1
|
Kean-Galeno T, Lopez-Arredondo D, Herrera-Estrella L. The Shoot Apical Meristem: An Evolutionary Molding of Higher Plants. Int J Mol Sci 2024; 25:1519. [PMID: 38338798 PMCID: PMC10855264 DOI: 10.3390/ijms25031519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The shoot apical meristem (SAM) gives rise to the aerial structure of plants by producing lateral organs and other meristems. The SAM is responsible for plant developmental patterns, thus determining plant morphology and, consequently, many agronomic traits such as the number and size of fruits and flowers and kernel yield. Our current understanding of SAM morphology and regulation is based on studies conducted mainly on some angiosperms, including economically important crops such as maize (Zea mays) and rice (Oryza sativa), and the model species Arabidopsis (Arabidopsis thaliana). However, studies in other plant species from the gymnosperms are scant, making difficult comparative analyses that help us understand SAM regulation in diverse plant species. This limitation prevents deciphering the mechanisms by which evolution gave rise to the multiple plant structures within the plant kingdom and determines the conserved mechanisms involved in SAM maintenance and operation. This review aims to integrate and analyze the current knowledge of SAM evolution by combining the morphological and molecular information recently reported from the plant kingdom.
Collapse
Affiliation(s)
- Tania Kean-Galeno
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico
| |
Collapse
|
2
|
McCourt RM, Lewis LA, Strother PK, Delwiche CF, Wickett NJ, de Vries J, Bowman JL. Green land: Multiple perspectives on green algal evolution and the earliest land plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16175. [PMID: 37247371 DOI: 10.1002/ajb2.16175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/31/2023]
Abstract
Green plants, broadly defined as green algae and the land plants (together, Viridiplantae), constitute the primary eukaryotic lineage that successfully colonized Earth's emergent landscape. Members of various clades of green plants have independently made the transition from fully aquatic to subaerial habitats many times throughout Earth's history. The transition, from unicells or simple filaments to complex multicellular plant bodies with functionally differentiated tissues and organs, was accompanied by innovations built upon a genetic and phenotypic toolkit that have served aquatic green phototrophs successfully for at least a billion years. These innovations opened an enormous array of new, drier places to live on the planet and resulted in a huge diversity of land plants that have dominated terrestrial ecosystems over the past 500 million years. This review examines the greening of the land from several perspectives, from paleontology to phylogenomics, to water stress responses and the genetic toolkit shared by green algae and plants, to the genomic evolution of the sporophyte generation. We summarize advances on disparate fronts in elucidating this important event in the evolution of the biosphere and the lacunae in our understanding of it. We present the process not as a step-by-step advancement from primitive green cells to an inevitable success of embryophytes, but rather as a process of adaptations and exaptations that allowed multiple clades of green plants, with various combinations of morphological and physiological terrestrialized traits, to become diverse and successful inhabitants of the land habitats of Earth.
Collapse
Affiliation(s)
- Richard M McCourt
- Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19118, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Paul K Strother
- Department of Earth and Environmental Sciences, Boston College Weston Observatory, 381 Concord Road, Weston, MA, 02493, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Norman J Wickett
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Jan de Vries
- Göttingen Center for Molecular Biosciences, Department of Applied Bioinformatics, University of Göttingen Goldschmidtstr. 1, Göttingen, 37077, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
3
|
Clark JW, Harris BJ, Hetherington AJ, Hurtado-Castano N, Brench RA, Casson S, Williams TA, Gray JE, Hetherington AM. The origin and evolution of stomata. Curr Biol 2022; 32:R539-R553. [PMID: 35671732 DOI: 10.1016/j.cub.2022.04.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The acquisition of stomata is one of the key innovations that led to the colonisation of the terrestrial environment by the earliest land plants. However, our understanding of the origin, evolution and the ancestral function of stomata is incomplete. Phylogenomic analyses indicate that, firstly, stomata are ancient structures, present in the common ancestor of land plants, prior to the divergence of bryophytes and tracheophytes and, secondly, there has been reductive stomatal evolution, especially in the bryophytes (with complete loss in the liverworts). From a review of the evidence, we conclude that the capacity of stomata to open and close in response to signals such as ABA, CO2 and light (hydroactive movement) is an ancestral state, is present in all lineages and likely predates the divergence of the bryophytes and tracheophytes. We reject the hypothesis that hydroactive movement was acquired with the emergence of the gymnosperms. We also conclude that the role of stomata in the earliest land plants was to optimise carbon gain per unit water loss. There remain many other unanswered questions concerning the evolution and especially the origin of stomata. To address these questions, it will be necessary to: find more fossils representing the earliest land plants, revisit the existing early land plant fossil record in the light of novel phylogenomic hypotheses and carry out more functional studies that include both tracheophytes and bryophytes.
