1
|
Xu B, Wu R, Shi F, Gao C, Wang J. Transcriptome profiling of flower buds of male-sterile lines provides new insights into male sterility mechanism in alfalfa. BMC PLANT BIOLOGY 2022; 22:199. [PMID: 35428186 PMCID: PMC9013074 DOI: 10.1186/s12870-022-03581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The use of heterosis to produce hybrid seeds is a challenge to breeding for improved crop yield. In previous studies, we isolated a male sterile alfalfa hybrid and successfully obtained a genetically stable alfalfa male sterile line through backcrossing, henceforth named MS-4. In this study, we used RNA-seq technology to analyze the transcriptome profiles of the male sterile line (MS-4) and the male fertile line (MF) of alfalfa to elucidate the mechanism of male sterility. RESULTS We screened a total of 11,812 differentially expressed genes (DEGs) from both MS-4 and MF lines at three different stages of anther development. Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that these DEGs are mainly involved in processes such as energy metabolism, lipid and amino acid metabolism, carbohydrate metabolism, in addition to cell synthesis and aging. The results from protein-protein interaction (PPI) network analysis showed that the ribosomal protein (MS.Gene25178) was the core gene in the network. We also found that transcriptional regulation was an influential factor in the development of anthers. CONCLUSIONS Our findings provide new insights into understanding of the fertility changes in the male sterile (MS-4) of alfalfa.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Rina Wu
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| | - Cuiping Gao
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jia Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Zhu T, Wu S, Zhang D, Li Z, Xie K, An X, Ma B, Hou Q, Dong Z, Tian Y, Li J, Wan X. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2137-2154. [PMID: 31016347 DOI: 10.1007/s00122-019-03343-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/09/2019] [Indexed: 05/16/2023]
Abstract
Genome-wide analysis of maize GPAT gene family, cytological characterization of ZmMs33/ZmGPAT6 gene encoding an ER-localized protein with four conserved motifs, and its molecular breeding application in maize. Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial step of glycerolipid biosynthesis and plays pivotal roles in plant growth and development. Compared with GPAT genes in Arabidopsis, our understanding to maize GPAT gene family is very limited. Recently, ZmMs33 gene has been identified to encode a sn-2 GPAT protein and control maize male fertility in our laboratory (Xie et al. in Theor Appl Genet 131:1363-1378, 2018). However, the functional mechanism of ZmMs33 remains elusive. Here, we reported the genome-wide analysis of maize GPAT gene family and found that 20 maize GPAT genes (ZmGPAT1-20) could be classified into three distinct clades similar to those of ten GPAT genes in Arabidopsis. Expression analyses of these ZmGPAT genes in six tissues and in anther during six developmental stages suggested that some of ZmGPATs may play crucial roles in maize growth and anther development. Among them, ZmGPAT6 corresponds to the ZmMs33 gene. Systemic cytological observations indicated that loss function of ZmMs33/ZmGPAT6 led to defective anther cuticle, arrested degeneration of anther wall layers, abnormal formation of Ubisch bodies and exine and ultimately complete male sterility in maize. The endoplasmic reticulum-localized ZmMs33/ZmGPAT6 possessed four conserved amino acid motifs essential for acyltransferase activity, while ZmMs33/ZmGPAT6 locus and its surrounding genomic region have greatly diversified during evolution of gramineous species. Finally, a multi-control sterility system was developed to produce ms33 male-sterile lines by using a combination strategy of transgene and marker-assisted selection. This work will provide useful information for further deciphering functional mechanism of ZmGPAT genes and facilitate molecular breeding application of ZmMs33/ZmGPAT6 gene in maize.
