1
|
Baldes N, Bölükbas S. [Not Available]. Zentralbl Chir 2022; 147:287-298. [PMID: 35104898 DOI: 10.1055/a-1720-2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Inflammatory diseases of the lung and pleura in children and adolescents cover a broad spectrum, including complicated pneumonia, tuberculosis, mycoses, and hydatid disease. Their frequency strongly depends on the geographical origin. The following article gives an overview - from diagnosis to surgical treatment of these diseases in the paediatric population.
Collapse
Affiliation(s)
- Natalie Baldes
- Klinik für Thoraxchirurgie, KEM Kliniken Essen-Mitte, Essen, Deutschland
| | - Servet Bölükbas
- Klinik für Thoraxchirurgie, KEM Kliniken Essen-Mitte, Essen, Deutschland
| |
Collapse
|
2
|
Streptococcus Pneumoniae-Associated Hemolytic Uremic Syndrome in the Era of Pneumococcal Vaccine. Pathogens 2021; 10:pathogens10060727. [PMID: 34207609 PMCID: PMC8227211 DOI: 10.3390/pathogens10060727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 01/09/2023] Open
Abstract
Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS) is a serious complication of invasive pneumococcal disease that is associated with increased mortality in the acute phase and morbidity in the long term. Recently, Sp-HUS definition has undergone revision and cases are categorized as definite, probable, and possible, based on less invasive serological investigations that evaluate Thomsen-Friedenreich crypt antigen (T-antigen) activation. In comparison to the pre-vaccine era, Sp-HUS incidence seems to be decreasing after the introduction of 7-serotype valence and 13-serotype valence pneumococcal vaccines in 2000 and 2010, respectively. However, Sp-HUS cases continue to occur secondary to vaccine failure and emergence of non-vaccine/replacement serotypes. No single hypothesis elucidates the molecular basis for Sp-HUS occurrence, although pneumococcal neuraminidase production and formation of T-antigen antibody complexes on susceptible endothelial and red blood cells continues to remain the most acceptable explanation. Management of Sp-HUS patients remains supportive in nature and better outcomes are being reported secondary to earlier recognition, better diagnostic tools and improved medical care. Recently, the addition of eculizumab therapy in the management of Sp-HUS for control of dysregulated complement activity has demonstrated good outcomes, although randomized clinical trials are awaited. A sustained pneumococcal vaccination program and vigilance for replacement serotypes will be the key for persistent reduction in Sp-HUS cases worldwide.
Collapse
|
3
|
Carloni I, Ricci S, Rubino C, Cobellis G, Rinaldelli G, Azzari C, de Benedictis FM. Necrotizing pneumonia among Italian children in the pneumococcal conjugate vaccine era. Pediatr Pulmonol 2021; 56:1127-1135. [PMID: 33442941 DOI: 10.1002/ppul.25270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Necrotizing pneumonia (NP) is a severe complication of community-acquired pneumonia. The impact of 13-valent pneumococcal conjugate vaccine (PCV13) on the epidemiology of NP in children has not been assessed. PATIENTS AND METHODS Medical records of children less than 18 years admitted with NP to two pediatric hospitals in Italy between 2005 and 2019 were reviewed. The following four periods were defined: 2005-2010 (pre-PCV13), 2011-2013 (early post-PCV13), 2014-2016 (intermediate post-PCV13), and 2017-2019 (late post-PCV13). RESULTS Forty-three children (median age, 44 months) were included. Most of them (93%) were previously healthy. No differences in age, sex, season of admission, comorbidity, clinical presentation, or hospital course were identified between pre-PCV13 and post-PCV13 periods. A significant decrease in the rate of NP-associated hospitalizations was found between the early (1.5/1000 admissions/year) and the intermediate (0.35/1000 admissions/year) post-PCV13 period (p = .001). An increased trend in admissions was found thereafter. Streptococcus pneumoniae was the most common agent detected in both periods (pre-PCV13: 11/18, 61%; post-PCV13: 13/25, 52%). Serotype 3 was the most common strain in both periods (pre-PCV13: 3/11, 27%; post-PCV13; 4/13, 31%). There were no changes in the etiology over time, but most patients with Streptococcus pyogenes or Staphylococcus aureus infection were admitted during the post-PCV13 period. CONCLUSIONS The hospitalization rate for NP in children decreased a few years after the implementation of PCV13 immunization in Italy. However, an increased trend in admissions was found thereafter. S. pneumoniae was the most frequent causal agent in both pre- and post-PCV13 periods. Pneumococcal serotypes were mainly represented by Strain 3.
Collapse
Affiliation(s)
- Ines Carloni
- Pediatric Infectious Disease Unit, Department of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
| | - Silvia Ricci
- Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | - Chiara Rubino
- Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | - Giovanni Cobellis
- Pediatric Surgery Unit, Department of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
| | - Giampaolo Rinaldelli
- Pediatric Intensive Care Unit, Department of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
| | - Chiara Azzari
- Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | | |
Collapse
|
4
|
Scobell RR, Kaplan BS, Copelovitch L. New insights into the pathogenesis of Streptococcus pneumoniae-associated hemolytic uremic syndrome. Pediatr Nephrol 2020; 35:1585-1591. [PMID: 31515631 DOI: 10.1007/s00467-019-04342-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to describe Streptococcus pneumoniae-associated hemolytic uremic syndrome (P-HUS) with emphasis on new insights into the pathophysiology and management over the past 10 years. Even though awareness of this clinico-pathological entity has increased, it likely remains under-recognized. Recent observations indicate that although neuraminidase activity and exposure of the T-antigen are necessary for development of P-HUS, they are not sufficient; activation of the alternate pathway of complement may also contribute. It is unclear, however, whether or not eculizumab and/or plasmapheresis are of value.