Collapse
Affiliation(s)
- James W Clark
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Brogan J Harris
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alexander J Hetherington
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Hurtado-Castano
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Robert A Brench
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart Casson
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julie E Gray
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Hoysted GA, Bidartondo MI, Duckett JG, Pressel S, Field KJ. Phenology and function in lycopod-Mucoromycotina symbiosis. THE NEW PHYTOLOGIST 2021; 229:2389-2394. [PMID: 33064903 DOI: 10.1111/nph.17009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 05/27/2023]
Affiliation(s)
- Grace A Hoysted
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Jeffrey G Duckett
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Katie J Field
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
5
|
Sierocka I, Alaba S, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z. The identification of differentially expressed genes in male and female gametophytes of simple thalloid liverwort Pellia endiviifolia sp. B using an RNA-seq approach. PLANTA 2020; 252:21. [PMID: 32671488 PMCID: PMC7363739 DOI: 10.1007/s00425-020-03424-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION This study shows differences in gene expression between male and female gametophytes of the simple thalloid liverwort with a distinction between the vegetative and reproductive phases of growth. Pellia endiviifolia is a simple thalloid liverwort that, together with hornworts and mosses, represents the oldest living land plants. The limited taxon sampling for genomic and functional studies hampers our understanding of processes governing evolution of these plants. RNA sequencing represents an attractive way to elucidate the molecular mechanisms of non-model species development. In the present study, RNA-seq was used to profile the differences in gene expression between P. endiviifolia male and female gametophytes, with a distinction between the vegetative and reproductive phases of growth. By comparison of the gene expression profiles from individuals producing sex organs with the remaining thalli types, we have determined a set of genes whose expression might be important for the development of P. endiviifolia reproductive organs. The selected differentially expressed genes (DEGs) were categorized into five main pathways: metabolism, genetic information processing, environmental information processing, cellular processes, and organismal systems. A comparison of the obtained data with the Marchantia polymorpha transcriptome resulted in the identification of genes exhibiting a similar expression pattern during the reproductive phase of growth between members of the two distinct liverwort classes. The common expression profile of 87 selected genes suggests a common mechanism governing sex organ development in both liverwort species. The obtained RNA-seq results were confirmed by RT-qPCR for the DEGs with the highest differences in expression level. Five Pellia-female-specific and two Pellia-male-specific DEGs showed enriched expression in archegonia and antheridia, respectively. The identified genes are promising candidates for functional studies of their involvement in liverwort sexual reproduction.
Collapse
Affiliation(s)
- Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Sylwia Alaba
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
6
|
|
7
|
Hetherington AJ, Dolan L. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0042. [PMID: 29254968 PMCID: PMC5745339 DOI: 10.1098/rstb.2017.0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system—rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri, Aglaophyton majus, Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.
Collapse
Affiliation(s)
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
8
|
Pandey S, Sharma V, Alam A. Phylogeny based on 16S rRNA sequence and morphology of selected mosses of Mount Abu, Rajasthan (India). Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Kenrick P. Changing expressions: a hypothesis for the origin of the vascular plant life cycle. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170149. [PMID: 29254970 PMCID: PMC5745341 DOI: 10.1098/rstb.2017.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Plant life cycles underwent fundamental changes during the initial colonization of the land in the Early Palaeozoic, shaping the direction of evolution. Fossils reveal unanticipated diversity, including new variants of meiotic cell division and leafless gametophytes with mycorrhizal-like symbioses, rhizoids, vascular tissues and stomata. Exceptional fossils from the 407-Ma Rhynie chert (Scotland) play a key role in unlocking this diversity. These fossils are reviewed against progress in our understanding of the plant tree of life and recent advances in developmental genetics. Combining data from different sources sheds light on a switch in life cycle that gave rise to the vascular plants. One crucial step was the establishment of a free-living sporophyte from one that was an obligate matrotroph borne on the gametophyte. It is proposed that this difficult evolutionary transition was achieved through expansion of gene expression primarily from the gametophyte to the sporophyte, establishing a now extinct life cycle variant that was more isomorphic than heteromorphic. These changes also linked for the first time in one developmental system rhizoids, vascular tissues and stomata, putting in place the critical components that regulate transpiration and forming a physiological platform of primary importance to the diversification of vascular plants.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
10
|
Petersen KB, Burd M. Why did heterospory evolve? Biol Rev Camb Philos Soc 2016; 92:1739-1754. [DOI: 10.1111/brv.12304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Kurt B. Petersen
- School of Biological Sciences Monash University Melbourne VIC 3800 Australia
| | - Martin Burd
- School of Biological Sciences Monash University Melbourne VIC 3800 Australia
| |
Collapse
|
11
|
Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JA, Becker JD. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants. MOLECULAR PLANT 2016; 9:205-220. [PMID: 26687813 DOI: 10.1016/j.molp.2015.12.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/28/2015] [Accepted: 12/01/2015] [Indexed: 05/08/2023]
Abstract
Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryophyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, comparison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs.
