1
|
Rossi F, Luppi S, Fejza A, Giolo E, Ricci G, Andreuzzi E. Extracellular matrix and pregnancy: functions and opportunities caught in the net. Reprod Biol Endocrinol 2025; 23:24. [PMID: 39953593 PMCID: PMC11827249 DOI: 10.1186/s12958-025-01348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix is a complex network of macromolecules that support the growth and homeostatic development of organisms. By conveying multiple signaling cascades, it impacts on several biological processes and influences the behaviour of numerous cell types. During the endometrial cycle and the key events necessary for a correct embryo implantation and placentation, this bioactive meshwork is substantially modified to favour endometrial receptivity and vascular adaptation, trophoblast cell migration, and immune activation as well. A correct extracellular remodeling is fundamental for the establishment of a physiological pregnancy; indeed, the occurrence of altered matrix modifications associates with gestational disorders such as preeclampsia. In the present review, we will critically evaluate the role of pivotal matrix constituents in regulating the key steps of embryo implantation and placentation, provide up-to-date information concerning their primary mechanisms of action and discuss on their potential as a novel source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Francesca Rossi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Albina Fejza
- UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina, 10000, Kosovo
| | - Elena Giolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Eva Andreuzzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy.
| |
Collapse
|
2
|
Tian Q, He JP, Zhu C, Zhu QY, Li YG, Liu JL. Revisiting the Transcriptome Landscape of Pig Embryo Implantation Site at Single-Cell Resolution. Front Cell Dev Biol 2022; 10:796358. [PMID: 35602598 PMCID: PMC9114439 DOI: 10.3389/fcell.2022.796358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Litter size is one of the most economically important traits in commercial pig farming. It has been estimated that approximately 30% of porcine embryos are lost during the peri-implantation period. Despite rapid advances over recent years, the molecular mechanism underlying embryo implantation in pigs remains poorly understood. In this study, the conceptus together with a small amount of its surrounding endometrial tissues at the implantation site was collected and subjected to single-cell RNA-seq using the 10x platform. Because embryo and maternal endometrium were genetically different, we successfully dissected embryonic cells from maternal endometrial cells in the data according to single nucleotide polymorphism information captured by single-cell RNA-seq. Undoubtedly, the interaction between trophoblast cells and uterine epithelial cells represents the key mechanism of embryo implantation. Using the CellChat tool, we revealed cell-cell communications between these 2 cell types in terms of secreted signaling, ECM-receptor interaction and cell-cell contact. Additionally, by analyzing the non-pregnant endometrium as control, we were able to identify global gene expression changes associated with embryo implantation in each cell type. Our data provide a valuable resource for deciphering the molecular mechanism of embryo implantation in pigs.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Gu Li
- *Correspondence: Yu-Gu Li, ; Ji-Long Liu,
| | | |
Collapse
|
3
|
Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases. Int J Mol Sci 2021; 22:ijms221910584. [PMID: 34638928 PMCID: PMC8509074 DOI: 10.3390/ijms221910584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Two small leucine-rich proteoglycans (SLRP), decorin and biglycan, play important roles in structural–functional integrity of the placenta and fetal membranes, and their alterations can result in several pregnancy-associated diseases. In this review, we briefly discuss normal placental structure and functions, define and classify SLRPs, and then focus on two SLRPs, decorin (DCN) and biglycan (BGN). We discuss the consequences of deletions/mutations of DCN and BGN. We then summarize DCN and BGN expression in the pregnant uterus, myometrium, decidua, placenta, and fetal membranes. Actions of these SLRPs as ligands are then discussed in the context of multiple binding partners in the extracellular matrix and cell surface (receptors), as well as their alterations in pathological pregnancies, such as preeclampsia, fetal growth restriction, and preterm premature rupture of membranes. Lastly, we raise some unanswered questions as food for thought.