Collapse
Affiliation(s)
- Rebecca R Scobell
- Division of Nephrology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Bernard S Kaplan
- Division of Nephrology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Lawrence Copelovitch
- Division of Nephrology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Rose MA, Barker M, Liese J, Adams O, Ankermann T, Baumann U, Brinkmann F, Bruns R, Dahlheim M, Ewig S, Forster J, Hofmann G, Kemen C, Lück C, Nadal D, Nüßlein T, Regamey N, Riedler J, Schmidt S, Schwerk N, Seidenberg J, Tenenbaum T, Trapp S, van der Linden M. [Guidelines for the Management of Community Acquired Pneumonia in Children and Adolescents (Pediatric Community Acquired Pneumonia, pCAP) - Issued under the Responsibility of the German Society for Pediatric Infectious Diseases (DGPI) and the German Society for Pediatric Pulmonology (GPP)]. Pneumologie 2020; 74:515-544. [PMID: 32823360 DOI: 10.1055/a-1139-5132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present guideline aims to improve the evidence-based management of children and adolescents with pediatric community-acquired pneumonia (pCAP). Despite a prevalence of approx. 300 cases per 100 000 children per year in Central Europe, mortality is very low. Prevention includes infection control measures and comprehensive immunization. The diagnosis can and should be established clinically by history, physical examination and pulse oximetry, with fever and tachypnea as cardinal features. Additional signs or symptoms such as severely compromised general condition, poor feeding, dehydration, altered consciousness or seizures discriminate subjects with severe pCAP from those with non-severe pCAP. Within an age-dependent spectrum of infectious agents, bacterial etiology cannot be reliably differentiated from viral or mixed infections by currently available biomarkers. Most children and adolescents with non-severe pCAP and oxygen saturation > 92 % can be managed as outpatients without laboratory/microbiology workup or imaging. Anti-infective agents are not generally indicated and can be safely withheld especially in children of young age, with wheeze or other indices suggesting a viral origin. For calculated antibiotic therapy, aminopenicillins are the preferred drug class with comparable efficacy of oral (amoxicillin) and intravenous administration (ampicillin). Follow-up evaluation after 48 - 72 hours is mandatory for the assessment of clinical course, treatment success and potential complications such as parapneumonic pleural effusion or empyema, which may necessitate alternative or add-on therapy.
Collapse
Affiliation(s)
- M A Rose
- Fachbereich Medizin, Johann-Wolfgang-Goethe-Universität Frankfurt/Main und Zentrum für Kinder- und Jugendmedizin, Klinikum St. Georg Leipzig
| | - M Barker
- Klinik für Kinder- und Jugendmedizin, Helios Klinikum Emil von Behring, Berlin
| | - J Liese
- Kinderklinik und Poliklinik, Universitätsklinikum an der Julius-Maximilians-Universität Würzburg, Würzburg
| | - O Adams
- Institut für Virologie, Universitätsklinikum Düsseldorf
| | - T Ankermann
- Klinik für Kinder- und Jugendmedizin 1, Universitätsklinikum Schleswig-Holstein, Campus Kiel
| | - U Baumann
- Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover
| | - F Brinkmann
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Ruhr-Universität Bochum
| | - R Bruns
- Zentrum für Kinder- und Jugendmedizin, Ernst-Moritz-Arndt-Universität Greifswald
| | - M Dahlheim
- Praxis für Kinderpneumologie und Allergologie, Mannheim
| | - S Ewig
- Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Bochum/Herne
| | - J Forster
- Kinderabteilung St. Hedwig, St. Josefskrankenhaus , Freiburg und Merzhausen
| | | | - C Kemen
- Katholisches Kinderkrankenhaus Wilhelmstift, Hamburg
| | - C Lück
- Institut für Medizinische Mikrobiologie und Hygiene, Technische Universität Dresden
| | - D Nadal
- Kinderspital Zürich, Schweiz
| | - T Nüßlein
- Klinik für Kinder- und Jugendmedizin, Gemeinschaftsklinikum Mittelrhein, Koblenz
| | - N Regamey
- Pädiatrische Pneumologie, Kinderspital Luzern, Schweiz
| | - J Riedler
- Kinder- und Jugendmedizin, Kardinal Schwarzenberg'sches Krankenhaus, Schwarzach, Österreich
| | - S Schmidt
- Zentrum für Kinder- und Jugendmedizin, Ernst-Moritz-Arndt-Universität Greifswald
| | - N Schwerk
- Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover
| | - J Seidenberg
- Klinik für pädiatrische Pneumologie und Allergologie, Neonatologie, Intensivmedizin und Kinderkardiologie, Klinikum Oldenburg
| | - T Tenenbaum
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Mannheim
| | | | - M van der Linden
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Aachen
| |
Collapse
|
6
|
Li H, Lin L, Chong L, Gu S, Wen S, Yu G, Hu X, Dong L, Zhang H, Li C. Time-resolved mRNA and miRNA expression profiling reveals crucial coregulation of molecular pathways involved in epithelial-pneumococcal interactions. Immunol Cell Biol 2020; 98:726-742. [PMID: 32592597 PMCID: PMC7586809 DOI: 10.1111/imcb.12371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a major causative agent of pneumonia worldwide and its complex interaction with the lung epithelium has not been thoroughly characterized. In this study, we exploited both RNA‐sequencing and microRNA (miRNA)‐sequencing approaches to monitor the transcriptional changes in human lung alveolar epithelial cells infected by S. pneumoniae in a time‐resolved manner. A total of 1330 differentially expressed (DE) genes and 45 DE miRNAs were identified in all comparisons during the infection process. Clustering analysis showed that all DE genes were grouped into six clusters, several of which were primarily involved in inflammatory or immune responses. In addition, target gene enrichment analyses identified 11 transcription factors that were predicted to link at least one of four clusters, revealing transcriptional coregulation of multiple processes or pathways by common transcription factors. Notably, pharmacological treatment suggested that phosphorylation of p65 is important for optimal transcriptional regulation of target genes in epithelial cells exposed to pathogens. Furthermore, network‐based clustering analysis separated the DE genes negatively regulated by DE miRNAs into two functional modules (M1 and M2), with an enrichment in immune responses and apoptotic signaling pathways for M1. Integrated network analyses of potential regulatory interactions in M1 revealed that multiple DE genes related to immunity and apoptosis were regulated by multiple miRNAs, indicating the coordinated regulation of multiple genes by multiple miRNAs. In conclusion, time‐series expression profiling of messenger RNA and miRNA provides a wealth of information for global transcriptional changes, and offers comprehensive insight into the molecular mechanisms underlying host–pathogen interactions.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chong
