1
|
Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ. Updating the Definition of Cancer. Mol Cancer Res 2023; 21:1142-1147. [PMID: 37409952 PMCID: PMC10618731 DOI: 10.1158/1541-7786.mcr-23-0411] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Most definitions of cancer broadly conform to the current NCI definition: "Cancer is a disease in which some of the body's cells grow uncontrollably and spread to other parts of the body." These definitions tend to describe what cancer "looks like" or "does" but do not describe what cancer "is" or "has become." While reflecting past insights, current definitions have not kept pace with the understanding that the cancer cell is itself transformed and evolving. We propose a revised definition of cancer: Cancer is a disease of uncontrolled proliferation by transformed cells subject to evolution by natural selection. We believe this definition captures the essence of the majority of previous and current definitions. To the simplest definition of cancer as a disease of uncontrolled proliferation of cells, our definition adds in the adjective "transformed" to capture the many tumorigenic processes that cancer cells adopt to metastasize. To the concept of uncontrolled proliferation of transformed cells, our proposed definition then adds "subject to evolution by natural selection." The subject to evolution by natural selection modernizes the definition to include the genetic and epigenetic changes that accumulate within a population of cancer cells that lead to the lethal phenotype. Cancer is a disease of uncontrolled proliferation by transformed cells subject to evolution by natural selection.
Collapse
Affiliation(s)
- Joel S. Brown
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Sarah R. Amend
- The Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Robert H. Austin
- Department of Physics, Princeton University, Princeton, New Jersey
| | - Robert A. Gatenby
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Emma U. Hammarlund
- Tissue Development and Evolution Research Group, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Kenneth J. Pienta
- The Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Heng J, Heng HH. Genome Chaos, Information Creation, and Cancer Emergence: Searching for New Frameworks on the 50th Anniversary of the "War on Cancer". Genes (Basel) 2021; 13:genes13010101. [PMID: 35052441 PMCID: PMC8774498 DOI: 10.3390/genes13010101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
The year 2021 marks the 50th anniversary of the National Cancer Act, signed by President Nixon, which declared a national “war on cancer.” Powered by enormous financial support, this past half-century has witnessed remarkable progress in understanding the individual molecular mechanisms of cancer, primarily through the characterization of cancer genes and the phenotypes associated with their pathways. Despite millions of publications and the overwhelming volume data generated from the Cancer Genome Project, clinical benefits are still lacking. In fact, the massive, diverse data also unexpectedly challenge the current somatic gene mutation theory of cancer, as well as the initial rationales behind sequencing so many cancer samples. Therefore, what should we do next? Should we continue to sequence more samples and push for further molecular characterizations, or should we take a moment to pause and think about the biological meaning of the data we have, integrating new ideas in cancer biology? On this special anniversary, we implore that it is time for the latter. We review the Genome Architecture Theory, an alternative conceptual framework that departs from gene-based theories. Specifically, we discuss the relationship between genes, genomes, and information-based platforms for future cancer research. This discussion will reinforce some newly proposed concepts that are essential for advancing cancer research, including two-phased cancer evolution (which reconciles evolutionary contributions from karyotypes and genes), stress-induced genome chaos (which creates new system information essential for macroevolution), the evolutionary mechanism of cancer (which unifies diverse molecular mechanisms to create new karyotype coding during evolution), and cellular adaptation and cancer emergence (which explains why cancer exists in the first place). We hope that these ideas will usher in new genomic and evolutionary conceptual frameworks and strategies for the next 50 years of cancer research.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 16 Divinity Ave, Cambridge, MA 02138, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
4
|
Pienta KJ, Hammarlund EU, Axelrod R, Amend SR, Brown JS. Convergent Evolution, Evolving Evolvability, and the Origins of Lethal Cancer. Mol Cancer Res 2020; 18:801-810. [PMID: 32234827 PMCID: PMC7272288 DOI: 10.1158/1541-7786.mcr-19-1158] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 03/26/2020] [Indexed: 01/20/2023]
Abstract
Advances in curative treatment to remove the primary tumor have increased survival of localized cancers for most solid tumor types, yet cancers that have spread are typically incurable and account for >90% of cancer-related deaths. Metastatic disease remains incurable because, somehow, tumors evolve resistance to all known compounds, including therapies. In all of these incurable patients, de novo lethal cancer evolves capacities for both metastasis and resistance. Therefore, cancers in different patients appear to follow the same eco-evolutionary path that independently manifests in affected patients. This convergent outcome, that always includes the ability to metastasize and exhibit resistance, demands an explanation beyond the slow and steady accrual of stochastic mutations. The common denominator may be that cancer starts as a speciation event when a unicellular protist breaks away from its multicellular host and initiates a cancer clade within the patient. As the cancer cells speciate and diversify further, some evolve the capacity to evolve: evolvability. Evolvability becomes a heritable trait that influences the available variation of other phenotypes that can then be acted upon by natural selection. Evolving evolvability may be an adaptation for cancer cells. By generating and maintaining considerable heritable variation, the cancer clade can, with high certainty, serendipitously produce cells resistant to therapy and cells capable of metastasizing. Understanding that cancer cells can swiftly evolve responses to novel and varied stressors create opportunities for adaptive therapy, double-bind therapies, and extinction therapies; all involving strategic decision making that steers and anticipates the convergent coevolutionary responses of the cancers.
