1
|
Liu YL, Li DF, Xu HP, Xiao M, Cheng JW, Zhang L, Xu ZP, Chen XX, Zhang G, Kudinha T, Kong F, Gong YP, Wang XY, Zhang YX, Wu HL, Xu YC. Use of next generation sequence to investigate potential novel macrolide resistance mechanisms in a population of Moraxella catarrhalis isolates. Sci Rep 2016; 6:35711. [PMID: 27774989 PMCID: PMC5075928 DOI: 10.1038/srep35711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Although previous studies have confirmed that 23S rRNA gene mutation could be responsible for most of macrolide resistance in M. catarrhalis, a recent study suggested otherwise. Next generation sequence based comparative genomics has revolutionized the mining of potential novel drug resistant mechanisms. In this study, two pairs of resistant and susceptible M. catarrhalis isolates with different multilocus sequence types, were investigated for potential differential genes or informative single nucleotide polymorphisms (SNPs). The identified genes and SNPs were evaluated in 188 clinical isolates. From initially 12 selected differential genes and 12 informative SNPs, 10 differential genes (mboIA, mcbC, mcbI, mboIB, MCR_1794, MCR_1795, lgt2B/C, dpnI, mcbB, and mcbA) and 6 SNPs (C619T of rumA, T140C of rplF, G643A of MCR_0020, T270G of MCR_1465, C1348A of copB, and G238A of rrmA) were identified as possibly linked to macrolide resistance in M. catarrhalis. Most of the identified differential genes and SNPs are related to methylation of ribosomal RNA (rRNA) or DNA, especially MCR_0020 and rrmA. Further studies are needed to determine the function and/or evolution process, of the identified genes or SNPs, to establish whether some novel or combined mechanisms are truly involved in M. catarrhalis macrolide resistance mechanism.
Collapse
Affiliation(s)
- Ya-Li Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Dong-Fang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - He-Ping Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Jing-Wei Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Li Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Zhi-Peng Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Xin-Xin Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, New South Wales 2687, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales 2145, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales 2145, Australia
| | - Yan-Ping Gong
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Xin-Ying Wang
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Yin-Xin Zhang
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Hong-Long Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| |
Collapse
|
2
|
Shen X, Yang H, Yu S, Yao K, Wang Y, Yuan L, Yang Y. Macrolide-Resistance Mechanisms inStreptococcus pneumoniaeIsolates from Chinese Children in Association with Genes oftetMand Integrase of Conjugative Transposons 1545. Microb Drug Resist 2008; 14:155-61. [PMID: 18479199 DOI: 10.1089/mdr.2008.0773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xuzhuang Shen
- Laboratory of Microbiology and Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hui Yang
- Laboratory of Microbiology and Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shangjie Yu
- Laboratory of Microbiology and Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kaihu Yao
- Laboratory of Microbiology and Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yonghong Wang
- Laboratory of Microbiology and Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lin Yuan
- Laboratory of Microbiology and Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yonghong Yang
- Laboratory of Microbiology and Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Van Bambeke F, Reinert RR, Appelbaum PC, Tulkens PM, Peetermans WE. Multidrug-resistant Streptococcus pneumoniae infections: current and future therapeutic options. Drugs 2008; 67:2355-82. [PMID: 17983256 DOI: 10.2165/00003495-200767160-00005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Antibacterial resistance in Streptococcus pneumoniae is increasing worldwide, affecting principally beta-lactams and macrolides (prevalence ranging between approximately 1% and 90% depending on the geographical area). Fluoroquinolone resistance has also started to emerge in countries with high level of antibacterial resistance and consumption. Of more concern, 40% of pneumococci display multi-drug resistant phenotypes, again with highly variable prevalence among countries. Infections caused by resistant pneumococci can still be treated using first-line antibacterials (beta-lactams), provided the dosage is optimised to cover less susceptible strains. Macrolides can no longer be used as monotherapy, but are combined with beta-lactams to cover intracellular bacteria. Ketolides could be an alternative, but toxicity issues have recently restricted the use of telithromycin in the US. The so-called respiratory fluoroquinolones offer the advantages of easy administration and a spectrum covering extracellular and intracellular pathogens. However, their broad spectrum raises questions regarding the global risk of resistance selection and their safety profile is far from optimal for wide use in the community. For multi-drug resistant pneumococci, ketolides and fluoroquinolones could be considered. A large number of drugs with activity against these multi-drug resistant strains (cephalosporins, carbapenems, glycopeptides, lipopeptides, ketolides, lincosamides, oxazolidinones, glycylcyclines, quinolones, deformylase inhibitors) are currently in development. Most of them are only new derivatives in existing classes, with improved intrinsic activity or lower susceptibility to resistance mechanisms. Except for the new fluoroquinolones, these agents are also primarily targeted towards methicillin-resistant Staphylococcus aureus infections; therefore, demonstration of their clinical efficacy in the management of pneumococcal infections is still awaited.