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuge Gu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shunhang Wen
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Yu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoguang Hu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Dong
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changchong Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Chen YC, Chen HH, Janapatla RP, Dudek A, Hsu MH, Chen CL, Chiu CH. Thomsen-Friedenreich antigen activation as a predictor for clinical outcome of pediatric patients with invasive pneumococcal disease. Pediatr Neonatol 2020; 61:338-342. [PMID: 32156480 DOI: 10.1016/j.pedneo.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/17/2019] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The most severe form of pneumococcal disease is invasive pneumococcal disease (IPD), including empyema, sepsis and meningitis. Thomsen-Friedenreich antigen (TA; Galβ1-3GalNAc) activation is known to be a predictor of Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS). There have been limited data to correlate TA activation and overall disease severity of IPD in children. The study aimed to prove the positive correlation between TA activation and disease severity and to demonstrate the trend of TA level during the disease course. METHODS We retrospectively reviewed the medical records from 38 pediatric patients aged from 0 to 18 years with microbiologically-confirmed IPD between 2010 and 2015 at a medical center in Taiwan. All cases underwent TA activation testing by the fluorescence-labeled peanut lectin agglutination method. Medical information including demographic data, laboratory findings, co-morbidities, and outcome was collected and reviewed. We compared the clinical manifestations and associated co-morbidities between TA-positive and TA-negative patients. RESULTS Among the 38 patients, 25 (66%) showed TA activation. Compared to TA-negative patients, patients with TA activation had a statistically higher rate of prolonged anemia, thrombocytopenia, and acute kidney injury. TA-positive patients also had a longer intensive care unit stay and overall hospitalization days. The TA levels usually peaked 5-10 days after disease onset. Twenty-one pneumococcal isolates were recovered from the patients and serotyping was determined in 11 isolates: 10 serotype 19A and 1 serotype 3. CONCLUSIONS TA determination not only helps to diagnose Sp-HUS but also is a predictor for IPD severity. Among hospitalized patients with severe pneumococcal disease, the peak of TA level usually appeared 5-10 days after disease onset.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Hang Chen
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | - Anna Dudek
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Hua Hsu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Chuang CH. Alteration of glycosylation as a biomarker for invasive pneumococcal disease. Pediatr Neonatol 2020; 61:251-252. [PMID: 32482332 DOI: 10.1016/j.pedneo.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Chih-Hsien Chuang
- Department of Pediatrics, St. Paul's Hospital, Taoyuan, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
9
|
Syed S, Hakala P, Singh AK, Lapatto HAK, King SJ, Meri S, Jokiranta TS, Haapasalo K. Role of Pneumococcal NanA Neuraminidase Activity in Peripheral Blood. Front Cell Infect Microbiol 2019; 9:218. [PMID: 31297339 PMCID: PMC6608562 DOI: 10.3389/fcimb.2019.00218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
The most frequent form of hemolytic-uremic syndrome (HUS) is associated with infections caused by Shiga-like toxin-producing Enterohaemorrhagic Escherichia coli (STEC). In rarer cases HUS can be triggered by Streptococcus pneumoniae. While production of Shiga-like toxins explains STEC-HUS, the mechanisms of pneumococcal HUS are less well-known. S. pneumoniae produces neuraminidases with activity against cell surface sialic acids that are critical for factor H-mediated complement regulation on cells and platelets. The aim of this study was to find out whether S. pneumoniae neuraminidase NanA could trigger complement activation and hemolysis in whole blood. We studied clinical S. pneumoniae isolates and two laboratory strains, a wild-type strain expressing NanA, and a NanA deletion mutant for their ability to remove sialic acids from various human cells and platelets. Red blood cell lysis and activation of complement was measured ex vivo by incubating whole blood with bacterial culture supernatants. We show here that NanA expressing S. pneumoniae strains and isolates are able to remove sialic acids from cells, and platelets. Removal of sialic acids by NanA increased complement activity in whole blood, while absence of NanA blocked complement triggering and hemolytic activity indicating that removal of sialic acids by NanA could potentially trigger pHUS.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Pipsa Hakala
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Anirudh K Singh
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Microbiology, Medical College, All India Institute of Medical Sciences, Bhopal, India
| | - Helena A K Lapatto
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Samantha J King
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,SYNLAB Finland, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2019; 9:1521-1538. [PMID: 30289054 PMCID: PMC6177239 DOI: 10.1080/21505594.2018.1520545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae isolates express up to three neuraminidases (sialidases), NanA, NanB and NanC, all of which cleave the terminal sialic acid of glycan-structures that decorate host cell surfaces. Most research has focused on the role of NanA with limited investigations evaluating the roles of all three neuraminidases in host-pathogen interactions. We generated two highly potent monoclonal antibodies (mAbs), one that blocks the enzymatic activity of NanA and one cross-neutralizing NanB and NanC. Total neuraminidase activity of clinical S. pneumoniae isolates could be inhibited by this mAb combination in enzymatic assays. To detect desialylation of cell surfaces by pneumococcal neuraminidases, primary human tracheal/bronchial mucocilial epithelial tissues were infected with S. pneumoniae and stained with peanut lectin. Simultaneous targeting of the neuraminidases was required to prevent desialylation, suggesting that inhibition of NanA alone is not sufficient to preserve terminal lung glycans. Importantly, we also found that all three neuraminidases increased the interaction of S. pneumoniae with human airway epithelial cells. Lectin-staining of lung tissues of mice pre-treated with mAbs before intranasal challenge with S. pneumoniae confirmed that both anti-NanA and anti-NanBC mAbs were required to effectively block desialylation of the respiratory epithelium in vivo. Despite this, no effect on survival, reduction in pulmonary bacterial load, or significant changes in cytokine responses were observed. This suggests that neuraminidases have no pivotal role in this murine pneumonia model that is induced by high bacterial challenge inocula and does not progress from colonization as it happens in the human host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Karin Groß