Collapse
Affiliation(s)
- Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Emma U Hammarlund
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Robert Axelrod
- Gerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, Michigan
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
5
|
Hirpara A, Bloomfield M, Duesberg P. Speciation Theory of Carcinogenesis Explains Karyotypic Individuality and Long Latencies of Cancers. Genes (Basel) 2018; 9:genes9080402. [PMID: 30096943 PMCID: PMC6115917 DOI: 10.3390/genes9080402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/14/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
It has been known for over 100 years that cancers have individual karyotypes and arise only years to decades after initiating carcinogens. However, there is still no coherent theory to explain these definitive characteristics of cancer. The prevailing mutation theory holds that cancers are late because the primary cell must accumulate 3–8 causative mutations to become carcinogenic and that mutations, which induce chromosomal instability (CIN), generate the individual karyotypes of cancers. However, since there is still no proven set of mutations that transforms a normal to a cancer cell, we have recently advanced the theory that carcinogenesis is a form of speciation. This theory predicts carcinogens initiate cancer by inducing aneuploidy, which automatically unbalances thousands of genes and thus catalyzes chain-reactions of progressive aneuploidizations. Over time, these aneuploidizations have two endpoints, either non-viable karyotypes or very rarely karyotypes of new autonomous and immortal cancers. Cancer karyotypes are immortalized despite destabilizing congenital aneuploidy by clonal selections for autonomy—similar to those of conventional species. This theory predicts that the very low probability of converting the karyotype of a normal cell to that of a new autonomous cancer species by random aneuploidizations is the reason for the karyotypic individuality of new cancers and for the long latencies from carcinogens to cancers. In testing this theory, we observed: (1) Addition of mutagenic and non-mutagenic carcinogens to normal human and rat cells generated progressive aneuploidizations months before neoplastic transformation. (2) Sub-cloning of a neoplastic rat clone revealed heritable individual karyotypes, rather than the non-heritable karyotypes predicted by the CIN theory. (3) Analyses of neoplastic and preneoplastic karyotypes unexpectedly identified karyotypes with sets of 3–12 new marker chromosomes without detectable intermediates, consistent with single-step origins. We conclude that the speciation theory explains logically the long latencies from carcinogen exposure and the individuality of cancers. In addition, the theory supports the single-step origins of cancers, because karyotypic autonomy is all-or-nothing. Accordingly, we propose that preneoplastic aneuploidy and clonal neoplastic karyotypes provide more reliable therapeutic indications than current analyses of thousands of mutations.
Collapse
Affiliation(s)
- Ankit Hirpara
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Mathew Bloomfield
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94 901, USA.
| | - Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Mandrioli D, Belpoggi F, Silbergeld EK, Perry MJ. Aneuploidy: a common and early evidence-based biomarker for carcinogens and reproductive toxicants. Environ Health 2016; 15:97. [PMID: 27729050 PMCID: PMC5059969 DOI: 10.1186/s12940-016-0180-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/28/2016] [Indexed: 05/29/2023]
Abstract
Aneuploidy, defined as structural and numerical aberrations of chromosomes, continues to draw attention as an informative effect biomarker for carcinogens and male reproductive toxicants. It has been well documented that aneuploidy is a hallmark of cancer. Aneuploidies in oocytes and spermatozoa contribute to infertility, pregnancy loss and a number of congenital abnormalities, and sperm aneuploidy is associated with testicular cancer. It is striking that several carcinogens induce aneuploidy in somatic cells, and also adversely affect the chromosome compliment of germ cells. In this paper we review 1) the contributions of aneuploidy to cancer, infertility, and developmental abnormalities; 2) techniques for assessing aneuploidy in precancerous and malignant lesions and in sperm; and 3) the utility of aneuploidy as a biomarker for integrated chemical assessments of carcinogenicity, and reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, 40010 Bentivoglio, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, 40010 Bentivoglio, Bologna, Italy
| | - Ellen K. Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 21205 Baltimore, MD USA
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave. NW, 4th Floor, Washington, DC 20052 USA
| |
Collapse
|
7
|
Lazebnik Y. The shock of being united and symphiliosis. Another lesson from plants? Cell Cycle 2015; 13:2323-9. [PMID: 25483182 DOI: 10.4161/cc.29704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yuri Lazebnik
- a Yale Cardiovascular Research Center; New Haven, CT USA
| |
Collapse
|
8
|
Parris GE. Cell-Cell Fusion, Chemotaxis and Metastasis. INTERCELLULAR COMMUNICATION IN CANCER 2015:227-254. [DOI: 10.1007/978-94-017-7380-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Duesberg P, McCormack A. Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle 2013; 12:783-802. [PMID: 23388461 PMCID: PMC3610726 DOI: 10.4161/cc.23720] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immortality is a common characteristic of cancers, but its origin and purpose are still unclear. Here we advance a karyotypic theory of immortality based on the theory that carcinogenesis is a form of speciation. Accordingly, cancers are generated from normal cells by random karyotypic rearrangements and selection for cancer-specific reproductive autonomy. Since such rearrangements unbalance long-established mitosis genes, cancer karyotypes vary spontaneously but are stabilized perpetually by clonal selections for autonomy. To test this theory we have analyzed neoplastic clones, presumably immortalized by transfection with overexpressed telomerase or with SV40 tumor virus, for the predicted clonal yet flexible karyotypes. The following results were obtained: (1) All immortal tumorigenic lines from cells transfected with overexpressed telomerase had clonal and flexible karyotypes; (2) Searching for the origin of such karyotypes, we found spontaneously increasing, random aneuploidy in human fibroblasts early after transfection with overexpressed telomerase; (3) Late after transfection, new immortal tumorigenic clones with new clonal and flexible karyotypes were found; (4) Testing immortality of one clone during 848 unselected generations showed the chromosome number was stable, but the copy numbers of 36% of chromosomes drifted ± 1; (5) Independent immortal tumorigenic clones with individual, flexible karyotypes arose after individual latencies; (6) Immortal tumorigenic clones with new flexible karyotypes also arose late from cells of a telomerase-deficient mouse rendered aneuploid by SV40 virus. Because immortality and tumorigenicity: (1) correlated exactly with individual clonal but flexible karyotypes; (2) originated simultaneously with such karyotypes; and (3) arose in the absence of telomerase, we conclude that clonal and flexible karyotypes generate the immortality of cancers.
Collapse
Affiliation(s)
- Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
10
|
|
11
|
Duesberg P, Iacobuzio-Donahue C, Brosnan JA, McCormack A, Mandrioli D, Chen L. Origin of metastases: subspecies of cancers generated by intrinsic karyotypic variations. Cell Cycle 2012; 11:1151-66. [PMID: 22377695 DOI: 10.4161/cc.11.6.19580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Conventional mutation theories do not explain (1) why the karyotypes of metastases are related to those of parental cancers but not to those of metastases of other cancers and (2) why cancers metastasize at rates that often far exceed those of conventional mutations. To answer these questions, we advance here the theory that metastases are autonomous subspecies of cancers, rather than mutations. Since cancers are species with intrinsically flexible karyotypes, they can generate new subspecies by spontaneous karyotypic rearrangements. This phylogenetic theory predicts that metastases are karyotypically related to parental cancers but not to others. Testing these predictions on metastases from two pancreatic cancers, we found: (1) Metastases had individual karyotypes and phenotypes. The karyotypes of metastases were related to, but different from, those of parental cancers in 11 out of 37 and 26 out of 49 parental chromosomal units. Chromosomal units are defined as intact chromosomes with cancer-specific copy numbers and marker chromosomes that are > 50% clonal. (2) Metastases from the two different cancers did not share chromosomal units. Testing the view that multi-chromosomal rearrangements occur simultaneously in cancers, as opposed to sequentially, we found spontaneous non-clonal rearrangements with as many new chromosomal units as in authentic metastases. We conclude that metastases are individual autonomous species differing from each other and parental cancers in species-specific karyotypes and phenotypes. They are generated from parental cancers by multiple simultaneous karyotypic rearrangements, much like new species. The species-specific individualities of metastases explain why so many searches for commonalities have been unsuccessful.
