1
|
Fluhr JW, Moore DJ, Lane ME, Lachmann N, Rawlings AV. Epidermal barrier function in dry, flaky and sensitive skin: A narrative review. J Eur Acad Dermatol Venereol 2024; 38:812-820. [PMID: 38140732 DOI: 10.1111/jdv.19745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
The stratum corneum (SC)-the outermost layer of the epidermis-is the principal permeability and protective barrier of the skin. Different components of the SC, including corneocytes, natural moisturizing factor, a variety of enzymes and their inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier function. The main barrier properties of the SC are the limitation of water loss and the prevention of infection and contact with potentially harmful exogenous factors. Although the SC functions consistently as a protective barrier throughout the body, variations in functions and morphology occur across body sites with age and skin type. Healthy SC function also depends on the interplay between the chemosensory barrier, the skin's microbiome and the innate immune system. Dysregulation of SC barrier function can lead to the development of skin disorders, such as dry, flaky or sensitive skin, but the complete underlying pathophysiology of these are not fully understood. This review provides insight into the current literature and emerging themes related to epidermal barrier changes that occur in the context of dry, flaky and sensitive skin. Additional studies are needed to further elucidate the underlying aetiology of dry, flaky and sensitive skin and to provide tailored treatment.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Institute of Allergology IFA Charité Universitätsmedizin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | | | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | | | - Anthony V Rawlings
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
- AVR Consulting Ltd., Northwich, UK
| |
Collapse
|
2
|
Afshari M, Kolackova M, Rosecka M, Čelakovská J, Krejsek J. Unraveling the skin; a comprehensive review of atopic dermatitis, current understanding, and approaches. Front Immunol 2024; 15:1361005. [PMID: 38500882 PMCID: PMC10944924 DOI: 10.3389/fimmu.2024.1361005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Atopic dermatitis, also known as atopic eczema, is a chronic inflammatory skin disease characterized by red pruritic skin lesions, xerosis, ichthyosis, and skin pain. Among the social impacts of atopic dermatitis are difficulties and detachment in relationships and social stigmatization. Additionally, atopic dermatitis is known to cause sleep disturbance, anxiety, hyperactivity, and depression. Although the pathological process behind atopic dermatitis is not fully known, it appears to be a combination of epidermal barrier dysfunction and immune dysregulation. Skin is the largest organ of the human body which acts as a mechanical barrier to toxins and UV light and a natural barrier against water loss. Both functions face significant challenges due to atopic dermatitis. The list of factors that can potentially trigger or contribute to atopic dermatitis is extensive, ranging from genetic factors, family history, dietary choices, immune triggers, and environmental factors. Consequently, prevention, early clinical diagnosis, and effective treatment may be the only resolutions to combat this burdensome disease. Ensuring safe and targeted drug delivery to the skin layers, without reaching the systemic circulation is a promising option raised by nano-delivery systems in dermatology. In this review, we explored the current understanding and approaches of atopic dermatitis and outlined a range of the most recent therapeutics and dosage forms brought by nanotechnology. This review was conducted using PubMed, Google Scholar, and ScienceDirect databases.
Collapse
Affiliation(s)
- Moeina Afshari
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Martina Kolackova
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Michaela Rosecka
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czechia
| |
Collapse
|
3
|
Efficacy of topically applied rapamycin-loaded redox-sensitive nanocarriers in a human skin/T cell co-culture model. Int Immunopharmacol 2023; 117:109903. [PMID: 36848792 DOI: 10.1016/j.intimp.2023.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Rapamycin, also known as Sirolimus, is a promising anti-proliferative drug, but its therapeutic use for the topical treatment of inflammatory, hyperproliferative skin disorders is limited by insufficient penetration rates due to its high molecular weight (MW of 914.172 g/mol) and high lipophilicity. We have shown that core multi-shell (CMS) nanocarriers sensitive to oxidative environment can improve drug delivery to the skin. In this study, we investigated the mTOR inhibitory activity of these oxidation-sensitive CMS (osCMS) nanocarrier formulations in an inflammatory ex vivo human skin model. In this model, features of inflamed skin were introduced by treating the ex vivo tissue with low-dose serine protease (SP) and lipopolysaccharide (LPS), while phorbol 12-myristate 13-acetate and ionomycin were used to stimulate IL-17A production in the co-cultured SeAx cells. Furthermore, we tried to elucidate the effects of rapamycin on single cell populations isolated from skin (keratinocytes, fibroblast) as well as on SeAx cells. Further, we measured possible effects of the rapamycin formulations on dendritic cell (DC) migration and activation. The inflammatory skin model enabled the assessment of biological readouts at both the tissue and T cell level. All investigated formulations successfully delivered rapamycin across the skin as revealed by reduced IL-17A levels. Nevertheless, only the osCMS formulations reached higher anti-inflammatory effects in the skin compared to the control formulations with a significant downregulation of mTOR activity. These results indicate that osCMS formulations could help to establish rapamycin, or even other drugs with similar physico-chemical properties, in topical anti-inflammatory therapy.