Collapse
Affiliation(s)
- Taotao Zhu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Ke Xie
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Quancan Hou
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
3
|
Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. MOLECULAR PLANT 2019; 12:321-342. [PMID: 30690174 DOI: 10.1016/j.molp.2019.01.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 05/06/2023]
Abstract
As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions in genetics. Male sterility is a very useful trait for hybrid vigor utilization and hybrid seed production. The identification and characterization of genic male-sterility (GMS) genes in maize and other plants have deepened our understanding of the molecular mechanisms controlling anther and pollen development, and enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for crop hybrid breeding. In this review, we summarize main advances on the identification and characterization of GMS genes in maize, and construct a putative regulatory network controlling maize anther and pollen development by comparative genomic analysis of GMS genes in maize, Arabidopsis, and rice. Furthermore, we discuss and appraise the features of more than a dozen BMS systems for propagating male-sterile lines and producing hybrid seeds in maize and other plants. Finally, we provide our perspectives on the studies of GMS genes and the development of novel BMS systems in maize and other plants. The continuous exploration of GMS genes and BMS systems will enhance our understanding of molecular regulatory networks controlling male fertility and greatly facilitate hybrid vigor utilization in breeding and field production of maize and other crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
4
|
Ji Y, Li Q, Liu G, Selvaraj G, Zheng Z, Zou J, Wei Y. Roles of Cytosolic Glutamine Synthetases in Arabidopsis Development and Stress Responses. PLANT & CELL PHYSIOLOGY 2019; 60:657-671. [PMID: 30649517 DOI: 10.1093/pcp/pcy235] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/05/2018] [Indexed: 05/14/2023]
Abstract
Glutamine (Gln) has as a central role in nitrogen (N) and carbon (C) metabolism. It is synthesized during assimilation of ammonium by cytosolic and plastidial glutamine synthetases (GS; EC 6.1.1.3). Arabidopsis thaliana has five cytosolic GS (GS1) encoding genes designated as GLN1;1-GLN1;5 and one plastidial GS (GS2) gene. In this report that concerns cytosolic GS, we show by analyzing single, double and triple mutants that single genes were dispensable for growth under laboratory conditions. However, loss of two or three GS1 isoforms impacted plant form, function and the capacity to tolerate abiotic stresses. The loss of GLN1;1, GLN1;2 and GLN1;3 resulted in a significant reduction of vegetative growth and seed size. In addition, we infer that GLN1;4 is essential for pollen viability but only in the absence of GLN1;1 and GLN1;3. Transcript profiling revealed that expression of GLN1;1, GLN1;2, GLN1;3 and GLN1;4 was repressed by salinity and cold stresses. Among all single gln1 mutants, growth of gln1;1 seedlings showed an enhanced sensitivity to the GS inhibitor phosphinothricin (PPT), as well as to cold and salinity treatments, suggesting a non-redundant role for GLN1;1. Furthermore, the increased sensitivity of gln1;1 mutants to methyl viologen was associated with an accelerated accumulation of reactive oxygen species (ROS) in the thylakoid of chloroplasts. Our data demonstrate, for the first time, an involvement of the cytosolic GS1 in modulating ROS homeostasis in chloroplasts. Collectively, the current study establishes a link between cytosolic Gln production and plant development, ROS production and stress tolerance.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Qiang Li
- College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Guosheng Liu
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Gopalan Selvaraj
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada
| | - Zhifu Zheng
- College of Agricultural and Food Sciences, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Jitao Zou
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Yang Y, Bao S, Zhou X, Liu J, Zhuang Y. The key genes and pathways related to male sterility of eggplant revealed by comparative transcriptome analysis. BMC PLANT BIOLOGY 2018; 18:209. [PMID: 30249187 PMCID: PMC6154905 DOI: 10.1186/s12870-018-1430-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Male sterility (MS) is an effective tool for hybrid production. Although MS has been widely reported in other plants, such as Arabidopsis and rice, the molecular mechanism of MS in eggplant is largely unknown. To understand the mechanism, the comparative transcriptomic file of MS line and its maintainer line was analyzed with the RNA-seq technology. RESULTS A total of 11,7695 unigenes were assembled and 19,652 differentially expressed genes (DEGs) were obtained. The results showed that 1,716 DEGs were shared in the three stages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these DEGs were mainly involved in oxidation-reduction, carbohydrate and amino acid metabolism. Moreover, transcriptional regulation was also the impact effector for MS and anther development. Weighted correlation network analysis (WGCNA) showed two modules might be responsible for MS, which was similar to hierarchical cluster analysis. CONCLUSIONS A number of genes and pathways associated with MS were found in this study. This study threw light on the molecular mechanism of MS and identified several key genes related to MS in eggplant.
Collapse
Affiliation(s)
- Yan Yang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Shengyou Bao
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Xiaohui Zhou
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Jun Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Yong Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| |
Collapse
|
6
|
Shukla P, Singh NK, Gautam R, Ahmed I, Yadav D, Sharma A, Kirti PB. Molecular Approaches for Manipulating Male Sterility and Strategies for Fertility Restoration in Plants. Mol Biotechnol 2017; 59:445-457. [PMID: 28791615 DOI: 10.1007/s12033-017-0027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Usable pollination control systems have proven to be effective system for the development of hybrid crop varieties, which are important for optimal performance over varied environments and years. They also act as a biocontainment to check horizontal transgene flow. In the last two decades, many genetic manipulations involving genes controlling the production of cytotoxic products, conditional male sterility, altering metabolic processes, post-transcriptional gene silencing, RNA editing and chloroplast engineering methods have been used to develop a proper pollination control system. In this review article, we outline the approaches used for generating male sterile plants using an effective pollination control system to highlight the recent progress that occurred in this area. Furthermore, we propose possible future directions for biotechnological improvements that will allow the farmers to buy hybrid seed once for many generations in a cost-effective manner.