Collapse
|
4
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Pantham P, Armstrong DL, Bodnariuc J, Haupt O, Johnson AW, Underhill L, Iozzo RV, Lechner BE, Wildman DE. Transcriptomic profiling of fetal membranes of mice deficient in biglycan and decorin as a model of preterm birth†. Biol Reprod 2020; 104:611-623. [PMID: 33165521 DOI: 10.1093/biolre/ioaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/09/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Approximately, 25% of all preterm births are due to preterm premature rupture of membranes. Mice deficient in proteoglycans biglycan (Bgn) and decorin (Dcn) display abnormal fetal membranes and increased incidence of preterm birth. We conducted RNA-Seq to profile fetal membranes and identify molecular pathways that may lead to preterm birth in double knockout (DKO) mice (Bgn-/-; Dcn-/-) compared to wild-type (WT) at two different gestational stages, E12 and E18 (n = 3 in each group). 3264 transcripts were differentially regulated in E18 DKO vs. WT fetal membranes, and 96 transcripts differentially regulated in E12 DKO vs. WT fetal membranes (FDR < 0.05, log 2 FC ≥ 1). Differentially regulated transcripts in E18 DKO fetal membranes were significantly enriched for genes involved in cell cycle regulation, extracellular matrix-receptor interaction, and the complement cascade. Fifty transcripts involved in the cell cycle were altered in E18 DKO fetal membranes (40↓, 10↑, FDR < 0.05), including p21 and p57 (↑), and Tgfb2, Smad3, CycA, Cdk1, and Cdk2(↓). Thirty-one transcripts involved in the complement cascade were altered (11↓, 20↑, FDR < 0.05) in E18 DKO fetal membranes, including C1q, C2, and C3 (↑). Differentially expressed genes in the top three molecular pathways (1) showed evidence of negative or purifying selection, and (2) were significantly enriched (Z-score > 10) for transcription factor binding sites for Nr2f1 at E18. We propose that in DKO mice, cell cycle arrest results in lack of cell proliferation in fetal membranes, inability to contain the growing fetus, and preterm birth.
Collapse
Affiliation(s)
- Priyadarshini Pantham
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Don L Armstrong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan Bodnariuc
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Owen Haupt
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy Wagoner Johnson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lori Underhill
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Beatrice E Lechner
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Derek E Wildman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Schaefer L, Tredup C, Gubbiotti MA, Iozzo RV. Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J 2017; 284:10-26. [PMID: 27860287 PMCID: PMC5226885 DOI: 10.1111/febs.13963] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/27/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
Abstract
Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in cancer initiation and progression. In this minireview, we will address novel functions of biglycan and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered by these proteoglycans, which directly or indirectly modulate these processes. We will critically discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and delineate the potential mechanisms through which soluble extracellular matrix constituents affect the microenvironment associated with inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Claudia Tredup
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Maria A. Gubbiotti
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
7
|
da Anunciação ARA, Mess AM, Orechio D, Aguiar BA, Favaron PO, Miglino MA. Extracellular matrix in epitheliochorial, endotheliochorial and haemochorial placentation and its potential application for regenerative medicine. Reprod Domest Anim 2016; 52:3-15. [DOI: 10.1111/rda.12868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- ARA da Anunciação
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - AM Mess
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - D Orechio
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - BA Aguiar
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - PO Favaron
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - MA Miglino
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
8
|
Gubbiotti MA, Vallet SD, Ricard-Blum S, Iozzo RV. Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol 2016; 55:7-21. [PMID: 27693454 DOI: 10.1016/j.matbio.2016.09.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decorin, a prototype small leucine-rich proteoglycan, regulates a vast array of cellular processes including collagen fibrillogenesis, wound repair, angiostasis, tumor growth, and autophagy. This functional versatility arises from a wide array of decorin/protein interactions also including interactions with its single glycosaminoglycan side chain. The decorin-binding partners encompass numerous categories ranging from extracellular matrix molecules to cell surface receptors to growth factors and enzymes. Despite the diversity of the decorin interacting network, two main roles emerge as prominent themes in decorin function: maintenance of cellular structure and outside-in signaling, culminating in anti-tumorigenic effects. Here we present contemporary knowledge regarding the decorin interacting network and discuss in detail the biological relevance of these pleiotropic interactions, some of which could be targeted by therapeutic interventions.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sylvain D Vallet