Collapse
Affiliation(s)
- Françoise Van Bambeke
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
4
|
Souli M, Volonakis K, Kapaskelis A, Galani I, Grammelis V, Vorou R, Tsivra M, Chryssouli Z, Katsala D, Giamarellou H. Characterisation of macrolide-non-susceptible Streptococcus pneumoniae colonising children attending day-care centres in Athens, Greece during 2000 and 2003. Clin Microbiol Infect 2007; 13:70-7. [PMID: 17184290 DOI: 10.1111/j.1469-0691.2006.01555.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nasopharyngeal Streptococcus pneumoniae isolates colonising young children are representative of isolates causing clinical disease. This study determined the frequency of macrolide-non-susceptible pneumococci, as well as their phenotypic and genotypic characteristics, among pneumococci collected during two cross-sectional surveillance studies of the nasopharynx of 2847 children attending day-care centres in the Athens metropolitan area during 2000 and 2003. In total, 227 macrolide-non-susceptible pneumococcal isolates were studied. Increases in macrolide non-susceptibility, from 23% to 30.3% (p <0.05), and in macrolide and penicillin co-resistance, from 3.4% to 48.6% (p <0.001), were identified during the study period. The M resistance phenotype, associated with the presence of the mef(A)/(E) gene, predominated in both surveys, and isolates carrying both mef(A)/(E) and erm(AM) were identified, for the first time in Greece, among the isolates from the 2003 survey. Pulsed-field gel electrophoresis analysis of the isolates from the 2000 survey indicated the spread of a macrolide- and penicillin-resistant clone among day-care centres. The serogroups identified most commonly in the study were 19F, 6A, 6B, 14 and 23F, suggesting that the theoretical protection of the seven-valent conjugate vaccine against macrolide-non-susceptible isolates was c. 85% during both study periods.