Collapse
|
4
|
Chavarria-Smith J, Chiu CPC, Jackman JK, Yin J, Zhang J, Hackney JA, Lin WY, Tyagi T, Sun Y, Tao J, Dunlap D, Morton WD, Ghodge SV, Maun HR, Li H, Hernandez-Barry H, Loyet KM, Chen E, Liu J, Tam C, Yaspan BL, Cai H, Balazs M, Arron JR, Li J, Wittwer AJ, Pappu R, Austin CD, Lee WP, Lazarus RA, Sudhamsu J, Koerber JT, Yi T. Dual antibody inhibition of KLK5 and KLK7 for Netherton syndrome and atopic dermatitis. Sci Transl Med 2022; 14:eabp9159. [PMID: 36516271 DOI: 10.1126/scitranslmed.abp9159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epidermis is a barrier that prevents water loss while keeping harmful substances from penetrating the host. The impermeable cornified layer of the stratum corneum is maintained by balancing continuous turnover driven by epidermal basal cell proliferation, suprabasal cell differentiation, and corneal shedding. The epidermal desquamation process is tightly regulated by balance of the activities of serine proteases of the Kallikrein-related peptidases (KLK) family and their cognate inhibitor lymphoepithelial Kazal type-related inhibitor (LEKTI), which is encoded by the serine peptidase inhibitor Kazal type 5 gene. Imbalance of proteolytic activity caused by a deficiency of LEKTI leads to excessive desquamation due to increased activities of KLK5, KLK7, and KLK14 and results in Netherton syndrome (NS), a debilitating condition with an unmet clinical need. Increased activity of KLKs may also be pathological in other dermatoses such as atopic dermatitis (AD). Here, we describe the discovery of inhibitory antibodies against murine KLK5 and KLK7 that could compensate for the deficiency of LEKTI in NS. These antibodies are protective in mouse models of NS and AD and, when combined, promote improved skin barrier integrity and reduced inflammation. To translate these findings, we engineered a humanized bispecific antibody capable of potent inhibition of human KLK5 and KLK7. A crystal structure of KLK5 bound to the inhibitory Fab revealed that the antibody binds distal to its active site and uses a relatively unappreciated allosteric inhibition mechanism. Treatment with the bispecific anti-KLK5/7 antibody represents a promising therapy for clinical development in NS and other inflammatory dermatoses.
Collapse
Affiliation(s)
- Joseph Chavarria-Smith
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cecilia P C Chiu
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet K Jackman
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei-Yu Lin
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tulika Tyagi
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yonglian Sun
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet Tao
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Debra Dunlap
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William D Morton
- Confluence Discovery Technologies Inc., 4320 Duncan Ave, Suite 400, St. Louis, MO 63108, USA
| | - Swapnil V Ghodge
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Henry R Maun
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hong Li
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hilda Hernandez-Barry
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily Chen
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Liu
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Cai
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mercedesz Balazs
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jing Li
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Arthur J Wittwer
- Confluence Discovery Technologies Inc., 4320 Duncan Ave, Suite 400, St. Louis, MO 63108, USA
| | - Rajita Pappu
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert A Lazarus
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tangsheng Yi
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Voegeli R, Rawlings AV. Moisturizing at a molecular level - The basis of Corneocare. Int J Cosmet Sci 2022; 45:133-154. [PMID: 36453857 DOI: 10.1111/ics.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND This review covers the last 20 years of research we and our collaborators have conducted on ethnic differences in facial skin moisturization placed in historical context with previous research. METHODS We have focussed particularly on the biochemical and cellular gradients of the stratum corneum (SC) with the aim of discovering new skin moisturization and SC maturation mechanisms, identifying new technologies and/or providing conceptual innovations for ingredients that will improve our understanding and treatment of dry skin. Specifically, we discuss gradients for corneodesmosomes and proteases, corneocyte phenotype-inducing enzymes, filaggrin and natural moisturizing factor (NMF), and barrier lipids. These gradients are interdependent and influence greatly corneocyte maturation. RESULTS The interrelationship between corneodesmolysis and the covalent attachment of ω-hydroxy ceramides and ω-hydroxy fatty acids to the corneocyte protein envelope forming the corneocyte lipid envelope is especially relevant in our new understanding of mechanisms leading to dry skin. This process is initiated by a linoleoyl-ω-acyl ceramide transforming enzyme cascade including 12R lipoxygenase (12R-LOX), epidermal lipoxygenase-3 (eLOX3), epoxide hydrolase 3 (EPHX3), short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7), ceramidase and transglutaminase 1. CONCLUSION Our research has opened the opportunity of using novel treatment systems for dry skin based on lipids, humectants, niacinamide and inhibitors of the plasminogen system. It is clear that skin moisturization is a more complex mechanism than simple skin hydration.
Collapse
|
6
|
Cruz-Silva I, Nunes VA, Rydlewski M, Gozzo AJ, Praxedes-Garcia P, Ferraz Carbonel AA, Tanaka AS, Araújo MDS. Disclosing the involvement of proteases in an eczema murine animal model: Perspectives for protease inhibitor-based therapies. Biochimie 2021; 194:1-12. [PMID: 34896570 DOI: 10.1016/j.biochi.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Eczema is a skin condition characterized by itchy and inflammatory patches. The accumulation of neutrophils and the imbalance between enzymes and their inhibitors appears to be related to this condition. We proposed a neutrophil elastase (NE)-based eczema model in mice in order to verify histopathological features as well as the expression and activity of proteases and inhibitors. Mice skins were topically administered with human NE (0-2 pmol/cm2) for 24-168 h. It was observed thickening of epidermis, parakeratosis, spongiosis and leukocyte infiltration. Also, NE-treated skins presented high activity of epidermal kallikreins 5 and 7, and cathepsin B on synthetic substrates, and expression evaluated by RT-qPCR. The proteolytic activity was inhibited by soybean trypsin inhibitor, CA074 and Caesalpinia echinata kallikrein inhibitor (CeKI). The topic application of CeKI reversed eczema phenotype in NE-treated skins. Elafin expression was shown to be increased in NE-treated skins. These results suggest that the NE may trigger morphological and biochemical changes in skin similar to those observed in eczematous diseases. In addition to the establishment of this in vivo model, this work opens perspectives for the use of protease inhibitor-based drugs for the management of this skin condition.