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Sylvie Ricard-Blum
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Hyperprolactinemia changes the sulfated glycosaminoglycan amount on the murine uterus during the estrous cycle. Fertil Steril 2013; 100:1419-27. [DOI: 10.1016/j.fertnstert.2013.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 01/22/2023]
|
10
|
Chen S, Birk DE. The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. FEBS J 2013; 280:2120-37. [PMID: 23331954 DOI: 10.1111/febs.12136] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 12/14/2022]
Abstract
Small leucine-rich proteoglycans (SLRPs) are involved in a variety of biological and pathological processes. This review focuses on their regulatory roles in matrix assembly. SLRPs have protein cores and hypervariable glycosylation with multivalent binding abilities. During development, differential interactions of SLRPs with other molecules result in tissue-specific spatial and temporal distributions. The changing expression patterns play a critical role in the regulation of tissue-specific matrix assembly and therefore tissue function. SLRPs play significant structural roles within extracellular matrices. In addition, they play regulatory roles in collagen fibril growth, fibril organization and extracellular matrix assembly. Moreover, they are involved in mediating cell-matrix interactions. Abnormal SLRP expression and/or structures result in dysfunctional extracellular matrices and pathophysiology. Altered expression of SLRPs has been found in many disease models, and structural deficiency also causes altered matrix assembly. SLRPs regulate assembly of the extracellular matrix, which defines the microenvironment, modulating both the extracellular matrix and cellular functions, with an impact on tissue function.
Collapse
Affiliation(s)
- Shoujun Chen
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612-4799, USA
| | | |
Collapse
|
11
|
XU YUANZHI, ZHAO KAIJUN, YANG ZHIGANG, ZHANG YUHUI, ZHANG YONGWEI, HONG BO, LIU JIANMIN. Decreased plasma decorin levels following acute ischemic stroke: Correlation with MMP-2 and differential expression in TOAST subtypes. Mol Med Rep 2012; 6:1319-24. [DOI: 10.3892/mmr.2012.1108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/01/2012] [Indexed: 11/06/2022] Open
|
12
|
Wu Z, Aron AW, Macksoud EE, Iozzo RV, Hai CM, Lechner BE. Uterine dysfunction in biglycan and decorin deficient mice leads to dystocia during parturition. PLoS One 2012; 7:e29627. [PMID: 22253749 PMCID: PMC3258236 DOI: 10.1371/journal.pone.0029627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/01/2011] [Indexed: 02/05/2023] Open
Abstract
Cesarean birth rates are rising. Uterine dysfunction, the exact mechanism of which is unknown, is a common indication for Cesarean delivery. Biglycan and decorin are two small leucine-rich proteoglycans expressed in the extracellular matrix of reproductive tissues and muscle. Mice deficient in biglycan display a mild muscular dystrophy, and, along with mice deficient in decorin, are models of Ehlers-Danlos Syndrome, a connective tissue anomaly associated with uterine rupture. As a variant of Ehlers-Danlos Syndrome is caused by a genetic mutation resulting in abnormal biglycan and decorin secretion, we hypothesized that biglycan and decorin play a role in uterine function. Thus, we assessed wild-type, biglycan, decorin and double knockout pregnancies for timing of birth and uterine function. Uteri were harvested at embryonic days 12, 15 and 18. Nonpregnant uterine samples of the same genotypes were assessed for tissue failure rate and spontaneous and oxytocin-induced contractility. We discovered that biglycan/decorin mixed double-knockout dams displayed dystocia, were at increased risk of delayed labor onset, and showed increased tissue failure in a predominantly decorin-dependent manner. In vitro spontaneous uterine contractile amplitude and oxytocin-induced contractile force were decreased in all biglycan and decorin knockout genotypes compared to wild-type. Notably, we found no significant compensation between biglycan and decorin using quantitative real time PCR or immunohistochemistry. We conclude that the biglycan/decorin mixed double knockout mouse is a model of dystocia and delayed labor onset. Moreover, decorin is necessary for uterine function in a dose-dependent manner, while biglycan exhibits partial compensatory mechanisms in vivo. Thus, this model is poised for use as a model for testing novel targets for preventive or therapeutic manipulation of uterine dysfunction.