Collapse
Affiliation(s)
- Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Aneuploidy is a common feature of cancer cells, and is believed to play a critical role in tumorigenesis and cancer progression. Most cancer cells also exhibit high rates of mitotic chromosome mis-segregation, a phenomenon known as chromosomal instability, which leads to high variability of the karyotype. Here, we describe the nature, nuances, and implications of cancer karyotypic diversity. Moreover, we summarize recent studies aimed at identifying the mitotic defects that may be responsible for inducing chromosome mis-segregation in cancer cells. These include kinetochore attachment errors, spindle assembly checkpoint dysfunction, mitotic spindle defects, and other cell division inaccuracies. Finally, we discuss how such mitotic errors generate karyotypic diversity in cancer cells.
Collapse
|
13
|
Abstract
A good account of the nature of cancer should provide not only a description of its consistent features, but also how they arise, how they are maintained, why conventional chemotherapy succeeds, and fails, and where to look for better targets. Cancer was once regarded as enigmatic and inexplicable; more recently, the "mutation theory," based on random alterations in a relatively small set of proto-oncogenes and tumor suppressor genes, has enjoyed widespread acceptance. The "mutation theory," however, is noticeable for its failure to explain the basis of differential chemosensitivity, for providing a paucity of targets, especially druggable ones, and for justifying the development of targeted therapies with, in general, disappointingly abbreviated clinical benefit. Furthermore, this theory has mistakenly predicted a widespread commonality of consistent genetic abnormalities across the range of cancers, whereas the opposite, that is, roiling macrogenomic instability, is generally the rule. In contrast, concerning what actually is consistent, that is, the suite of metabolic derangements common to virtually all, especially aggressive, cancers, the "Mutation Theory" has nothing to say. Other hypotheses merit serious consideration "aneuploidy theories" posit whole-genome instability and imbalance as causally responsible for the propagation of the tumor. Another approach, that is, "derepression atavism," suggests cancer results from the release of an ancient survival program, characterized by the emergence of remarkably primitive features such as unicellularity, fermentation, and immortality; existential goals are served by heuristic genomic instability coupled with host-to-tumor biomass interconversion, mediated by the Warburg effect, a major component of the program. Carcinogenesis is here seen as a process of de-speciation; however, genomic nonrestabilization raises issues as to where on the tree of life cancers belong, as a genuinely alternative modus vivendi. Philosophical considerations aside, genomic instability offers the prospect of subtle new therapies based on loss of information rather than gain; and the consistent, specific, and broad-spectrum perfidy of the Warburg effect highlights a supplemental target of the highest priority.
Collapse
Affiliation(s)
- Mark D Vincent
- Department of Medical Oncology, London Regional Cancer Centre, London Health Sciences Centre, Ontario, Canada
| |
Collapse
|
14
|
Vincent M. Cancer: a de-repression of a default survival program common to all cells?: a life-history perspective on the nature of cancer. Bioessays 2011; 34:72-82. [PMID: 22105565 DOI: 10.1002/bies.201100049] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer viewed as a programmed, evolutionarily conserved life-form, rather than just a random series of disease-causing mutations, answers the rarely asked question of what the cancer cell is for, provides meaning for its otherwise mysterious suite of attributes, and encourages a different type of thinking about treatment. The broad but consistent spectrum of traits, well-recognized in all aggressive cancers, group naturally into three categories: taxonomy ("phylogenation"), atavism ("re-primitivization") and robustness ("adaptive resilience"). The parsimonious explanation is not convergent evolution, but the release of an highly conserved survival program, honed by the exigencies of the Pre-Cambrian, to which the cancer cell seems better adapted; and which is recreated within, and at great cost to, its host. Central to this program is the Warburg Effect, whose malign influence permeates well beyond aerobic glycolysis to include biomass interconversion and genomic heuristics. Warburg-type metabolism and genomic instability are targets whose therapeutic disablement is a major priority.