Collapse
Affiliation(s)
- Ilana Cruz-Silva
- Department of Biochemistry, Universidade Federal de São Paulo, SP, Brazil; Centro Universitário São Camilo, SP, Brazil
| | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, Universidade de São Paulo, SP, Brazil.
| | - Mariana Rydlewski
- Department of Biochemistry, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Frombach J, Rancan F, Kübrich K, Schumacher F, Unbehauen M, Blume-Peytavi U, Haag R, Kleuser B, Sabat R, Wolk K, Vogt A. Serine Protease-Mediated Cutaneous Inflammation: Characterization of an Ex Vivo Skin Model for the Assessment of Dexamethasone-Loaded Core Multishell-Nanocarriers. Pharmaceutics 2020; 12:pharmaceutics12090862. [PMID: 32927792 PMCID: PMC7558872 DOI: 10.3390/pharmaceutics12090862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022] Open
Abstract
Standard experimental set-ups for the assessment of skin penetration are typically performed on skin explants with an intact skin barrier or after a partial mechanical or chemical perturbation of the stratum corneum, but they do not take into account biochemical changes. Among the various pathological alterations in inflamed skin, aberrant serine protease (SP) activity directly affects the biochemical environment in the superficial compartments, which interact with topically applied formulations. It further impacts the skin barrier structure and is a key regulator of inflammatory mediators. Herein, we used short-term cultures of ex vivo human skin treated with trypsin and plasmin as inflammatory stimuli to assess the penetration and biological effects of the anti-inflammatory drug dexamethasone (DXM), encapsulated in core multishell-nanocarriers (CMS-NC), when compared to a standard cream formulation. Despite a high interindividual variability, the combined pretreatment of the skin resulted in an average 2.5-fold increase of the transepidermal water loss and swelling of the epidermis, as assessed by optical coherence tomography, as well as in a moderate increase of a broad spectrum of proinflammatory mediators of clinical relevance. The topical application of DXM-loaded CMS-NC or DXM standard cream revealed an increased penetration into SP-treated skin when compared to untreated control skin with an intact barrier. Both formulations, however, delivered sufficient amounts of DXM to effectively suppress the production of interleukin-6 (IL-6), interleukin-8 (IL-8) and Thymic Stromal Lymphopoietin (TSLP). In conclusion, we suggest that the herein presented ex vivo inflammatory skin model is functional and could improve the selection of promising drug delivery strategies for anti-inflammatory compounds at early stages of development.
Collapse
Affiliation(s)
- Janna Frombach
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
| | - Katharina Kübrich
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
| | - Michael Unbehauen
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (M.U.); (R.H.)
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
| | - Rainer Haag
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (M.U.); (R.H.)
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Department of Dermatology, Venerology and Allergy/Institute for Medical Immunology, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (R.S.); (K.W.)
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Department of Dermatology, Venerology and Allergy/Institute for Medical Immunology, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (R.S.); (K.W.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (J.F.); (F.R.); (K.K.); (U.B.-P.)
- Correspondence:
| |
Collapse
|
8
|
Di Paolo CT, Diamandis EP, Prassas I. The role of kallikreins in inflammatory skin disorders and their potential as therapeutic targets. Crit Rev Clin Lab Sci 2020; 58:1-16. [PMID: 32568598 DOI: 10.1080/10408363.2020.1775171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin is a vital organ of the human body, serving numerous protective and functional roles that are essential for survival. Residing in the epidermis are various epidermal proteases responsible for the establishment and regulation of barrier function. The human tissue kallikrein-related peptidase family conserves homeostasis of the skin barrier through their roles in desquamation, antimicrobial defense, innate immune response, and barrier maintenance. The activity of kallikreins is tightly regulated and dysregulation of kallikrein activity is seen to contribute to the formation of several inflammatory skin disorders. This review highlights the roles of kallikreins in skin homeostasis and pathologies. Due to their part in these skin disorders, inhibitors of the skin kallikreins have become attractive therapeutics. Over the past few years, both natural and synthetic inhibitors of several kallikreins have been identified and are undergoing further development as treatments to restore compromised barrier function. This review summarizes the kallikrein inhibitors under development for this purpose. These inhibitors remain promising therapeutics in cases of severe skin inflammation not well managed by current therapies.
Collapse
Affiliation(s)
- Caitlin T Di Paolo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
9
|
Rawlings A. Microbes: Fighting for space on a fragile interface. Int J Cosmet Sci 2020; 42:310-312. [DOI: 10.1111/ics.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 11/27/2022]
Affiliation(s)
- A.V. Rawlings
- Director AVR Consulting Limited 26 Shavington Way Northwich Cheshire CW98FHUnited Kingdom
| |
Collapse
|
10
|
Guneri D, Voegeli R, Doppler S, Zhang C, Bankousli AL, Munday MR, Lane ME, Rawlings AV. The importance of 12R-lipoxygenase and transglutaminase activities in the hydration-dependent ex vivo maturation of corneocyte envelopes. Int J Cosmet Sci 2020; 41:563-578. [PMID: 31429091 PMCID: PMC6899781 DOI: 10.1111/ics.12574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/18/2019] [Indexed: 12/26/2022]
Abstract
Background Terminally differentiated keratinocytes acquire corneocyte protein envelopes (CPE) complexed with corneocyte lipid envelopes (CLE). These two structural components of the corneocyte envelopes (CEs) undergo maturation by gaining in hydrophobicity, rigidity and surface area. Linoleoyl acylceramides are processed by 12R‐lipoxygenase (12R‐LOX) and other enzymes before transglutaminase (TG) attaches ω‐hydroxyceramides to involucrin in the CPE. Concurrently, structural proteins are cross‐linked by TG that has been activated by cathepsin D (CathD). Objectives The primary aim of this work was to demonstrate the impact of relative humidity (RH) during ex vivo CE maturation. Low, optimal and high RH were selected to investigate the effect of protease inhibitors (PIs) on CE maturation and TG activity; in addition, 12R‐LOX and CathD activity were measured at optimal RH. Finally, the effect of glycerol on ex vivo CE maturation was tested at low, optimal and high RH. Methods The first and ninth tape strip of photo‐exposed (PE) cheek and photo‐protected (PP) post‐auricular sites of healthy volunteers were selected. Ex vivo CE maturation was assessed via the relative CE maturity (RCEM) approach based on CE rigidity and hydrophobicity. The second and eighth tapes were exposed to RH in the presence of inhibitors. Results Irrespective of tape stripping depth, CEs from PE samples attained CE rigidity to the same extent as mature CEs from the PP site, but such improvement was lacking for CE hydrophobicity. 70% RH was optimal for ex vivo CE maturation. The inhibition of 12R‐LOX activity resulted in enhanced CE rigidity which was reduced by the TG inhibitor. CE hydrophobicity remained unchanged during ex vivo maturation in the presence of TG or 12R‐LOX inhibition. CE hydrophobicity was enhanced in the presence of glycerol at 44% RH and 100% RH but not at 70% RH. Furthermore, TG activity was significantly diminished at 100% RH compared to the commercial inhibitor LDN‐27219. However, a protease inhibitor mix reversed the negative effect of overhydration. Conclusion The study adds to the understanding of the roles of 12R‐LOX and TG activity in CE maturation and gives further insight into the effect of glycerol on the SC.