Collapse
Affiliation(s)
- Zhiping Wu
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Abraham W. Aron
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Elyse E. Macksoud
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Chi-Ming Hai
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Beatrice E. Lechner
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
13
|
Neill T, Painter H, Buraschi S, Owens RT, Lisanti MP, Schaefer L, Iozzo RV. Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1α, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J Biol Chem 2011; 287:5492-506. [PMID: 22194599 DOI: 10.1074/jbc.m111.283499] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Decorin, a small leucine-rich proteoglycan, inhibits tumor growth by antagonizing multiple receptor tyrosine kinases including EGFR and Met. Here, we investigated decorin during normoxic angiogenic signaling. An angiogenic PCR array revealed a profound decorin-evoked transcriptional inhibition of pro-angiogenic genes, such as HIF1A. Decorin evoked a reduction of hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor A (VEGFA) in MDA-231 breast carcinoma cells expressing constitutively-active HIF-1α. Suppression of Met with decorin or siRNA evoked a similar reduction of VEGFA by attenuating downstream β-catenin signaling. These data establish a noncanonical role for β-catenin in regulating VEGFA expression. We found that exogenous decorin induced expression of thrombospondin-1 and TIMP3, two powerful angiostatic agents. In contrast, decorin suppressed both the expression and enzymatic activity of matrix metalloprotease (MMP)-9 and MMP-2, two pro-angiogenic proteases. Our data establish a novel duality for decorin as a suppressor of tumor angiogenesis under normoxia by simultaneously down-regulating potent pro-angiogenic factors and inducing endogenous anti-angiogenic agents.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Todorova L, Bjermer L, Westergren-Thorsson G, Miller-Larsson A. TGFβ-induced matrix production by bronchial fibroblasts in asthma: budesonide and formoterol effects. Respir Med 2011; 105:1296-307. [PMID: 21514131 DOI: 10.1016/j.rmed.2011.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/27/2011] [Accepted: 03/29/2011] [Indexed: 01/09/2023]
Abstract
To investigate the mechanisms of enhanced airway deposition of subepithelial collagen in asthma and its sensitivity to drug therapy with combination of an inhaled glucocorticosteroid (GC) and a long-acting β(2)-agonist (LABA), a cell model system involving bronchial fibroblasts derived from biopsies from patients with stable mild-to-moderate asthma has been used. To mimic unstable conditions and severe asthma, fibroblasts were stimulated ex vivo with TGFβ1. Primary fibroblasts established from central bronchial biopsies from 8 asthmatic patients were incubated for 24 h with 0.4% serum or TGFβ1 (10 ng/ml) with/without the GC budesonide (BUD; 10 nM) and/or the LABA formoterol (FORM; 0.1 nM). Procollagen peptide I (PICP), metalloproteinase (MMP)-1 and tissue inhibitor of MMPs (TIMP-1) were determined in culture media using ELISA while the activity of MMP-2, -3, -9 by zymography. Metabolically labeled proteoglycans, biglycan and decorin, associated with collagen fibrillation/deposition, were separated using chromatography and SDS-PAGE. The levels of PICP and biglycan were increased 2-fold by TGFβ1 (p < 0.05). The BUD and FORM combination reduced the PICP increase by 58% (p < 0.01) and the biglycan by 36% (p < 0.05) while each drug alone had no effect. Decorin levels were reduced by TGFβ1 in fibroblasts of most patients; BUD alone and BUD and FORM completely counteracted this decrease. MMPs and TIMP-1 were not affected by TGFβ1 or the drugs. These results suggest that BUD and FORM combination therapy, without affecting metalloproteolytic balance, has a potential to counteract enhanced collagen production by bronchial fibroblasts in asthma and to normalize the production of small proteoglycans which may affect collagen fibrillation and deposition.