- a Arsanis Biosciences , Vienna , Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xiao A, Slack TJ, Li Y, Shi D, Yu H, Li W, Liu Y, Chen X. Streptococcus pneumoniae Sialidase SpNanB-Catalyzed One-Pot Multienzyme (OPME) Synthesis of 2,7-Anhydro-Sialic Acids as Selective Sialidase Inhibitors. J Org Chem 2018; 83:10798-10804. [PMID: 30105908 DOI: 10.1021/acs.joc.8b01519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Streptococcus pneumoniae sialidase SpNanB is an intramolecular trans-sialidase (IT-sialidase) and a virulence factor that is essential for streptococcal infection of the upper and lower respiratory tract. SpNanB catalyzes the formation of 2,7-anhydro- N-acetylneuraminic acid (2,7-anhydro-Neu5Ac), a potential prebiotic that can be used as the sole carbon source of a common human gut commensal anaerobic bacterium. We report here the development of an efficient one-pot multienzyme (OPME) system for synthesizing 2,7-anhydro-Neu5Ac and its derivatives. Based on a crystal structure analysis, an N-cyclohexyl derivative of 2,7-anhydro-neuraminic acid was designed, synthesized, and shown to be a selective inhibitor against SpNanB and another Streptococcus pneumoniae sialidase SpNanC. This study demonstrates a new strategy of synthesizing 2,7-anhydro-sialic acids in a gram scale and the potential application of their derivatives as selective sialidase inhibitors.
Collapse
Affiliation(s)
- An Xiao
- Department of Chemistry , University of California , One Shields Avenue , Davis , California 95616 , United States
| | - Teri J Slack
- Department of Chemistry , University of California , One Shields Avenue , Davis , California 95616 , United States
| | - Yanhong Li
- Department of Chemistry , University of California , One Shields Avenue , Davis , California 95616 , United States
| | - Dashuang Shi
- Children's National Medical Center , 111 Michigan Ave , NW, Washington, DC 20012 , United States
| | - Hai Yu
- Department of Chemistry , University of California , One Shields Avenue , Davis , California 95616 , United States
| | - Wanqing Li
- Department of Chemistry , University of California , One Shields Avenue , Davis , California 95616 , United States
| | - Yang Liu
- Children's National Medical Center , 111 Michigan Ave , NW, Washington, DC 20012 , United States
| | - Xi Chen
- Department of Chemistry , University of California , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
12
|
Janapatla RP, Chen CL, Hsu MH, Liao WT, Chiu CH. Immunization with pneumococcal neuraminidases NanA, NanB and NanC to generate neutralizing antibodies and to increase survival in mice. J Med Microbiol 2018; 67:709-723. [PMID: 29557769 DOI: 10.1099/jmm.0.000724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose. Pneumococcal virulence protein-based vaccines can provide serotype-independent protection against pneumococcal infections. Many studies, including clinical observational studies on Thomsen-Friedenrich antigen exposure and haemolytic uremic syndrome, defined the role of neuraminidases NanA, NanB and NanC in host-pneumococcus interaction. Since neuraminidases are major virulence proteins, they are potential targets for both vaccines and small molecule inhibitors. Here we explored the utility of three neuraminidases as protein vaccine antigens to generate neutralizing antibodies and to increase survival following pneumococcal infections.Methodology. Rabbits and mice were immunized subcutaneously with enzymatically active recombinant NanA, NanB and NanC as individual or a combination of the three neuraminidases. Antisera titres were determined by ELISA. Neuraminidase activity inhibition by antiserum was tested by peanut lectin and flow cytometry. Clinical isolates with serotype 3, 6B, 14, 15B, 19A and 23F were used to infect immunized mice by tail vein injection.Results/Key findings. Presence of high levels of IgG antibodies in antisera against NanA, NanB and NanC indicates that all of the three neuraminidases are immunogenic vaccine antigens. To generate potent NanA neutralizing antibodies, both lectin and catalytic domains are essential, whereas for NanB and NanC a single lectin domain is sufficient. Immunization with triple neuraminidases increased the survival of mice when intravenously challenged with clinical isolates of serotype 3 (40 %), 6B (60 %), 15B (60 %), 19A (40 %) and 23F (30 %).Conclusion. We recommend the inclusion of three pneumococcal neuraminidases in future protein vaccine formulations to prevent invasive pneumococcal infection caused by various serotypes.
Collapse
Affiliation(s)
| | - Chyi-Liang Chen
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Mei-Hua Hsu
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Wan-Ting Liao
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, ROC.,Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
13
|
Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018; 592:3865-3897. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
14
|
Walsh PR, Johnson S. Treatment and management of children with haemolytic uraemic syndrome. Arch Dis Child 2018; 103:285-291. [PMID: 28899876 DOI: 10.1136/archdischild-2016-311377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 11/03/2022]
Abstract
Haemolytic uraemic syndrome (HUS), comprising microangiopathic haemolytic anaemia, thrombocytopaenia and acute kidney injury, remains the leading cause of paediatric intrinsic acute kidney injury, with peak incidence in children aged under 5 years. HUS most commonly occurs following infection with Shiga toxin-producing Escherichia coli (STEC-HUS). Additionally, HUS can occur as a result of inherited or acquired dysregulation of the alternative complement cascade (atypical HUS or aHUS) and in the setting of invasive pneumococcal infection. The field of HUS has been transformed by the discovery of the central role of complement in aHUS and the dawn of therapeutic complement inhibition. Herein, we address these three major forms of HUS in children, review the latest evidence for their treatment and discuss the management of STEC infection from presentation with bloody diarrhoea, through to development of fulminant HUS.