Collapse
Affiliation(s)
- D Guneri
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303, Kaiseraugust, Switzerland
| | - S Doppler
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303, Kaiseraugust, Switzerland
| | - C Zhang
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - A L Bankousli
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - M R Munday
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - M E Lane
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - A V Rawlings
- UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK.,AVR Consulting Limited, 26 Shavington Way, CW98FH, Northwich, UK
| |
Collapse
|
11
|
de Souza AS, Pacheco BDC, Pinheiro S, Muri EMF, Dias LRS, Lima CHS, Garrett R, de Moraes MBM, de Souza BEG, Puzer L. 3-Acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7. Bioorg Med Chem Lett 2019; 29:1094-1098. [PMID: 30833107 DOI: 10.1016/j.bmcl.2019.02.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/30/2022]
Abstract
Human kallikreins 5 and 7 (KLK5 and KLK7) exhibit trypsin- and chymotrypsin-like activities and are involved in pathologies related to skin desquamation process. A series of new 3-acyltetramic acids were developed as a novel class of inhibitors of KLK5, KLK7 and trypsin enzymes. The nature and length of the acyl chain is crucial to the KLK5, KLK7 and trypsin inhibition activities, and the most potent compounds (but not the most selective) 2b, 2c and 2g showed low micromolar IC50 values. While very few of the compounds were selective for KLK5, the selective inhibition of trypsin against chymotrypsin was achieved. Our molecular modelling studies revealed that the double bond in 2g provided the best fit in the binding site of KLK5, while the hydrogen bonding interactions modulated the best fit of 2c in the binding site of KLK7 due to the hydrophobicity of the cavity.
Collapse
Affiliation(s)
- Acácio S de Souza
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil
| | - Barbara D C Pacheco
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil
| | - Sergio Pinheiro
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil.
| | - Estela M F Muri
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Luiza R S Dias
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camilo H S Lima
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana B M de Moraes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno E G de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| |
Collapse
|
12
|
Frombach J, Lohan SB, Lemm D, Gruner P, Hasler J, Ahlberg S, Blume-Peytavi U, Unbehauen M, Haag R, Meinke MC, Vogt A. Protease-mediated Inflammation: An In Vitro Human Keratinocyte-based Screening Tool for Anti-inflammatory Drug Nanocarrier Systems. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2017-1048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Background:
Refined encapsulation approaches in dermatotherapy gain increased interest. There is need of reproducible in vitro systems representing disease features to screen drug delivery systems for preclinical assessment. Inflammatory human skin diseases are commonly accompanied by abnormal epidermal differentiation and barrier impairment. Serine proteases (SPs) and their inhibitors play a critical role in such dysfunctional differentiation. SPs also initiate cellular pathways via activation of protease-activated receptors, which contribute to inflammation. Thus, function and activity of SPs should be considered for the design of new therapies of such disorders.
Objectives:
Herein, we established a novel simplified cell culture model, based on SP-mediated inflammation suitable to assess nanocarriers loaded with anti-inflammatory drugs.
Methods:
SP-mediated inflammation and the regulatory effect of free or encapsulated dexamethasone were determined by measuring interleukin-6 and interleukin-8 in culture medium of HaCaT (human adult low calcium temperature)-keratinocytes. Additionally, radical formation was analyzed by electron paramagnetic resonance spectroscopy. Cellular uptake of core-multishell nanocarriers was investigated by fluorescence microscopy. Cytotoxicity of all additives was determined by a viability assay.
Results:
SP-Stimulation of keratinocytes resulted in increased radical production and release of inflammatory cytokines without affecting cell viability. Induced inflammation was successfully downregulated by addition of free or encapsulated dexamethasone.
Conclusion:
SP-addition can be used as inflammatory stimulus in cell culture to mimic effects of aberrant enzymatic activities found in skin of atopic dermatitis patients. The set-up is appropriate as a preliminary test to examine the effectiveness of new molecules or delivery-systems to counteract serine protease-mediated inflammatory processes prior to skin studies.