Collapse
Affiliation(s)
- Carlos Ortiz-Ramírez
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Anna Thamm
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Bruno Catarino
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Mingyi Wang
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - José A Feijó
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
12
|
Proctor MCF. The Diversification of Bryophytes and Vascular Plants in Evolving Terrestrial Environments. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Dickinson HG, Grant-Downton R. Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities. Biol Rev Camb Philos Soc 2009; 84:589-615. [PMID: 19725820 DOI: 10.1111/j.1469-185x.2009.00088.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alternation of generations underpins all plant life histories and is held to possess important adaptive features. A wide range of data have accumulated over the past century which suggest that alternation from sporophyte to gametophyte in angiosperms includes a significant phase of 'informational reprogramming', leaving the founder cells of the gametophyte developmentally uncommitted. This review attempts to bring together results from these historic studies with more recent data on molecular and epigenetic events which accompany alternation, gametophyte development and gametogenesis in angiosperms. It is striking that most members of the other principal group of multicellular eukaryotes--the animals--have a completely different a life history: animals generate their gametes directly from diploid germlines, often set aside early in development. Nevertheless, a comparison between animal germlines and angiosperm gametophyte development reveals a number of surprising similarities at the cytological and molecular levels. This difference in life history but similarity in developmental process is reviewed in the context of the very different life strategies adopted by plants and animals, and particularly the fact that plants do not set aside diploid germlines early in development.
Collapse
Affiliation(s)
- Hugh G Dickinson
- Department of Plant Sciences, South Parks Road. Oxford, OX1 3RB, UK
| | | |
Collapse
|
14
|
Raven JA. The early evolution of land plants: Aquatic ancestors and atmospheric interactions. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/03746609508684827] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Leake JR, Cameron DD, Beerling DJ. Fungal fidelity in the myco-heterotroph-to-autotroph life cycle of Lycopodiaceae: a case of parental nurture? THE NEW PHYTOLOGIST 2008; 177:572-576. [PMID: 18211471 DOI: 10.1111/j.1469-8137.2008.02352.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
| | - Duncan D Cameron
- Department of Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - David J Beerling
- Department of Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
16
|
Graham LK, Wilcox LW. The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philos Trans R Soc Lond B Biol Sci 2000; 355:757-66; discussion 766-7. [PMID: 10905608 PMCID: PMC1692790 DOI: 10.1098/rstb.2000.0614] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A life history involving alternation of two developmentally associated, multicellular generations (sporophyte and gametophyte) is an autapomorphy of embryophytes (bryophytesphytes + vascular plants). Microfossil data indicate that Mid Late Ordovician land plants possessed such a life cycle, and that the origin of alternation of generations preceded this date. Molecular phylogenetic data unambiguously relate charophycean green algae to the ancestry of monophyletic embryophytes, and identify bryophytes as early-divergent land plants. Comparison of reproduction in charophyceans and bryophytes suggests that the following stages occurred during evolutionary origin of embryophytic alternation of generations: (i) origin of oogamy; (ii) retention of eggs and zygotes on the parental thallus; (iii) origin of matrotrophy (regulated transfer of nutritional and morphogenetic solutes from parental cells to the next generation); (iv) origin of a multicellular sporophyte generation; and (v) origin of non-flagellate, walled spores. Oogamy, egg/zygote retention and matrotrophy characterize at least some modern charophvceans, and are postulated to represent pre-adaptative features inherited by embryophytes from ancestral charophyceans. Matrotrophy is hypothesized to have preceded origin of the multicellular sporophytes of' plants, and to represent a critical innovation. Molecular approaches to the study of the origins of matrotrophy include assessment of hexose transporter genes and protein family members and their expression patterns. The occurrence in modern charophyceans and bryophytes of chemically resistant tissues that exhibit distinctive morphology correlated with matrotrophy suggests that Early-Mid Ordovician or older microfossils relevant to the origin of land plant alternation of generations may be found.