Collapse
Affiliation(s)
- Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore, J & K, 192 121, India.
| | - Naveen Kumar Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, 7505101, Rishon LeZion, Israel
| | - Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Israr Ahmed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanker Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Akanksha Sharma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
7
|
Shukla P, Subhashini M, Singh NK, Ahmed I, Trishla S, Kirti PB. Targeted expression of cystatin restores fertility in cysteine protease induced male sterile tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:52-61. [PMID: 26993235 DOI: 10.1016/j.plantsci.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 05/22/2023]
Abstract
Fertility restoration in male sterile plants is an essential requirement for their utilization in hybrid seed production. In an earlier investigation, we have demonstrated that the targeted expression of a cysteine protease in tapetal cell layer resulted in complete male sterility in tobacco transgenic plants. In the present investigation, we have used a cystatin gene, which encodes for a cysteine protease inhibitor, from a wild peanut, Arachis diogoi and developed a plant gene based restoration system for cysteine protease induced male sterile transgenic tobacco plants. We confirmed the interaction between the cysteine protease and a cystatin of the wild peanut, A. diogoi through in silico modeling and yeast two-hybrid assay. Pollen from primary transgenic tobacco plants expressing cystatin gene under the tapetum specific promoter- TA29 restored fertility on cysteine protease induced male sterile tobacco plants developed earlier. This has confirmed the in vivo interaction of cysteine protease and cystatin in the tapetal cells, and the inactivation of cysteine protease and modulation of its negative effects on pollen fertility. Both the cysteine protease and cystatin genes are of plant origin in contrast to the analogous barnase-barstar system that deploys genes of prokaryotic origin. Because of the deployment of genes of plant origin, this system might not face biosafety problems in developing hybrids in food crops.
Collapse
Affiliation(s)
- Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| | - Mranu Subhashini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Naveen Kumar Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Israr Ahmed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shalibhadra Trishla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
8
|
Abstract
The Solanaceae is one of the most important families for global agriculture. Among the different solanaceous species, tobacco (Nicotiana tabacum), potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum) are five crops of outstanding importance worldwide. In these crops, maximum yields are produced by hybrid plants created by crossing pure (homozygous) lines with the desired traits. Pure lines may be produced by conventional breeding methods, which is time consuming and costly. Alternatively, it is possible to accelerate the production of pure lines by creating doubled haploid (DH) plants derived from (haploid) male gametophytes or their precursors (androgenesis). In this way, the different steps for the production of pure lines can be reduced to only one generation, which implies important time and cost savings. This and other advantages make androgenic DHs the choice in a number of important crops where any of the different experimental in vitro techniques (anther culture or isolated microspore culture) is well set up. The Solanaceae family is an excellent example of heterogeneity in terms of response to these techniques, including highly responding species such as tobacco, considered a model system, and tomato, one of the most recalcitrant species, where no reliable and reproducible methods are yet available. Interestingly, the first evidence of androgenesis, particularly through in vitro anther culture, was demonstrated in a solanaceous species, Datura innoxia. In this chapter, we report the state of the art of the research about androgenic DHs in Solanaceae, paying special attention to datura, tobacco, potato, tomato, eggplant, and pepper.
Collapse
Affiliation(s)
- Jose M Seguí-Simarro
- COMAV - Universitat Politècnica de València. CPI, Edificio 8E - Escalera I, Camino de Vera, 46022, Valencia, Spain.