Collapse
Affiliation(s)
- Lizbet Todorova
- Department of Experimental Medical Sciences, Division of Lung Biology, Lund University, BMC D12, 221 84 Lund, Sweden
| | | | | | | |
Collapse
|
15
|
Calmus ML, Macksoud EE, Tucker R, Iozzo RV, Lechner BE. A mouse model of spontaneous preterm birth based on the genetic ablation of biglycan and decorin. Reproduction 2011; 142:183-94. [PMID: 21502335 DOI: 10.1530/rep-10-0387] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preterm premature rupture of membranes is responsible for one-third of preterm births. Ehlers-Danlos syndrome (EDS) is associated with preterm premature rupture of membranes in humans. In particular, an EDS variant is caused by a genetic mutation resulting in abnormal secretion of biglycan and decorin, two small leucine-rich proteoglycans highly expressed in reproductive tissues. Because biglycan/decorin null mutant (Bgn(-/-)Dcn(-/-)) mice demonstrate phenotypic changes similar to EDS, we used this model to test whether either biglycan or decorin or both play a role in the attainment of successful term gestation. Wild-type biglycan null mutant, decorin null mutant, and biglycan/decorin null mutant pregnancies were assessed for the length of gestation, pup and placenta weight, and litter size. Quantitative real-time PCR was performed to measure biglycan and decorin gene expression, and immunohistochemistry was performed to assess protein expression in placenta and fetal membranes at embryonic days E12, E15, and E18. Bgn(-/-)Dcn(-/-) dams displayed preterm birth, whereas the possession of at least two biglycan or decorin wild-type alleles was protective of preterm birth. The number of Bgn(-/-)Dcn(-/-) pups was decreased at postnatal day P1 but not at E18. Biglycan and decorin were upregulated in the placenta in the absence of each other and were developmentally regulated in fetal membranes, suggesting that these two proteoglycans demonstrate genetic complementation and contribute to gestational success in a dose-dependent manner. Thus, the biglycan/decorin null mutant mouse is a model of genetically induced preterm birth and perinatal loss. This model presents novel targets for preventive or therapeutic manipulation of preterm birth.
Collapse
Affiliation(s)
- Megan L Calmus
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02905, USA
| | | | | | | | | |
Collapse
|
16
|
Salgado RM, Favaro RR, Zorn TMT. Modulation of small leucine-rich proteoglycans (SLRPs) expression in the mouse uterus by estradiol and progesterone. Reprod Biol Endocrinol 2011; 9:22. [PMID: 21294898 PMCID: PMC3041739 DOI: 10.1186/1477-7827-9-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/04/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have previously demonstrated that four members of the family of small leucine-rich-proteoglycans (SLRPs) of the extracellular matrix (ECM), named decorin, biglycan, lumican and fibromodulin, are deeply remodeled in mouse uterine tissues along the estrous cycle and early pregnancy. It is known that the combined action of estrogen (E2) and progesterone (P4) orchestrates the estrous cycle and prepares the endometrium for pregnancy, modulating synthesis, deposition and degradation of various molecules. Indeed, we showed that versican, another proteoglycan of the ECM, is under hormonal control in the uterine tissues. METHODS E2 and/or medroxiprogesterone acetate (MPA) were used to demonstrate, by real time PCR and immunoperoxidase staining, respectively, their effects on mRNA expression and protein deposition of these SLRPs, in the uterine tissues. RESULTS Decorin and lumican were constitutively expressed and deposited in the ECM in the absence of the ovarian hormones, whereas deposition of biglycan and fibromodulin were abolished from the uterine ECM in the non-treated group. Interestingly, ovariectomy promoted an increase in decorin, lumican and fibromodulin mRNA levels, while biglycan mRNA conspicuously decreased. Hormone replacement with E2 and/or MPA differentially modulates their expression and deposition. CONCLUSIONS The patterns of expression of these SLRPs in the uterine tissues were found to be hormone-dependent and uterine compartment-related. These results reinforce the existence of subpopulations of endometrial fibroblasts, localized into distinct functional uterine compartments, resembling the organization into basal and functional layers of the human endometrium.