Collapse
Affiliation(s)
- L K Graham
- Department of Botan, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
17
|
Abstract
Recent phylogenetic research indicates that vascular plants evolved from bryophyte-like ancestors and that this involved extensive modifications to the life cycle. These conclusions are supported by a range of systematic data, including gene sequences, as well as evidence from comparative morphology and the fossil record. Within vascular plants, there is compelling evidence for two major clades, which have been termed lycophytes (clubmosses) and euphyllophytes (seed plants, ferns, horsetails). The implications of recent phylogenetic work are discussed with reference to life cycle evolution and the interpretation of stratigraphic inconsistencies in the early fossil record of land plants. Life cycles are shown to have passed through an isomorphic phase in the early stages of vascular plant evolution. Thus, the gametophyte generation of all living vascular plants is the product of massive morphological reduction. Phylogenetic research corroborates earlier suggestions of a major representational bias in the early fossil record. Mega-fossils document a sequence of appearance of groups that is at odds with that predicted by cladogram topology. It is argued here that the pattern of appearance and diversification of plant megafossils owes more to changing geological conditions than to rapid biological diversification.
Collapse
Affiliation(s)
- P Kenrick
- Department of Palaeontology, The Natural History Museum, London, UK.
| |
Collapse
|
18
|
Pryer KM. Phylogeny of Marsileaceous Ferns and Relationships of the Fossil Hydropteris pinnata Reconsidered. INTERNATIONAL JOURNAL OF PLANT SCIENCES 1999; 160:931-954. [PMID: 10506474 DOI: 10.1086/314177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent phylogenetic studies have provided compelling evidence that confirms the once disputed hypothesis of monophyly for heterosporous leptosporangiate ferns (Marsileaceae and Salviniaceae). Hypotheses for relationships among the three genera of Marsileaceae (Marsilea, Regnellidium, and Pilularia), however, have continued to be in conflict. The phylogeny of Marsileaceae is investigated here using information from morphology and rbcL sequence data. In addition, relationships among all heterosporous ferns, including the whole-plant fossil Hydropteris pinnata are reconsidered. Data sets of 71 morphological and 1239 rbcL characters for 23 leptosporangiate ferns, including eight heterosporous ingroup taxa and 15 homosporous outgroup taxa, were subjected to maximum parsimony analysis. Morphological analyses were carried out both with and without the fossil Hydropteris, and it was excluded from all analyses with rbcL data. An annotated list of the 71 morphological characters is provided in the appendix. For comparative purposes, the Rothwell and Stockey (1994) data set was also reanalyzed here. The best estimate of phylogenetic relationships for Marsileaceae in all analyses is that Pilularia and Regnellidium are sister taxa and Marsilea is sister to that clade. Morphological synapomorphies for various nodes are discussed. Analyses that included Hydropteris resulted in two most-parsimonious trees that differ only in the placement of the fossil. One topology is identical to the relationship found by Rothwell and Stockey (1994), placing the fossil sister to the Azolla plus Salvinia clade. The alternative topology places Hydropteris as the most basal member of the heterosporous fern clade. Equivocal interpretations for character evolution in heterosporous ferns are discussed in the context of these two most-parsimonious trees. Because of the observed degree of character ambiguity, the phylogenetic placement of Hydropteris is best viewed as unresolved, and recognition of the suborder Hydropteridineae, as circumscribed by Rothwell and Stockey (1994), is regarded as premature. The two competing hypotheses of relationships for heterosporous ferns are also compared with the known temporal distribution of relevant taxa. Stratigraphic fit of the phylogenetic estimates is measured by using the Stratigraphic Consistency Index and by comparison with minimum divergence times.
Collapse
|
19
|
Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc Lond B Biol Sci 1998; 353:113-130. [PMCID: PMC1692181 DOI: 10.1098/rstb.1998.0195] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.
Collapse
|