| |
Collapse
|
9
|
Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. PLANT, CELL & ENVIRONMENT 2016; 39:147-64. [PMID: 26177592 DOI: 10.1111/pce.12601] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Amr Elkelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Biochemical Plant Pathology, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Freising, 85350, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Franziska Ruёff
- Clinic and Polyclinic for Dermatology and Allergology, Faculty of Medicine, LMU München, Munich, 80337, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, Munich, 80802, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, 86156, Germany
| | - Andreas Holzinger
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Werner Kofler
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Paula Braun
- Department of Applied Sciences and Mechanotronics, University of Applied Science Munich, Munich, 80335, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| |
Collapse
|
10
|
Shukla P, Singh NK, Kumar D, Vijayan S, Ahmed I, Kirti PB. Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco. Funct Integr Genomics 2014; 14:307-17. [PMID: 24615687 DOI: 10.1007/s10142-014-0367-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 01/26/2023]
Abstract
Usable male sterility systems have immense potential in developing hybrid varieties in crop plants, which can also be used as a biological safety containment to prevent horizontal transgene flow. Barnase-Barstar system developed earlier was the first approach to engineer male sterility in plants. In an analogous situation, we have evolved a system of inducing pollen abortion and male sterility in transgenic tobacco by expressing a plant gene coding for a protein with known developmental function in contrast to the Barnase-Barstar system, which deploys genes of prokaryotic origin, i.e., from Bacillus amyloliquefaciens. We have used a plant pathogen-induced gene, cysteine protease for inducing male sterility. This gene was identified in the wild peanut, Arachis diogoi differentially expressed when it was challenged with the late leaf spot pathogen, Phaeoisariopsis personata. Arachis diogoi cysteine protease (AdCP) was expressed under the strong tapetum-specific promoter (TA29) and tobacco transformants were generated. Morphological and histological analysis of AdCP transgenic plants showed ablated tapetum and complete pollen abortion in three transgenic lines. Furthermore, transcript analysis displayed the expression of cysteine protease in these male sterile lines and the expression of the protein was identified in western blot analysis using its polyclonal antibody raised in the rabbit system.
Collapse
Affiliation(s)
- Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | | | | | |
Collapse
|
11
|
Differential proteomic studies of the genic male-sterile line and fertile line anthers of upland cotton (Gossypium hirsutum L.). Genes Genomics 2014. [DOI: 10.1007/s13258-014-0176-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Soroka AI. Differentiation of haploid and dihaploid rape plants at the cytological and morphological levels. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713020102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Zheng R, Sijun Yue, Xu X, Liu J, Xu Q, Wang X, Han L, Yu D. Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.). PLoS One 2012; 7:e41861. [PMID: 22860020 PMCID: PMC3408462 DOI: 10.1371/journal.pone.0041861] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/26/2012] [Indexed: 01/31/2023] Open
Abstract
Pollen development is disturbed in the early tetrad stage of the YX-1 male sterile mutant of wolfberry (Lycium barbarum L.). The present study aimed to identify differentially expressed anther proteins and to reveal their possible roles in pollen development and male sterility. To address this question, the proteomes of the wild-type (WT) and YX-1 mutant were compared. Approximately 1760 protein spots on two-dimensional differential gel electrophoresis (2D-DIGE) gels were detected. A number of proteins whose accumulation levels were altered in YX-1 compared with WT were identified by mass spectrometry and the NCBInr and Viridiplantae EST databases. Proteins down-regulated in YX-1 anthers include ascorbate peroxidase (APX), putative glutamine synthetase (GS), ATP synthase subunits, chalcone synthase (CHS), CHS-like, putative callose synthase catalytic subunit, cysteine protease, 5B protein, enoyl-ACP reductase, 14-3-3 protein and basic transcription factor 3 (BTF3). Meanwhile, activities of APX and GS, RNA expression levels of apx and atp synthase beta subunit were low in YX-1 anthers which correlated with the expression of male sterility. In addition, several carbohydrate metabolism-related and photosynthesis-related enzymes were also present at lower levels in the mutant anthers. In contrast, 26S proteasome regulatory subunits, cysteine protease inhibitor, putative S-phase Kinase association Protein 1(SKP1), and aspartic protease, were expressed at higher levels in YX-1 anthers relative to WT anthers. Regulation of wolfberry pollen development involves a complex network of differentially expressed genes. The present study lays the foundation for future investigations of gene function linked with wolfberry pollen development and male sterility.
Collapse
Affiliation(s)
- Rui Zheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Sijun Yue
- College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoyan Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, China
| | - Jianyu Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Qing Xu
- College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaolin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Lu Han
- College of Life Science, Ningxia University, Yinchuan, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM. Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:684-92. [PMID: 20955179 DOI: 10.1111/j.1467-7652.2010.00567.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since decades, plant male sterility is considered a powerful tool for biological containment to minimize unwanted self-pollination for hybrid seed production. Furthermore, prevention of pollen dispersal also answers to concerns regarding transgene flow via pollen from Genetically Modified (GM) crops to traditional crop fields or wild relatives. We induced male sterility by suppressing endogenous general transcription factor genes, TAFs, using anther-specific promoters combined with artificial microRNA (amiRNA) technology (Schwab et al., 2006). The system was made reversible by the ethanol inducible expression of an amiRNA-insensitive form of the target gene. We provide proof of concept in eggplant, a cultivated crop belonging to the Solanaceae family that includes many important food crops. The transgenic eggplants that we generated are completely male sterile and fertility can be fully restored by short treatments with ethanol, confirming the efficiency but also the reliability of the system in view of open field cultivation. By combining this system with induced parthenocarpy (Rotino et al., 1997), we provide a novel example of complete transgene containment in eggplant, which enables biological mitigation measures for the benefit of coexistence or biosafety purposes for GM crop cultivation.