Collapse
Affiliation(s)
- Renato M Salgado
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo R Favaro
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Telma MT Zorn
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Hasegawa T, Li M, Hara K, Sasaki M, Tabata C, Freitas PHLD, Hongo H, Suzuki R, Kobayashi M, Inoue K, Yamamoto T, Oohata N, Oda K, Akiyama Y, Amizuka N. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats. Biomed Res 2011; 32:259-69. [DOI: 10.2220/biomedres.32.259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Buraschi S, Pal N, Tyler-Rubinstein N, Owens RT, Neill T, Iozzo RV. Decorin antagonizes Met receptor activity and down-regulates {beta}-catenin and Myc levels. J Biol Chem 2010; 285:42075-85. [PMID: 20974860 PMCID: PMC3009933 DOI: 10.1074/jbc.m110.172841] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/13/2010] [Indexed: 12/18/2022] Open
Abstract
A theme emerging during the past few years is that members of the small leucine-rich proteoglycan gene family affect cell growth by interacting with multiple receptor tyrosine kinases (RTKs), mostly by a physical down-regulation of the receptors, thereby depriving tumor cells of pro-survival signals. Decorin binds and down-regulates several RTKs, including Met, the receptor for hepatocyte growth factor. Here we demonstrate that decorin blocks several biological activities mediated by the Met signaling axis, including cell scatter, evasion, and migration. These effects were mediated by a profound down-regulation of noncanonical β-catenin levels. In addition, Myc, a downstream target of β-catenin, was markedly down-regulated by decorin, whereas phosphorylation of Myc at threonine 58 was markedly induced. The latter is known to destabilize Myc and target it for proteasomal degradation. We also discovered that systemic delivery of decorin using three distinct tumor xenograft models caused down-regulation of Met and a concurrent suppression of β-catenin and Myc levels. We found that decorin protein core labeled with the near infrared dye IR800 specifically targeted the tumor cells expressing Met. Even 68-h post-injection, decorin was found to reside within the tumor xenografts with little or no binding to other tissues. Collectively, our results indicate a role for a secreted proteoglycan in suppressing the expression of key oncogenic factors required for tumor progression.
Collapse
Affiliation(s)
- Simone Buraschi
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Nutan Pal
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Nadia Tyler-Rubinstein
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | | | - Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Renato V. Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| |
Collapse
|
19
|
Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J 2010; 277:3864-75. [PMID: 20840584 DOI: 10.1111/j.1742-4658.2010.07797.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The small leucine-rich proteoglycans (SLRPs) are involved in many aspects of mammalian biology, both in health and disease. They are now being recognized as key signaling molecules with an expanding repertoire of molecular interactions affecting not only growth factors, but also various receptors involved in controlling cell growth, morphogenesis and immunity. The complexity of SLRP signaling and the multitude of affected signaling pathways can be reconciled with a hierarchical affinity-based interaction of various SLRPs in a cell- and tissue-specific context. Here, we review this interacting network, describe new relationships of the SLRPs with tyrosine kinase and Toll-like receptors and critically assess their roles in cancer and innate immunity.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|