Collapse
Affiliation(s)
- M Souli
- Fourth Department of Internal Medicine, Athens University School of Medicine, University General Hospital Attikon, Chaidari, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stratchounski LS, Kozlov RS, Appelbaum PC, Kretchikova OI, Kosowska-Shick K. Antimicrobial resistance of nasopharyngeal pneumococci from children from day-care centres and orphanages in Russia: results of a unique prospective multicentre study. Clin Microbiol Infect 2006; 12:853-66. [PMID: 16882290 DOI: 10.1111/j.1469-0691.2006.01505.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study assessed the antimicrobial resistance of nasopharyngeal pneumococci isolated from children aged < 5 years in day-care centres and orphanages throughout Russia during 2001-2002. Swabs were collected from 2484 children in 43 day-care centres and eight orphanages in 11 cities of European Russia, and from 1669 children in 37 day-care centres and three orphanages in eight cities of Asian Russia, with a total of 1144 and 912 Streptococcus pneumoniae isolates being recovered in European and Asian Russia, respectively. All macrolide-non-susceptible (MICs 0.5-128 mg/L) and fluoroquinolone-non-susceptible (ciprofloxacin MICs > or = 4 mg/L) isolates were tested for resistance mechanisms and clonal relatedness. Non-susceptibility rates, by CLSI criteria, were 19.3%, 0.9% and 0.4% for penicillin G, cefotaxime and amoxycillin-clavulanate, respectively. Resistance to macrolides and lincosamides was also relatively low, i.e., < 7% for clindamycin and 14- and 15-membered macrolides. The highest rates of non-susceptibility were for tetracycline and co-trimoxazole (52.0% and 64.5%, respectively). No clones resistant to ciprofloxacin (MICs > or = 8 mg/L) were found, but 1.7% of isolates were non-susceptible (MIC 4 mg/L). No resistance was found to levofloxacin, gemifloxacin, telithromycin or vancomycin. Pulsed-field gel electrophoresis analysis showed no relationship between ciprofloxacin- and macrolide-non-susceptible isolates in European and Asian Russia. Resistance among macrolide-resistant isolates resulted mostly from the presence of erm(B) and mef(A), and from changes in L4; additionally, L22 mutations were common in isolates from Asian Russia. Non-susceptibility to quinolones was associated with mutations in parC and parE among European isolates. Asian Russian isolates had mutations in parC and gyrA, and alterations in parE were more common. There were substantial differences in non-susceptibility and mechanisms of resistance between pneumococci from Asian and European Russia, with orphanages appearing to be 'hot-spots' of resistance.
Collapse
|
6
|
Wierzbowski AK, Boyd D, Mulvey M, Hoban DJ, Zhanel GG. Expression of the mef(E) gene encoding the macrolide efflux pump protein increases in Streptococcus pneumoniae with increasing resistance to macrolides. Antimicrob Agents Chemother 2006; 49:4635-40. [PMID: 16251306 PMCID: PMC1280166 DOI: 10.1128/aac.49.11.4635-4640.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active macrolide efflux is a major mechanism of macrolide resistance in Streptococcus pneumoniae in many parts of the world, especially North America. In Canada, this active macrolide efflux in S. pneumoniae is predominantly due to acquisition of the mef(E) gene. In the present study, we assessed the mef(E) gene sequence as well as mef(E) expression in variety of low- and high-level macrolide-resistant, clindamycin-susceptible (M-phenotype) S. pneumoniae isolates (erythromycin MICs, 1 to 32 microg/ml; clindamycin MICs, < or = 0.25 microg/ml). Southern blot hybridization with mef(E) probe and EcoRI digestion and relative real-time reverse transcription-PCR were performed to study the mef(E) gene copy number and expression. Induction of mef(E) expression was analyzed by Etest susceptibility testing pre- and postincubation with subinhibitory concentrations of erythromycin, clarithromycin, azithromycin, telithromycin, and clindamycin. The macrolide efflux gene, mef(E), was shown to be a single-copy gene in all 23 clinical S. pneumoniae isolates tested, and expression post-macrolide induction increased 4-, 6-, 20-, and 200-fold in isolates with increasing macrolide resistance (erythromycin MICs 2, 4, 8, and 32 microg/ml, respectively). Sequencing analysis of the macrolide efflux genetic assembly (mega) revealed that mef(E) had a 16-bp deletion 153 bp upstream of the putative start codon in all 23 isolates. A 119-bp intergenic region between mef(E) and mel was sequenced, and a 99-bp deletion was found in 11 of the 23 M-phenotype S. pneumoniae isolates compared to the published mega sequence. However, the mef(E) gene was fully conserved among both high- and low-level macrolide-resistant isolates. In conclusion, increased expression of mef(E) is associated with higher levels of macrolide resistance in macrolide-resistant S. pneumoniae.
Collapse
Affiliation(s)
- Aleksandra K Wierzbowski
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|