Collapse
Affiliation(s)
- Laura Toppino
- CRA-ORL Agricultural Research Council, Research Unit for Vegetable Crops, Montanaso Lombardo (Lo) Italy DSBB, Department of Biomolecular Sciences and Biotechnology, University of Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Wang YF, Huang JY, Yang JS. [Progress in the study of producing reversible male sterile line by genetic engineering]. YI CHUAN = HEREDITAS 2011; 33:40-7. [PMID: 21377957 DOI: 10.3724/sp.j.1005.2011.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plant male sterility is a kind of resource of heterosis, which has important value in production. It may be derived from natural mutations, artificial mutations, distant hybridizations, and now through cell engineering and genetic engineering. This paper reviews the progress of strategies in production of plant male sterile lines and their corresponding fertile lines via genetic engineering approach. All strategies can be grouped into "single component strategy" and "two-component strategy". "Single component strategy" produces conditional (reversible) male sterile line, whose fertility can be switched under given condition. Conditional male sterile line has two roles, which are CMS and maintainer line for breeding in practice; "two-component strategy" takes advantage of gene interaction and parental hybridization to generate male sterile line. Otherwise, it develops sterile line and restorer line respectively for three-line hybrid system for seed production through gene interaction. This paper discusses the advantages and disadvantages of gene engineering approaches of "single component strategy" and "two-component strategy" for developing male sterile line and corresponding restorer line, as well as the current status and perspective of these approaches in practice.
Collapse
|
16
|
Floss DM, Kumlehn J, Conrad U, Saalbach I. Haploid technology allows for the efficient and rapid generation of homozygous antibody-accumulating transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:593-601. [PMID: 19627562 DOI: 10.1111/j.1467-7652.2009.00426.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The large-scale production of plant-derived recombinant proteins requires the breeding of lines homozygous for the transgene(s). These can be selected by progeny testing over multiple sexual generations, but a more efficient means is to fix homozygosity in a single generation using doubled haploid technology. In this study, transgenic tobacco plants, hemizygous for both of the independently inherited genes encoding the light and heavy chains of the anti-human immunodeficiency virus monoclonal antibody 2F5, were used to establish embryogenic pollen cultures. The improved protocol employed in this study guaranteed a very high regeneration efficiency, with more than 50% of the regenerants being spontaneously doubled haploids. Hence, there was no requirement to chemically induce chromosome doubling to recover sufficient entirely homozygous recombinants. As expected, approximately 25% of the regenerants were homozygous for both transgenes. Thus, the employment of haploid technology allowed for the efficient and rapid generation of true-breeding tobacco lines accumulating functional immunoglobulins.
Collapse
Affiliation(s)
- Doreen M Floss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Phytoantibodies, Gatersleben, Germany
| | | | | | | |
Collapse
|
17
|
Nizampatnam NR, Doodhi H, Kalinati Narasimhan Y, Mulpuri S, Viswanathaswamy DK. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants. PLANTA 2009; 229:987-1001. [PMID: 19151958 DOI: 10.1007/s00425-009-0888-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/03/2009] [Indexed: 05/22/2023]
Abstract
Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility.
Collapse
|
18
|
Forster BP, Heberle-Bors E, Kasha KJ, Touraev A. The resurgence of haploids in higher plants. TRENDS IN PLANT SCIENCE 2007; 12:368-75. [PMID: 17629539 DOI: 10.1016/j.tplants.2007.06.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/05/2007] [Accepted: 06/29/2007] [Indexed: 05/02/2023]
Abstract
The life cycle of plants proceeds via alternating generations of sporophytes and gametophytes. The dominant and most obvious life form of higher plants is the free-living sporophyte. The sporophyte is the product of fertilization of male and female gametes and contains a set of chromosomes from each parent; its genomic constitution is 2n. Chromosome reduction at meiosis means cells of the gametophytes carry half the sporophytic complement of chromosomes (n). Plant haploid research began with the discovery that sporophytes can be produced in higher plants carrying the gametic chromosome number (n instead of 2n) and that their chromosome number can subsequently be doubled up by colchicine treatment. Recent technological innovations, greater understanding of underlying control mechanisms and an expansion of end-user applications has brought about a resurgence of interest in haploids in higher plants.
Collapse
|