract
Macro-autophagy is associated with drug resistance in various cancers and can function as an adaptive response to maintain cell survival under metabolic stresses, including androgen deprivation. Androgen deprivation or treatment with androgen receptor (AR) signaling inhibitor (ARSI), Enzalutamide (MDV-3100, ENZA) or bicalutamide induced autophagy in androgen-dependent and in castration-resistant CaP (castration-resistant prostate cancer (CRPC)) cell lines. The autophagic cascade triggered by AR blockage, correlated with the increased light chain 3-II/I ratio and ATG-5 expression. Autophagy was observed in a subpopulation of C4-2B cells that developed insensitivity to ENZA after sustained exposure in culture. Using flow cytometry and clonogenic assays, we showed that inhibiting autophagy with clomipramine (CMI), chloroquine or metformin increased apoptosis and significantly impaired cell viability. This autophagic process was mediated by AMP-dependent protein kinase (AMPK) activation and the suppression of mammalian target of rapamycin (mTOR) through Raptor phosphorylation (Serine 792). Furthermore, small interfering RNA targeting AMPK significantly inhibited autophagy and promoted cell death in CaP cells acutely or chronically exposed to ENZA or androgen deprivation, suggesting that autophagy is an important survival mechanism in CRPC. Lastly, in vivo studies with mice orthotopically implanted with ENZA-resistant cells demonstrated that the combination of ENZA and autophagy modulators, CMI or metformin significantly reduced tumor growth when compared with control groups (P<0.005). In conclusion, autophagy is as an important mechanism of resistance to ARSI in CRPC. Antiandrogen-induced autophagy is mediated through the activation of AMPK pathway and the suppression of mTOR pathway. Blocking autophagy pharmacologically or genetically significantly impairs prostate cancer cell survival in vitro and in vivo, implying the therapeutics potential of autophagy inhibitors in the antiandrogen-resistance setting.
Collapse
Affiliation(s)
- H G Nguyen
- Department of Urology, UC Davis School of Medicine, Sacramento, CA, USA
| | - J C Yang
- Department of Urology, UC Davis School of Medicine, Sacramento, CA, USA
| | - H-J Kung
- 1] Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA [2] UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - X-B Shi
- Department of Urology, UC Davis School of Medicine, Sacramento, CA, USA
| | - D Tilki
- Department of Urology, UC Davis School of Medicine, Sacramento, CA, USA
| | - P N Lara
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - R W DeVere White
- 1] Department of Urology, UC Davis School of Medicine, Sacramento, CA, USA [2] UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - A C Gao
- 1] Department of Urology, UC Davis School of Medicine, Sacramento, CA, USA [2] UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - C P Evans
- 1] Department of Urology, UC Davis School of Medicine, Sacramento, CA, USA [2] UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
27
|
Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 2013; 40:31-40. [PMID: 23993415 DOI: 10.1016/j.ctrv.2013.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/20/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
Androgen/androgen receptor (AR) signaling plays pivotal roles in the prostate development and homeostasis as well as in the progression of prostate cancer (PCa). Androgen deprivation therapy (ADT) with anti-androgens remains as the main treatment for later stage PCa, and it has been shown to effectively suppress PCa growth during the first 12-24 months. However, ADT eventually fails and tumors may re-grow and progress into the castration resistant stage. Recent reports revealed that AR might play complicated and even opposite roles in PCa progression that might depend on cell types and tumor stages. Importantly, AR may influence PCa progression via differential modulation of various cell deaths including apoptosis, anoikis, entosis, necrosis, and autophagic cell deaths. Targeting AR may induce PCa cell apoptosis, autophagic cell deaths and programmed necrosis, yet targeting AR may suppress cell deaths via anoikis and entosis that may potentially lead to increased metastasis. These differential functions of AR in various types of PCa cell death might challenge the current ADT with anti-androgens treatment. Further detailed dissection of molecular mechanisms by which AR modulates different PCa cell deaths will help us to develop a better therapy to battle PCa.
Collapse
|
28
|
Autophagy in prostate cancer and androgen suppression therapy. Int J Mol Sci 2013; 14:12090-106. [PMID: 23743823 PMCID: PMC3709775 DOI: 10.3390/ijms140612090] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 12/19/2022] Open
Abstract
The role of autophagy is known to be highly complex and context-dependent, leading to both cancer suppression and progression in several tumors including melanoma, breast and prostate cancer. In the present review, recent advances in an understanding of the involvement of autophagy in prostate cancer treatment are described. The regulatory effects of androgens on prostate cancer cell autophagy are particularly discussed in order to highlight the effects of autophagy modulation during androgen deprivation. A critical evaluation of the studies examined in the present review suggests the attractive possibility of autophagy inhibition combined with hormonal therapy as a promising approach for prostate cancer treatment.
Collapse
|
29
|
Zecchini V, Neal DE. Targeting the pro-survival side-effects of androgen-deprivation therapy in prostate cancer. BJU Int 2013; 111:532-3. [PMID: 23551440 DOI: 10.1111/j.1464-410x.2013.11452.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Yap T, Dasgupta P. Design and the new BJUI. BJU Int 2013; 111:525-6. [DOI: 10.1111/j.1464-410x.2013.10409.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Giampietri C, Petrungaro S, Facchiano A, Filippini A, Ziparo E. Therapeutic implications of autophagy modulation in prostate cancer. J Endocrinol Invest 2012; 35:945. [PMID: 23221459 DOI: 10.1007/bf03346738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|