Collapse
Affiliation(s)
- Patrick R Walsh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,National Renal Complement Therapeutic Centre, Newcastle upon Tyne, UK
| | - Sally Johnson
- National Renal Complement Therapeutic Centre, Newcastle upon Tyne, UK.,Department of Paediatric Nephrology, Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Masters IB, Isles AF, Grimwood K. Necrotizing pneumonia: an emerging problem in children? Pneumonia (Nathan) 2017; 9:11. [PMID: 28770121 PMCID: PMC5525269 DOI: 10.1186/s41479-017-0035-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In children, necrotizing pneumonia (NP) is an uncommon, severe complication of pneumonia. It is characterized by destruction of the underlying lung parenchyma resulting in multiple small, thin-walled cavities and is often accompanied by empyema and bronchopleural fistulae. REVIEW NP in children was first reported in children in 1994, and since then there has been a gradual increase in cases, which is partially explained by greater physician awareness and use of contrast computed tomography (CT) scans, and by temporal changes in circulating respiratory pathogens and antibiotic prescribing. The most common pathogens detected in children with NP are pneumococci and Staphylococcus aureus. The underlying disease mechanisms are poorly understood, but likely relate to multiple host susceptibility and bacterial virulence factors, with viral-bacterial interactions also possibly having a role. Most cases are in previously healthy young children who, despite adequate antibiotic therapy for bacterial pneumonia, remain febrile and unwell. Many also have evidence of pleural effusion, empyema, or pyopneumothorax, which has undergone drainage or surgical intervention without clinical improvement. The diagnosis is generally made by chest imaging, with CT scans being the most sensitive, showing loss of normal pulmonary architecture, decreased parenchymal enhancement and multiple thin-walled cavities. Blood culture and culture and molecular testing of pleural fluid provide a microbiologic diagnosis in as many as 50% of cases. Prolonged antibiotics, draining pleural fluid and gas that causes mass effects, and maintaining ventilation, circulation, nutrition, fluid, and electrolyte balance are critical components of therapy. Despite its serious nature, death is uncommon, with good clinical, radiographic and functional recovery achieved in the 5-6 months following diagnosis. Increased knowledge of NP's pathogenesis will assist more rapid diagnosis and improve treatment and, ultimately, prevention. CONCLUSION It is important to consider that our understanding of NP is limited to individual case reports or small case series, and treatment data from randomized-controlled trials are lacking. Furthermore, case series are retrospective and usually confined to single centers. Consequently, these studies may not be representative of patients in other locations, especially when allowing for temporal changes in pathogen behaviour and differences in immunization schedules and antibiotic prescribing practices.
Collapse
Affiliation(s)
- I. Brent Masters
- Department of Respiratory and Sleep Medicine, Lady Cilento Children’s Hospital, South Brisbane, QLD Australia
| | - Alan F. Isles
- Department of Respiratory and Sleep Medicine, Lady Cilento Children’s Hospital, South Brisbane, QLD Australia
| | - Keith Grimwood
- School of Medicine and Menzies Health Institute Queensland, Gold Coast campus, Griffith University, Building G40, Southport Gold Coast, QLD Australia
- Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Southport Gold Coast, QLD Australia
| |
Collapse
|
16
|
Park JY, Hwan Lim S, Ram Kim B, Jae Jeong H, Kwon HJ, Song GY, Bae Ryu Y, Song Lee W. Sialidase inhibitory activity of diarylnonanoid and neolignan compounds extracted from the seeds of Myristica fragrans. Bioorg Med Chem Lett 2017; 27:3060-3064. [DOI: 10.1016/j.bmcl.2017.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
|
17
|
Singh AK, Osman AS, Woodiga SA, White P, Mahan JD, King SJ. Defining the role of pneumococcal neuraminidases and O-glycosidase in pneumococcal haemolytic uraemic syndrome. J Med Microbiol 2016; 65:975-984. [PMID: 27469261 DOI: 10.1099/jmm.0.000322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The host and bacterial factors that lead to development of pneumococcal haemolytic uraemic syndrome (pHUS) remain poorly defined; however, it is widely believed that pneumococcal exposure of the Thomsen-Friedenreich antigen (T-antigen) on host surfaces is a key step in pathogenesis. Two enzymatic activities encoded by pneumococci determine the level of T-antigen exposed. Neuraminidases cleave terminal sialic acid to expose the T-antigen which is subsequently cleaved by O-glycosidase Eng. While a handful of studies have examined the role of neuraminidases in T-antigen exposure, no studies have addressed the potential role of O-glycosidase. This study used 29 pHUS isolates from the USA and 31 serotype-matched controls. All isolates contained eng, and no significant correlation between enzymatic activity and disease state (pHUS and blood non-pHUS isolates) was observed. A prior study from Taiwan suggested that neuraminidase NanC contributes to the development of pHUS. However, we observed no difference in nanC distribution. Similar to previously published data, we found no significant correlation between neuraminidase activity and disease state. Accurate quantification of these enzymatic activities from bacteria grown in whole blood is currently impossible, but we confirmed that there were no significant correlations between disease state and neuraminidase and O-glycosidase transcript levels after incubation in blood. Genomic sequencing of six pHUS isolates did not identify any genetic elements possibly contributing to haemolytic uraemic syndrome. These findings support the hypothesis that while exposure of T-antigen may be an important step in disease pathogenesis, host factors likely play a substantial role in determining which individuals develop haemolytic uraemic syndrome after pneumococcal invasive disease.