Collapse
Affiliation(s)
- Mark Vincent
- Department of Oncology, University of Western Ontario, London, Canada.
| |
Collapse
|
15
|
Vincent MD. The animal within: carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto. Evolution 2010; 64:1173-83. [PMID: 20059538 DOI: 10.1111/j.1558-5646.2009.00942.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heritable genomic variation and natural selection have long been acknowledged as striking parallels between evolution and cancer. The logical conclusion, that cancer really is a form of speciation, has seldom been expounded directly. My purpose is to reexamine the "cancer as species" thesis in the light of current attitudes to asexual speciation, and modern analyses of species definitions. The chief obstacles to accepting this thesis have been the asexual nature of cancer cell reproduction, the instability of the malignant genotype and phenotype, and our conditioning that speciation is an extremely rare and imperceptibly gradualistic process. However, these are not absolute barriers to the acceptance of cancers as bona fide species. Furthermore, although ongoing clonal evolution of extant cancers also results in a series of secondary speciation events, the initial emergence of a cancer requires a level of taxonomic reclassification even beyond the concept of speciation (i.e., phylogenation), and which is almost certain to provide a rich source of novel drug targets. The implications of the "cancer as species" idea may be as important for biology as for oncology, providing as it does an endless supply of observable if accelerated examples of a phenomenon once regarded as rare. From the perspective of cancer treatment, speciation guarantees the existence of causal molecular mechanisms which may have been neglected as exploitable targets for rational therapy; in particular, the mediators of metazoan life seem to have substantial overlap with components commonly deranged in cancer cells. However, the intractability of the drug resistance problem, residing as it does in the inherent plasticity of the genome, is traceable back to, and inseparable from, the very origins and nature of life.
Collapse
Affiliation(s)
- Mark D Vincent
- London Regional Cancer Program and University of Western Ontario, 790 Commissioners Rd. E., London, ON N6A 4L6, Canada
| |
Collapse
|
16
|
Fabarius A, Li R, Yerganian G, Hehlmann R, Duesberg P. Specific clones of spontaneously evolving karyotypes generate individuality of cancers. ACTA ACUST UNITED AC 2008; 180:89-99. [DOI: 10.1016/j.cancergencyto.2007.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/05/2007] [Indexed: 11/25/2022]
|
17
|
Bignold LP. Variation, "evolution", immortality and genetic instabilities in tumour cells. Cancer Lett 2007; 253:155-69. [PMID: 17250959 DOI: 10.1016/j.canlet.2006.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/28/2006] [Accepted: 12/01/2006] [Indexed: 11/18/2022]
Abstract
The pathological characteristics of tumour cells often include variation of their histopathological features (i.e. "degrees of de-differentiation") between cases of the same tumour type and between different foci within individual tumours. Usually, only a few cell lines from tumours are immortal. Currently, somatic mutation, replicative infidelity of DNA and aneuploidy are suggested as alternative mechanisms of genomic disturbance underlying tumours. Nevertheless, apart from Hansemann's ideas of "anaplasia" and "de-differentiation" (proposed in the 1890s), and supposed "evolutionary themes" in cancer cell biology, little has been published concerning how histopathologic variation and immortality in tumour cells might arise. This paper reviews applications of the concepts of "variation" to tumours, including concepts of "evolution" and "cellular Darwinism". It is proposed that combinations of somatic mutation, DNA replicative infidelity and aneuploidy may explain the variabilities in tumours, and provide immortality in occasional tumour cells. A possible model involves (i) an initial somatic mutation causing reduced replicative fidelity of DNA, which could be variable in intensity, and thus give rise to variations between cases; (ii) a phase of replicative infidelity of DNA causing daughter cells lines to develop various abnormalities to different degrees, and hence provide for variation between areas of the same tumour. As a last event (iii) occasional asymmetric chromosomal distributions (aneuploidy) might "refresh" the ability of a daughter cell to replicate DNA faithfully causing them to become immortal. Thus extensively mutant and variable, hyperploid, and occasionally immortal cells might arise.
Collapse
Affiliation(s)
- L P Bignold
- Division of Tissue Pathology, Institute of Medical and Veterinary Science, P.O. Box 14, Rundle Mall, Adelaide, SA 5068, Australia.