Collapse
Affiliation(s)
- Janna Frombach
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Silke B. Lohan
- Center of Experimental and Applied Cutaneous Physiology , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Davina Lemm
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Paul Gruner
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Julia Hasler
- Center of Experimental and Applied Cutaneous Physiology , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Sebastian Ahlberg
- Center of Experimental and Applied Cutaneous Physiology , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Michael Unbehauen
- Freie Universität Berlin , Institut für Chemie und Biochemie , Berlin , Germany
| | - Rainer Haag
- Freie Universität Berlin , Institut für Chemie und Biochemie , Berlin , Germany
| | - Martina C. Meinke
- Center of Experimental and Applied Cutaneous Physiology , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin, Charitéplatz 1 , Berlin , Germany , Phone: +4930450518207, 10117
| |
Collapse
|
13
|
Fischer J, Meyer-Hoffert U. Regulation of kallikrein-related peptidases in the skin – from physiology to diseases to therapeutic options. Thromb Haemost 2017; 110:442-9. [DOI: 10.1160/th12-11-0836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/25/2013] [Indexed: 12/21/2022]
Abstract
SummaryKallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases, which show a tissue-specific expression profile. This made them valuable tumour expression markers. It became evident that KLKs are involved in many physiological processes like semen liquefaction and skin desquamation. More recently, we have learnt that they are involved in many pathophysiological conditions and diseases making them promising target of therapeutic intervention. Therefore, regulation of KLKs raised the interest of numerous reports. Herein, we summarise the current knowledge on KLKs regulation with an emphasis on skin-relevant KLKs regulation processes. Regulation of KLKs takes place on the level of transcription, on protease activation and on protease inactivation. A variety of protease inhibitors has been described to interact with KLKs including the irreversible serine protease inhibitors (SERPINs) and the reversible serine protease inhibitors of Kazal-type (SPINKs). In an attempt to integrate current knowledge, we propose that KLK regulation has credentials as targets for therapeutic intervention.
Collapse
|
14
|
Koppes SA, Ljubojević Hadžavdić S, Jakasa I, Franceschi N, Riethmüller C, Jurakić Tončic R, Marinovic B, Raj N, Rawlings AV, Voegeli R, Lane ME, Haftek M, Frings‐Dresen MH, Rustemeyer T, Kezic S. Effect of allergens and irritants on levels of natural moisturizing factor and corneocyte morphology. Contact Dermatitis 2017; 76:287-295. [PMID: 28295421 PMCID: PMC5836858 DOI: 10.1111/cod.12770] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The irritant sodium lauryl sulfate (SLS) is known to cause a decrease in the stratum corneum level of natural moisturizing factor (NMF), which in itself is associated with changes in corneocyte surface topography. OBJECTIVE To explore this phenomenon in allergic contact dermatitis. METHODS Patch testing was performed on patients with previously positive patch test reactions to potassium dichromate (Cr), nickel sulfate (Ni), methylchloroisothiazolinone (MCI)/methylisothiazolinone (MI), or p-phenylenediamine. Moreover, a control (pet.) patch and an irritant (SLS) patch were applied. After 3 days, the stratum corneum from tested sites was collected, and NMF levels and corneocyte morphology, expressed as the amount of circular nanosize objects, quantified according to the Dermal Texture Index (DTI), were determined. RESULTS Among allergens, only MCI/MI reduced NMF levels significantly, as did SLS. Furthermore, only MCI/MI caused remarkable changes at the microscopic level; the corneocytes were hexagonal-shaped with pronounced cell borders and a smoother surface. The DTI was increased after SLS exposure but not after allergen exposure. CONCLUSIONS MCI/MI significantly decreased NMF levels, similarly to SLS. The altered corneocyte morphology suggests that skin barrier damage plays a role in the pathogenesis of MCI/MI contact allergy. The DTI seems to differentiate reactions to SLS from those to the allergens tested, as SLS was the only agent that caused a DTI increase.
Collapse
Affiliation(s)
- Sjors A. Koppes
- Academic Medical Center, Department: Coronel institute of Occupational HealthAmsterdam Public Health Research Institute1105 AZ AmsterdamThe Netherlands
- Department of Dermatology‐AllergologyVU University Medical Centre1081 HV AmsterdamThe Netherlands
| | - Suzana Ljubojević Hadžavdić
- Department of Dermatology and VenereologyUniversity Hospital Centre Zagreb and University of Zagreb School of Medicine10000ZagrebCroatia
| | - Ivone Jakasa
- Faculty of Food Technology and Biotechnology, Laboratory for Analytical Chemistry, Department of Chemistry and BiochemistryUniversity of Zagreb10000ZagrebCroatia
| | - Nika Franceschi
- Department of Dermatology and Venereology, University Clinical Hospital Centre ‘Sestre Milosrdnice’10000ZagrebCroatia
| | - Christoph Riethmüller
- Centre for Nanotechnology, Serend‐ip GmbHCentre for Nanotechnology48149MünsterGermany
| | - Ružica Jurakić Tončic
- Department of Dermatology and VenereologyUniversity Hospital Centre Zagreb and University of Zagreb School of Medicine10000ZagrebCroatia
| | - Branka Marinovic
- Department of Dermatology and VenereologyUniversity Hospital Centre Zagreb and University of Zagreb School of Medicine10000ZagrebCroatia