Collapse
Affiliation(s)
- Anirudh K Singh
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amin S Osman
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shireen A Woodiga
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - John D Mahan
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA.,Department of Nephrology, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Samantha J King
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
18
|
Evolutionary inactivation of a sialidase in group B Streptococcus. Sci Rep 2016; 6:28852. [PMID: 27352769 PMCID: PMC4926279 DOI: 10.1038/srep28852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/10/2016] [Indexed: 11/17/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of bacterial sepsis and meningitis in newborns. GBS possesses a protein with homology to the pneumococcal virulence factor, NanA, which has neuraminidase (sialidase) activity and promotes blood-brain barrier penetration. However, phylogenetic sequence and enzymatic analyses indicate the GBS NanA ortholog has lost sialidase function – and for this distinction we designate the gene and encoded protein nonA/NonA. Here we analyze NonA function in GBS pathogenesis, and through heterologous expression of active pneumococcal NanA in GBS, potential costs of maintaining sialidase function. GBS wild-type and ΔnonA strains lack sialidase activity, but forced expression of pneumococcal NanA in GBS induced degradation of the terminal sialic acid on its exopolysaccharide capsule. Deletion of nonA did not change GBS-whole blood survival or brain microvascular cell invasion. However, forced expression of pneumococcal NanA in GBS removed terminal sialic acid residues from the bacterial capsule, restricting bacterial proliferation in human blood and in vivo upon mouse infection. GBS expressing pneumococcal NanA had increased invasion of human brain microvascular endothelial cells. Thus, we hypothesize that nonA lost enzyme activity allowing the preservation of an effective survival factor, the sialylated exopolysaccharide capsule.
Collapse
|
19
|
Janapatla RP, Hsu MH, Liao WT, Chien KY, Lee HY, Chiu CH. Low Serum Fetuin-A as a Biomarker to Predict Pneumococcal Necrotizing Pneumonia and Hemolytic Uremic Syndrome in Children. Medicine (Baltimore) 2016; 95:e3221. [PMID: 27043691 PMCID: PMC4998552 DOI: 10.1097/md.0000000000003221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Streptococcus pneumoniae, a neuraminidase-producing pathogen, can cause invasive pneumococcal disease (IPD) with or without hemolytic uremic syndrome (HUS) in humans. We aimed to identify serum sialoglycoproteins that are targeted by neuraminidases in severe pneumococcal infection. We hypothesized that serum sialoglycoprotein such as fetuin-A can serve as a biomarker to predict IPD or HUS. We constructed serum sialoglycoprotein profiles before and after pneumococcal neuraminidase treatment using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a proteomic approach. An observational study was conducted using clinical data and serum samples from pediatric patients with pneumococcal infection to verify the predictive role of fetuin-A in IPD. Serum fetuin-A levels were determined by enzyme-linked immunosorbent assay. The most abundant serum sialoglycoproteins identified by LC-MS/MS after neuraminidase treatment and peanut lectin capture were immunoglobulins, apolipoproteins, fibrinogens, keratins, complement system proteins, and fetuin-A. Serum fetuin-A levels in the HUS patients were significantly lower (207 ± 80 mg/L, P < 0.001) than in patients with lobar pneumonia (610 ± 190 mg/L) as well as the healthy controls (630 ± 250 mg/L). In comparing HUS with necrotizing pneumonia and lobar pneumonia, the ROC area under the curve was 0.842; a cutoff value of 298 mg/L yielded sensitivity of 92.9% (95% CI: 68.5-98.7%) and specificity of 71.9% (95% CI: 54.6-84.4%). This observational study with validation cohorts of patients with HUS, complicated pneumonia, and lobar pneumonia demonstrates the high performance of low serum fetuin-A levels as a biomarker to predict severe IPD and HUS in children.
Collapse
Affiliation(s)
- Rajendra Prasad Janapatla
- From the Molecular Infectious Disease Research Center (RPJ, MHH, W-TL, H-YL, C-HC), Chang Gung Memorial Hospital; Graduate Institute of Biomedical Sciences (K-YC, C-HC); and Division of Pediatric Infectious Diseases (H-YL, C-HC), Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL, Walsh MA. Streptococcus pneumoniae NanC: STRUCTURAL INSIGHTS INTO THE SPECIFICITY AND MECHANISM OF A SIALIDASE THAT PRODUCES A SIALIDASE INHIBITOR. J Biol Chem 2015; 290:27736-48. [PMID: 26370075 PMCID: PMC4646021 DOI: 10.1074/jbc.m115.673632] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that causes a range of disease states. Sialidases are important bacterial virulence factors. There are three pneumococcal sialidases: NanA, NanB, and NanC. NanC is an unusual sialidase in that its primary reaction product is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en, also known as DANA), a nonspecific hydrolytic sialidase inhibitor. The production of Neu5Ac2en from α2–3-linked sialosides by the catalytic domain is confirmed within a crystal structure. A covalent complex with 3-fluoro-β-N-acetylneuraminic acid is also presented, suggesting a common mechanism with other sialidases up to the final step of product formation. A conformation change in an active site hydrophobic loop on ligand binding constricts the entrance to the active site. In addition, the distance between the catalytic acid/base (Asp-315) and the ligand anomeric carbon is unusually short. These features facilitate a novel sialidase reaction in which the final step of product formation is direct abstraction of the C3 proton by the active site aspartic acid, forming Neu5Ac2en. NanC also possesses a carbohydrate-binding module, which is shown to bind α2–3- and α2–6-linked sialosides, as well as N-acetylneuraminic acid, which is captured in the crystal structure following hydration of Neu5Ac2en by NanC. Overall, the pneumococcal sialidases show remarkable mechanistic diversity while maintaining a common structural scaffold.