| |
Collapse
|
18
|
|
19
|
Abstract
The first attempts to understand the causes of cancer were based on generalizations of what might now be termed a "holistic" nature, and hereditary influences were recognized at an early stage; these views survive principally through a supposed positive connection between psychological factors such as stress and diminished ability to combat the progressive development of tumors through some form of immunologically mediated rejection of potentially cancerous cells. While evidence for immunosurveillance is generally accepted, it is now widely regarded as almost wholly confined to instances where tumor viruses are involved as causative agents. The earliest theorists drew an analogy between the processes of carcinogenesis and of evolution; the cancer cells acquired the ability to outstrip their normal counterparts in their capacity for proliferation. This was even before evolution had been interpreted as involving a continuous succession of mutations. Evidence was already to hand before the end of the 18th century that exogenous agents, notably soot, a product of the "industrial revolution," could cause skin cancer. Somewhat over 100 years later, another industrial innovation, the manufacture of synthetic dyestuffs, implicated specific chemical compounds that could act systemically to cause bladder cancer. Meanwhile, the 19th century saw the establishment of the fundamentals of modern medical science; of particular relevance to cancer was the demonstration that it involved abnormalities in the process of cell division. The commencement of the 20th century was marked by a rediscovery of the concept of mutation; and it was proposed that cancer originated through uncontrolled division of somatically mutated cells. At around this time, two further important exogenous causative agents were discovered: X-rays and tumor viruses. In the late 1920s, x-radiation became the first established exogenous cause of mutagenesis. The discoverer of this phenomenon, H. J. Muller, suggested that while mutation in a single cell was the primary causative mechanism in carcinogenesis, its generally observed logarithmic increase in incidence with age reflected a "multihit" process, and that multiple successive mutations were required in the progeny of the original mutants. He also recognized that the rate of proliferation of potentially cancerous cells would markedly influence the probability of their subsequent mutation. These considerations are essentially the foundation of the generally accepted view of carcinogenesis that now seems unlikely to be superseded. However, this acceptance did not come about unopposed. The analogy between carcinogenesis and evolution was disliked by many biologists because it embodied the concept that cancer was an inevitable consequence of our evolutionary origins.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P D Lawley
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, United Kingdom
| |
Collapse
|
20
|
Abstract
Neoplastic change in a cell represents a cellular "macroevolutionary' event. Through variation or rearrangement of regulatory genes, neoplastic cells reiterate the expression of normally quiescent ancestral, juvenile, or embryonic traits and behavior at an inappropriate stage in their ontogeny. The author has coined the term 'cellular heterochrony' to illustrate analogic similarities in the molecular modes of evolutionary change of both anaplastic cancer cells and the heterochronic, paedomorphic evolution of organisms. In these pages, anaplasia is considered to be part of a larger biological phenomenon. A theory regarding the role of prolactin and thyroxine in tumourigenesis is presented to explain the atavistic or heterochronic development and possible metamorphosis of retrodifferentiated malignant cells.
Collapse
|
21
|
Abstract
Variation of rearrangement of regulatory genes is responsible for cellular malignant change. These types of chromosomal variations also produce heterochrony or paedomorphic evolution at the organismal level. Analogously, neoplasia represents a cellular 'macroevolutionary' event, and a tumour can be said to be an evolved population of cells. To understand this cellular evolution to malignancy, it may be necessary to go beyond a 'clonal selection' (adaptationist) explanation of neoplastic alteration. In the pericellular environment 'natural selection' consists of the organizational restraints of surrounding cells as well as the host's immunological surveillance and non-specific monocyte-macrophage systems. Indirect evidence suggests that success for the neoplasm depends not upon 'clonal selection', but solely upon a genetic methodology-the function of which is to elude selection. The author has coined the term 'cellular heterochrony' to illustrate analogic similarities in the molecular modes of speciation between anaplastic cancer cells and the heterochronic evolution of organisms. By reverting to juvenile (embryonic) repertoire of cellular behaviour a tumour secures its own tenure or niche by usurping the host's armamentarium of selection forces, employing many of the same or similar methods by which implanting and invading tissues of the mammalian embryo forestall maternal detection and rejection. A number of ways by which the tumour blocks, subverts or evades selection are discussed.
Collapse
|
22
|
|
23
|
EMMELOT P. THE MOLECULAR BASIS OF CANCER CHEMOTHERAPY. Mol Pharmacol 1964. [DOI: 10.1016/b978-0-12-395641-5.50009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
24
|
GELFANT S. Inhibition of Cell Division: A Critical and Experimental Analysis. ACTA ACUST UNITED AC 1963; 14:1-39. [PMID: 14283571 DOI: 10.1016/s0074-7696(08)60020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
|
25
|
|
26
|
|
27
|
|
28
|
|
29
|
Schultz J. MALIGNANCY AND THE GENETICS OF THE SOMATIC CELL. Ann N Y Acad Sci 1958. [DOI: 10.1111/j.1749-6632.1958.tb54664.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
|
31
|
|
32
|
|