| | - Nidhin Raj
- Skin Research Laboratory, Department of PharmaceuticsUniversity College LondonWC1N 1AXLondonUK
| | - Anthony V. Rawlings
- Skin Research Laboratory, Department of PharmaceuticsUniversity College LondonWC1N 1AXLondonUK
| | | | - Majella E. Lane
- Skin Research Laboratory, Department of PharmaceuticsUniversity College LondonWC1N 1AXLondonUK
| | - Marek Haftek
- Laboratory of Tissue Biology and Therapeutic EngineeringCNRS and University of LyonUMR 5305LyonFrance
| | - Monique H.W. Frings‐Dresen
- Academic Medical Center, Department: Coronel institute of Occupational HealthAmsterdam Public Health Research Institute1105 AZ AmsterdamThe Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology‐AllergologyVU University Medical Centre1081 HV AmsterdamThe Netherlands
| | - Sanja Kezic
- Academic Medical Center, Department: Coronel institute of Occupational HealthAmsterdam Public Health Research Institute1105 AZ AmsterdamThe Netherlands
| |
Collapse
|
15
|
Voegeli R, Wikstroem P, Campiche R, Steinmetzer T, Jackson E, Gempeler M, Imfeld D, Rawlings AV. The effects of benzylsulfonyl-D-Ser-homoPhe-(4-amidino-benzylamide), a dual plasmin and urokinase inhibitor, on facial skin barrier function in subjects with sensitive skin. Int J Cosmet Sci 2016; 39:109-120. [PMID: 27434836 DOI: 10.1111/ics.12354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to optimize the synthesis of the plasmin and urokinase (uPA) inhibitor benzylsulfonyl-D-Ser-homoPhe-(4-amidino-benzylamide) (BSFAB), to characterize its activity and mechanism of action and to assess its use to improve stratum corneum (SC) barrier function. METHODS Peptide coupling methods were used to synthesize BSFAB, and high-performance liquid chromatography-mass spectrometry (HPLC-MS) together with 1 H- and 13 C-nuclear magnetic resonance spectroscopy (NMR) were applied to clarify its structure and determine its purity. Its binding mode was determined by docking studies to the catalytic domains of plasmin and uPA. Inhibition constants (Ki ) were determined by enzyme kinetic studies, and the effect of BSFAB on plasmin, uPA and transglutaminase 1 expression was evaluated in non-cytokine and cytokine-stimulated keratinocytes. A vehicle-controlled clinical study on SC barrier function was conducted on facial skin of subjects with self-perceived sensitive skin. RESULTS BSFAB was synthesized with high purity (97.3%). In silico studies indicated that the amidine moiety of BSFAB was anchored in the S1 pocket of both enzymes by binding to Asp189, Ser190 and Gly219, whereas the backbone of the D-Ser residue makes an anti-parallel β-sheet interaction with Gly216. BSFAB was shown to be an effective inhibitor of plasmin and uPA with Ki values of 29 and 25 nM, respectively. BSFAB also inhibited keratinocyte-secreted protease activities in basal (plasmin inhibition 37.7%, P < 0.05 and uPA inhibition 96.6%, P < 0.01) and cytokine-induced conditions (plasmin inhibition 41.1%, P < 0.05 and uPA inhibition 97.0%, P < 0.001) and stimulated the gene expression of transglutaminase 1 in cytokine-stimulated keratinocytes (approximately 4.5 times increased expression, P < 0.01). Clinically, BSFAB was shown to improve SC barrier integrity (P < 0.02 on day 29) and subjective improvements in the perception of healthy skin (P < 0.05 on day 28). CONCLUSION BSFAB binds as a reversible competitive inhibitor to the active sites of plasmin and uPA. Additionally, BSFAB positively improved keratinocyte differentiation gene expression (transglutaminase 1). These effects were translated into improvements in SC barrier integrity clinically in subjects with dry and sensitive skin and improved their perception of having a healthy skin condition.
Collapse
Affiliation(s)
- R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - P Wikstroem
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - R Campiche
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - T Steinmetzer
- Philipps University, Department of Pharmacy, Marbacher Weg 6, 35032, Marburg, Germany
| | - E Jackson
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - M Gempeler
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - D Imfeld
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - A V Rawlings
- AVR Consulting Ltd, 26 Shavington Way, Northwich, Cheshire, UK
| |
Collapse
|
16
|
Gaspar NK, Aidé MK. Atopic dermatitis: allergic dermatitis or neuroimmune dermatitis? An Bras Dermatol 2016; 91:479-88. [PMID: 27579744 PMCID: PMC4999107 DOI: 10.1590/abd1806-4841.20164211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/16/2015] [Indexed: 05/05/2023] Open
Abstract
Advances in knowledge of neurocellulars relations have provided new directions in the understanding and treatment of numerous conditions, including atopic dermatitis. It is known that emotional, physical, chemical or biological stimuli can generate more accentuated responses in atopic patients than in non-atopic individuals; however, the complex network of control covered by these influences, especially by neuropeptides and neurotrophins, and their genetic relations, still keep secrets to be revealed. Itching and airway hyperresponsiveness, the main aspects of atopy, are associated with disruption of the neurosensory network activity. Increased epidermal innervation and production of neurotrophins, neuropeptides, cytokines and proteases, in addition to their relations with the sensory receptors in an epidermis with poor lipid mantle, are the aspects currently covered for understanding atopic dermatitis.