Collapse
Affiliation(s)
- C David Owen
- From the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Petra Lukacik
- Diamond Light Source and Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom, and
| | - Jane A Potter
- From the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Olivia Sleator
- the Medical Research Council France, c/o European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Garry L Taylor
- From the Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom,
| | - Martin A Walsh
- Diamond Light Source and the Medical Research Council France, c/o European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| |
Collapse
|
21
|
Wei SH, Chiang CS, Chen CL, Chiu CH. Pneumococcal disease and use of pneumococcal vaccines in Taiwan. Clin Exp Vaccine Res 2015; 4:121-9. [PMID: 26273570 PMCID: PMC4524896 DOI: 10.7774/cevr.2015.4.2.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022] Open
Abstract
The use of pneumococcal vaccine plays an important role for prevention of invasive pneumococcal disease (IPD). However, introducing the pneumococcal vaccine into the national immunization program (NIP) is complex and costly. The strategy of progressively integrating the pneumococcal conjugate vaccine (PCV) into the NIP in Taiwan provides valuable experience for policy makers. The 7-valent PCV (PCV7) was first available in Taiwan in late 2005. PCV7 was first provided free to children with underlying diseases, those in vulnerable socioeconomic status, and those with inadequate health care resources. The catch-up immunization program with the 13-valent PCV was launched in 2013 and the national pneumococcal immunization program was implemented in 2015. Children aged 2-5 years had the highest incidence of IPD among pediatric population in Taiwan. Although the incidence of IPD caused by PCV7 serotypes has declined, the overall incidence of IPD remained high in the context of PCV7 use in the private sector. A surge of IPD caused by serotype 19A occurred, accounting for 53.6% of IPD cases among children aged ≤ 5 years in 2011-2012. After the implementation of the national pneumococcal immunization program, serogroup 15 has become the leading serogroup for IPD in children. Continued surveillance is necessary to monitor the serotype epidemiology in Taiwan.
Collapse
Affiliation(s)
- Sung-Hsi Wei
- Central Regional Center, Centers for Disease Control, Taichung, Taiwan. ; Department of Public Health, China Medical University, Taichung, Taiwan
| | - Chuen-Sheue Chiang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan. ; Center of General Education, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan. ; Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Hsiao HJ, Wu CT, Huang JL, Chiu CH, Huang YC, Lin JJ, Huang IA, Chan OW, Chou IJ, Hsia SH. Clinical features and outcomes of invasive pneumococcal disease in a pediatric intensive care unit. BMC Pediatr 2015; 15:85. [PMID: 26184113 PMCID: PMC4504450 DOI: 10.1186/s12887-015-0387-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/27/2015] [Indexed: 02/07/2023] Open
Abstract
Background Invasive pneumococcal disease (IPD) results in high morbidity and mortality globally each year, although it is a vaccine-preventable disease. This study aimed to characterize the clinical features of IPD in a pediatric intensive care unit (PICU) in Taiwan. The seven-valent pneumococcal conjugate vaccine (PCV7) was introduced in the private sector in October 2005. The estimated coverage rate of PCV7 vaccination in 2010 was 45.5 % among children <5 years of age. Methods We conducted a retrospective study at a single center in northern Taiwan for invasive pneumococcal disease in a PICU from 2009 to 2013. Demographic characteristics, clinical courses, serotype, antibiotic susceptibility, and outcomes were analyzed. Results Over the 5-year study period, 2167 patients were admitted to the PICU; 48 (2.2 %) had IPD. There were 29 female and 19 male patients. Their mean age was 3.7 years (range 0.7–12.5 years, with the peak age at 2–5 years; n = 30, 63 %). Pneumonia was the most frequent type (n = 38, 79 %), followed by meningitis (n = 10, 21 %). In total, three patients died, all within 72 h after admission; the final diagnoses were all meningitis. Thirty-four children with pneumonia received chest tube insertion for pleural effusion drainage. Of them, 22 (65 %) finally still underwent video-assisted thoracoscopic surgery. Eight (17 %) children had hemolytic uremic syndrome, and seven of them underwent hemodialysis. In total, 37 serotypes were detected; 95 % were covered by PCV13. Serotype 19A was most common (54 %) overall; however, in those with meningitis, serotype 19 F was most common. Conclusions Meningitis is the most severe type of invasive pneumococcal disease in our pediatric intensive care unit. It may progress rapidly even when subjects are given antibiotics promptly. The most common serotype in meningitis is 19 F, which is vaccine preventable. Thus, universal mass pneumococcal vaccination is still needed.
Collapse
Affiliation(s)
- Hsiang-Ju Hsiao
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan. .,Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chang-Teng Wu
- Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of General Pediatrics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Jing-Long Huang
- Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Cheng-Hsun Chiu
- Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Molecular Infectious Disease Research Center, Division of Pediatric Infection, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Yhu-Chering Huang
- Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Jainn-Jim Lin
- Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - I-Anne Huang
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan. .,Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Oi-Wa Chan
- Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - I-Jun Chou
- Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of General Pediatrics, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Shao-Hsuan Hsia
- Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
23
|
Fletcher MA, Schmitt HJ, Syrochkina M, Sylvester G. Pneumococcal empyema and complicated pneumonias: global trends in incidence, prevalence, and serotype epidemiology. Eur J Clin Microbiol Infect Dis 2014; 33:879-910. [PMID: 24563274 PMCID: PMC4110404 DOI: 10.1007/s10096-014-2062-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/15/2014] [Indexed: 12/23/2022]
Abstract
This review evaluates the serotype epidemiology of complicated pneumococcal pneumonia (CPP) during the period 1990–2012. PubMed and EMBASE were searched using the terms “empyema”, “complicated pneumonia”, “pleural infection”, “necrotizing pneumonia”, “pleural effusion”, “parapneumonic effusion”, “pneumatocele”, or “lung abscess”; “pneumococcal” or “Streptococcus pneumoniae”; and “serotype” for studies on the epidemiology of complicated pneumonias published from January 1, 1990 to October 1, 2013. Studies with data on incidence and serotypes were included; reviews, case reports, and conference abstracts were excluded. Of 152 papers, 84 fitted the inclusion criteria. A few pneumococcal serotypes were predominant causes of CPP, particularly serotypes 1, 19A, 3, 14, and 7F. CPP was a more common manifestation of pneumococcal disease among older (>2 years old) than younger children. The data support increases in both reported incidence rates and proportions of CPP in children and adults during the period 1990–2012; specific increases varied by geographic region. The proportions of serotype 3 and, particularly in Asia, serotype 19A CPP have increased, whereas most studies show declines in serotype 14. Serotype 1 has been a predominant cause of CPP since 1990, while antibiotic resistance was infrequent among serotype 1 isolates. The reported incidence and proportions of CPP among pneumonia cases steadily increased from 1990 to 2012. Several factors might account for these increases, including enhanced disease detection due to a higher index of suspicion, more sophisticated diagnostic assays, and changes in the prevalence of serotypes with capacity to invade the pleural space that were not targeted by the 7-valent pneumococcal conjugate vaccine (PCV7).
Collapse
Affiliation(s)
- M A Fletcher
- Pfizer, Inc., 23-25, avenue du Dr Lannelongue, 75668, Paris Cedex 14, France,
| | | | | | | |
Collapse
|
24
|
Smith A, Johnston C, Inverarity D, Slack M, K Paterson G, Diggle M, Mitchell T. Investigating the role of pneumococcal neuraminidase A activity in isolates from pneumococcal haemolytic uraemic syndrome. J Med Microbiol 2013; 62:1735-1742. [PMID: 23924664 DOI: 10.1099/jmm.0.063479-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Streptococcus pneumoniae diseases are a rare but increasingly recognized trigger of atypical haemolytic uraemic syndrome (HUS) in young children and associated with a higher mortality rate than diarrhoea-associated HUS. This study aimed to determine the importance of neuraminidase A (NanA) and genomic diversity in the pathogenesis of pneumococcal HUS (pHUS). We investigated the nanA gene sequence, gene expression, neuraminidase activity and comparative genomic hybridization of invasive pneumococcal disease (IPD) isolates from patients with pHUS and control strains matched by serotype and sequence type (ST), isolated from patients with IPD but not pHUS. The nanA sequence of 33 isolates was determined and mutations at 142 aa positions were identified. High levels of diversity were observed within the NanA protein, with mosaic blocks, insertions and repeat regions present. When comparing nanA allelic diversity with ST and disease profile in the isolates tested, nanA alleles clustered mostly by ST. No particular nanA allele was associated with pHUS. There was no significant difference in overall neuraminidase activity between pHUS isolates and controls when induced/uninduced with N-acetylneuraminic acid. Comparative genomic hybridization showed little difference in genetic content between the pHUS isolates and the controls. Results of gene expression studies identified 12 genes differentially regulated in all pHUS isolates compared with the control. Although neuraminidase enzyme activity may be important in pHUS progression and contribute to pathogenesis, the lack of a distinction between pHUS isolates and controls suggests that host factors, such as acquired abnormalities of the alternative complement cascade in young children, may play a more significant role in the outcome of pHUS.
Collapse
Affiliation(s)
- Andrew Smith
- College of Medical, Veterinary & Life Sciences, Glasgow Dental Hospital & School, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Calum Johnston
- National Centre for Scientific Research, Laboratory of Microbiology and Molecular Genetics, Toulouse University, Toulouse, France
| | - Donald Inverarity
- Microbiology Department, Monklands Hospital, Monkscourt Avenue, Airdrie ML6 0JS, UK
| | - Mary Slack
- Respiratory & Vaccine Preventable Bacteria Reference Unit, Public Health England, 61 Colindale Avenue, Colindale, London NW9 5HT, UK
| | - Gavin K Paterson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Mathew Diggle
- East Midlands Pathology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Timothy Mitchell
- Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is usually associated with diarrheal illness but can also occur in children with Streptococcus pneumoniae infection (SpHUS), particularly those with complicated pneumonia. Based on recent reports that hospital discharges for complicated pneumococcal pneumonia are increasing in US children, we studied whether discharges for SpHUS might also be increasing. METHODS We used the Kids' Inpatient Database samples from 1997, 2000, 2003, 2006 and 2009 to estimate trends in US hospital discharges of children (0-18 years) for whom diagnosis codes indicated invasive pneumococcal disease, HUS, or both (SpHUS). Univariate and multivariate analyses were based on 2009 discharges. RESULTS During the 5 study years, annual numbers of US hospital discharges for SpHUS approximately doubled (P = 0.025 for linear trend) and cumulatively totaled an estimated 211 discharges. In 2009, SpHUS accounted for 4.6% (95% confidence interval [CI]: 3.0%-6.7%) of HUS discharges, 0.7% (95% CI: 0.5%-1.0%) of invasive pneumococcal disease discharges and 3.0% (95% CI: 2.0%-3.9%) of discharges for complicated pneumococcal pneumonia. Discharges for SpHUS were more likely than those for other invasive pneumococcal disease to occur in children <3 years of age and to incur longer length of stay and greater hospital charges. SpHUS was independently associated with pneumococcal sepsis/bacteremia (age-adjusted odds ratio 3.8; 95% CI: 1.9-7.8) and complicated pneumonia (odds ratio 9.2; 95% CI: 4.1-20.7). CONCLUSIONS SpHUS is an uncommon but severe illness that primarily affects young children and is strongly associated with complicated pneumococcal pneumonia. US hospital stays for SpHUS appear to be increasing along with those for complicated pneumococcal pneumonia.
Collapse
|