Collapse
|
17
|
Raj N, Voegeli R, Rawlings AV, Doppler S, Imfeld D, Munday MR, Lane ME. A fundamental investigation into aspects of the physiology and biochemistry of the stratum corneum in subjects with sensitive skin. Int J Cosmet Sci 2016; 39:2-10. [PMID: 27079667 DOI: 10.1111/ics.12334] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/10/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sensitive skin is a poorly understood skin condition. Defects in stratum corneum (SC) barrier function and/or extrasensory neuronal networks in the epidermis are believed to be involved in the problem. OBJECTIVES This study aimed to unravel the relationships between bleomycin hydrolase (BH) and calpain-1 (C-1), pyrrolidone carboxylic acid (PCA) levels, corneocyte maturation, transglutaminase (TG) and plasmin activities on the cheeks of subjects with sensitive skin. METHODS Forty-eight female Caucasian subjects, Fitzpatrick skin phototypes II-III, with self-perceived sensitive facial skin, were assessed and underwent a capsaicin reactivity test. Expert grading of skin condition was conducted as well as the measurement of transepidermal water loss (TEWL), skin capacitance, SC cohesion and SC integrity. BH, C-1 and plasmin activities were measured as well as PCA levels, plasmin and TG activity. Differential Nile red and involucrin immunostaining was performed to assess corneocyte maturation and size. RESULTS About 52% of the subjects reacted to capsaicin. There were no significant differences between the capsaicin-sensitive and non-capsaicin-sensitive subjects with reference to skin grading, TEWL, skin capacitance and SC cohesion. PCA levels and BH activity were lowest in the capsaicin-sensitive panel (P < 0.05) and were correlated in non-capsaicin-sensitive subjects (r = 0.72). The activity of TG was significantly lower (48%) in the capsaicin-sensitive subjects (P < 0.001) and their corneocytes were less mature and smaller (P ≤ 0.05). SC was estimated to be thinner (6.87 ± 0.28 vs. 8.68 ± 0.26 μm; P = 0.001) in the capsaicin-sensitive subjects with a corresponding shorter SC path length (83.2 ± 4.4 μm and 113.1 ± 4.5 μm; P = 0.001). CONCLUSIONS Despite the physiological similarities between the two groups of sensitive skin subjects, differences in their biochemistry were clearly evident. Lower levels of PCA, BH and TG activities together with a greater number of smaller and immature corneocytes indicate inferior SC maturation in the capsaicin-sensitive subjects. The reduced maturation of corneocytes and thinner SC likely contributes to a greater penetration of capsaicin and the associated increased skin sensitivity.
Collapse
Affiliation(s)
- N Raj
- UCL School of Pharmacy, London, UK
| | - R Voegeli
- DSM Nutritional Products Ltd., Kaiseraugst, Switzerland
| | | | - S Doppler
- DSM Nutritional Products Ltd., Kaiseraugst, Switzerland
| | - D Imfeld
- DSM Nutritional Products Ltd., Kaiseraugst, Switzerland
| | | | - M E Lane
- UCL School of Pharmacy, London, UK
| |
Collapse
|
18
|
Rawlings AV. Molecular basis for stratum corneum maturation and moisturization. Br J Dermatol 2015; 171 Suppl 3:19-28. [PMID: 25234174 DOI: 10.1111/bjd.13303] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2014] [Indexed: 12/31/2022]
Abstract
This themed edition of BJD is dedicated to the work of Professor Ronald Marks for his untiring work on the understanding of stratum corneum (SC) structure and function. He and his coworkers, in my opinion, had the right focus for cosmetic dermatology issues. Namely, consumers experience the wonderful properties of the SC through sight, touch and the somatosensory system. They do not experience, for example, transepidermal water loss and skin conductance or capacitance! Marks understood this and set about developing the methodologies to examine the changes in SC architecture and function when desquamation goes haywire. More importantly, he understood that moisturizers do far more than simply hydrate the SC, as exemplified in the paper by Tree and Marks, 'An explanation for the placebo effect of bland ointment bases.' Moisturizing ingredients influence the properties of the SC in many ways with the sole purpose of overcoming the signs and symptoms of dry skin. Marks demonstrated the decrease in SC cohesion following use of hydrating agents, which led to the mechanistic work on the effects of a simple molecule like glycerol on the desquamatory process. In further exploiting forced desquamation and use of abrasion, he showed that improvements in exfoliation contribute to the mitigation of the signs of photodamaged skin, which can explain part of the antiageing effect of simple moisturizers. It is here that I should point out that at least this particular author in 1988 was 'standing on the shoulders of' a great corneologist whose work influenced his research directions. So this paper will provide an update on the latest developments for the molecular basis of SC maturation and moisturization, while highlighting the contributions of Professor Marks in the different areas.
Collapse
Affiliation(s)
- A V Rawlings
- AVR Consulting Ltd, 26 Shavington Way, Northwich, Cheshire, CW9 8FH, U.K
| |
Collapse
|
19
|
Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015; 14:183-202. [DOI: 10.1038/nrd4534] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Ibrahim ZA, El Ashmawy AA, Abd El-Naby NM, Ghoraba HM. Immunohistochemical expression of cathepsin L in atopic dermatitis and lichen planus. Indian J Dermatol 2015; 60:13-20. [PMID: 25657391 PMCID: PMC4318056 DOI: 10.4103/0019-5154.147779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Cathepsin L is a member of papain superfamily. It seems to promote T-cell survival, selection maturation in the thymus and enhance the antigen presentation. Cathepsin L plays an important role in tumor necrosis factors (TNF-α) induced cell death. Also it degrades the tight junction between cornedesomses in the epidermis. Elevated expression of cathepsin L has been found in many inflammatory and neoplastic diseases. Objective: The aim of this study was to determine immunohistochemical expression of cathepsin L in atopic dermatitis (AD) and lichen planus (LP) patients in order to evaluate its role in the pathogenesis of both diseases. Materials and Methods: This study included 15 patients with AD (Group I), 15 patients with LP (Group II), in addition to 10 healthy skin specimens served as controls (Group III). Punch biopsies were taken from lesional skin of the patients and controls for immunohistochemical detection of cathepsin L expression. Results: Highly significant increase was found in cathepsin L expression in AD and LP patients compared to controls [P = 0.001]. Conclusion: Cathepsin L could be implicated as an important protease in the pathogenesis of AD and LP. It could be a useful marker for assessing AD severity.
Collapse
Affiliation(s)
- Zeinab A Ibrahim
- Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Amal A El Ashmawy
- Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Naeim M Abd El-Naby
- Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Hussein M Ghoraba
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| |
Collapse
|
21
|
Singh B, Haftek M, Harding CR. Retention of corneodesmosomes and increased expression of protease inhibitors in dandruff. Br J Dermatol 2014; 171:760-70. [PMID: 24815089 DOI: 10.1111/bjd.13111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dandruff is a common, relapsing and uncomfortable scalp condition affecting a large proportion of the global population. The appearance of flakes on the scalp and in the hair line, and associated itch are thought to be consequences of a damaged skin barrier, altered corneocyte cohesion and abnormal desquamation in dandruff. The balance between skin proteases and protease inhibitors is essential for driving the key events, including corneodesmosome degradation, in the desquamation process and to maintain stratum corneum (SC) barrier integrity. OBJECTIVES To investigate the distribution of corneodesmosomes, the key component of the SC cohesivity and barrier function, and the protease inhibitors lympho-epithelial Kazal-type-related inhibitor (LEKTI-1) and squamous cell carcinoma antigen (SCCA1) in the scalp of dandruff-affected participants. METHODS The methods utilized were immunohistochemistry, scanning immunoelectron microscopy, phase-contrast microscopy, Western blotting and serine protease activity assay on tape-stripped SC or scalp skin biopsies. RESULTS In SC samples from healthy subjects, corneodesmosomes were peripherally located in the corneocytes. In samples of dandruff lesions, corneodesmosomes were located both peripherally and on the entire surface area of the corneocytes. LEKTI-1 and SCCA1 protein levels and parakeratosis were found to be highly elevated in the lesional samples. CONCLUSIONS The persistence of nonperipheral corneodesmosomes is a characteristic feature of the perturbed desquamation seen in dandruff. The increased expression levels of LEKTI-1 and SCCA1 are consistent with the view that the dandruff condition is characterized by an imbalance in protease-protease inhibitor interaction in the SC.
Collapse
Affiliation(s)
- B Singh
- Unilever Research & Development, Port Sunlight, Bebington, U.K
| | | | | |
Collapse
|
22
|
Fölster-Holst R, Dähnhardt-Pfeiffer S, Dähnhardt D, Proksch E. The role of skin barrier function in atopic dermatitis: an update. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Characterization of Spink6 in mouse skin: the conserved inhibitor of kallikrein-related peptidases is reduced by barrier injury. J Invest Dermatol 2013; 134:1305-1312. [PMID: 24352040 DOI: 10.1038/jid.2013.502] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/14/2013] [Accepted: 10/25/2013] [Indexed: 11/08/2022]
Abstract
The proteolytic regulation of the desquamation process by kallikrein-related peptidases (KLKs) is crucial for epidermal barrier function, and elevated KLK levels have been reported in atopic dermatitis. KLKs are controlled by specific inhibitors of the serine protease inhibitor of Kazal-type (Spink) family. Recently, SPINK6 was shown to be present in human stratum corneum. In order to investigate its role in epidermal barrier function, we studied mouse Spink6. Sequence alignment revealed that the Kazal domain of Spink6 is highly conserved in animals. Recombinant Spink6 efficiently inhibited mouse Klk5 and human KLK2, KLK4, KLK5, KLK6, KLK7, KLK12, KLK13, and KLK14, whereas human KLK1 and KLK8 were not inhibited. Spink6 was expressed in mouse epidermis mainly in the stratum granulosum, and the inner root sheath of hair follicles. Stimulation with flagellin, EGF, and IL-1β did not alter Spink6 expression, whereas stimulation with tumor necrosis factor-α (TNFα)/IFNγ and all-trans retinoic acid resulted in a significant downregulation of Spink6 expression in cultured primary mouse keratinocytes. Mechanically and metabolically induced skin barrier dysfunction resulted both in a downregulation of Spink6 expression. Our study indicates that Spink6 is a potent inhibitor of KLKs and involved in skin barrier function.
Collapse
|
24
|
Devetzi M, Trangas T, Scorilas A, Xynopoulos D, Talieri M. Parallel overexpression and clinical significance of kallikrein-related peptidases 7 and 14 (KLK7KLK14) in colon cancer. Thromb Haemost 2012; 109:716-25. [PMID: 23224034 DOI: 10.1160/th12-07-0518] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
Abstract
Currently available colon cancer (CC) markers lack sensitivity and specificity. Kallikrein-related peptidases (KLKs) present a new class of biomarkers under investigation for diverse diseases, including cancer. KLKs are co-expressed in various tissues participating in proteolytic cascades. KLK7 in human tumours facilitates metastasis by degrading components of the extracellular matrix. KLK14 promotes tumourigenesis by activating proteinase-activated receptors. In the present study we examined the concomitant expression of KLK7 and KLK14 in245 colonic tissue specimens from 175 patients; 70 were pairs of cancerous-normal tissues, 31 were cancerous tissues and 74 were colonic adenomas. We used quantitative real-time PCR and proved that both genes are up-regulated in CC at the mRNA level. Receiver-operating characteristic (ROC) analysis of our results showed that both genes have discriminatory value between CC and adenoma tissues, with KLK14 obtaining greater distinguishing power (area under the curve [AUC]=0.708 for KLK14; AUC=0.669 for KLK7). Current work showed that the two genes are fairly co-expressed in all three types of colon tissues examined (normal rs=0.667, p<0.001, adenomas rs=0.373, p=0.001, carcinomas rs=0.478, p<0.001). KLK14 is associated with shorter disease-free survival (DFS) and overall survival (OS) of patients (p=0.003, p=0.016 respectively), whereas KLK7only with shorter DFS (p=0.004). KLK7 and KLK14 gene expression can be regarded as markers of poor prognosis for CC patients with discriminating power between CC and adenoma patients.
Collapse
Affiliation(s)
- Marina Devetzi
- Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, Saint Savvas Cancer Hospital, 171, Alexandras Avenue, Athens 11522, Greece
| | | | | | | | | |
Collapse
|
25
|
Stratum corneum proteases and dry skin conditions. Cell Tissue Res 2012; 351:217-35. [DOI: 10.1007/s00441-012-1501-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
|