1
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Sex-Dependent Effects of Dietary Genistein on Echocardiographic Profile and Cardiac GLUT4 Signaling in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1796357. [PMID: 27471542 PMCID: PMC4947657 DOI: 10.1155/2016/1796357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 01/13/2023]
Abstract
This study aimed to determine whether genistein diet resulted in changes in cardiac function, using echocardiography, and expression of key proteins involved in glucose uptake by the myocardium. Intact male and female C57BL/6J mice (aged 4–6 weeks) were fed either 600 mg genistein/kg diet (600 G) or 0 mg genistein/kg diet (0 G) for 4 weeks. Echocardiography data revealed sex-dependent differences in the absence of genistein: compared to females, hearts from males exhibited increased systolic left ventricle internal dimension (LVIDs), producing a decrease in function, expressed as fractional shortening (FS). Genistein diet also induced echocardiographic changes in function: in female hearts, 600G induced a 1.5-fold (P < 0.05) increase in LVIDs, resulting in a significant decrease in FS and whole heart surface area when compared to controls (fed 0 G). Genistein diet increased cardiac GLUT4 protein expression in both males (1.51-fold, P < 0.05) and females (1.76-fold, P < 0.05). However, no effects on the expression of notable intracellular signaling glucose uptake-regulated proteins were observed. Our data indicate that consumption of genistein diet for 4 weeks induces echocardiographic changes in indices of systolic function in females and has beneficial effects on cardiac GLUT4 protein expression in both males and females.
Collapse
|
3
|
Missan S, Linsdell P, McDonald TF. Role of kinases and G-proteins in the hyposmotic stimulation of cardiac IKs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1641-52. [PMID: 16836976 DOI: 10.1016/j.bbamem.2006.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/19/2006] [Accepted: 05/30/2006] [Indexed: 12/16/2022]
Abstract
Exposure of cardiac myocytes to hyposmotic solution stimulates slowly-activating delayed-rectifying K(+) current (I(Ks)) via unknown mechanisms. In the present study, I(Ks) was measured in guinea-pig ventricular myocytes that were pretreated with modulators of cell signaling processes, and then exposed to hyposmotic solution. Pretreatment with compounds that (i) inhibit serine/threonine kinase activity (10-100 microM H89; 200 microM H8; 50 microM H7; 1 microM bisindolylmaleimide I; 10 microM LY294002; 50 microM PD98059), (ii) stimulate serine/threonine kinase activity (1-5 microM forskolin; 0.1 microM phorbol-12-myristate-13-acetate; 10 microM acetylcholine; 0.1 microM angiotensin II; 20 microM ATP), (iii) suppress G-protein activation (10 mM GDPbetaS), or (iv) disrupt the cytoskeleton (10 microM cytochalasin D), had little effect on the stimulation of I(Ks) by hyposmotic solution. In marked contrast, pretreatment with tyrosine kinase inhibitor tyrphostin A25 (20 microM) strongly attenuated both the hyposmotic stimulation of I(Ks) in myocytes and the hyposmotic stimulation of current in BHK cells co-expressing Ks channel subunits KCNQ1 and KCNE1. Since attenuation of hyposmotic stimulation was not observed in myocytes and cells pretreated with inactive tyrphostin A1, we conclude that TK has an important role in the response of cardiac Ks channels to hyposmotic solution.
Collapse
Affiliation(s)
- Sergey Missan
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
4
|
Goodstadt L, Powell T, Figtree GA. 17beta-estradiol potentiates the cardiac cystic fibrosis transmembrane conductance regulator chloride current in guinea-pig ventricular myocytes. J Physiol Sci 2006; 56:29-37. [PMID: 16779911 DOI: 10.2170/physiolsci.r2131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is a well-characterized membrane chloride current (ICl,cAMP) in the heart that can be activated by beta-adrenergic agonists and is due to expression of the cardiac isoform of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR). We have investigated whether 17beta-estradiol (E2) modulates ICl,cAMP in single ventricular myocytes. Under whole-cell tight-seal voltage-clamp conditions, ICl,cAMP was evoked by exposing cells to 20 nM isoprenaline. On the addition of 30 microM E2, membrane slope conductance, measured at potentials near 0 mV, increased over that induced by isoprenaline alone by 2.46 +/- 0.16 (p < 0.001). The effects of E2 were concentration-dependent and described by a Hill Plot with an EC50 of 8.2 microM and a Hill coefficient of 1.63. The application of membrane-impermeant E2 conjugated to bovine serum albumin (E2-BSA) potentiated isoprenaline-evoked ICl,cAMP by approximately the same degree as that for the equivalent level of free E2. Cell surface binding was observed with confocal microscopy by using BSA-FITC tagged E2. This binding was inhibited by nonlabeled, nonconjugate E2, the specific E2 antagonist ICl 182,780, and incubation of E2coBSA with a specific anti-E2 antibody (E2885). ICl 182,780 (100 microM) significantly reduced the increase in ICl,cAMP evoked by 10 microM E2 to 1.46 +/- 0.10 (p < 0.02). The preincubation of myocytes with the NOS inhibitor N-omega-nitro-arginine (L-NNA, 1 mM) reduced the potentiation of ICl,cAMP by 30 microM E2, to 1.93 +/- 0.06 (p < 0.02), and for 10 microM E2, to 1.32 +/- 0.05 (p < 0.002). E2 also increased ICl,cAMP evoked by bath application of 0.5 microM Forskolin. These experiments demonstrate that, under our experimental conditions, E2 dramatically increases ICl,cAMP in ventricular myocytes by mechanisms involving a contribution by NOS, but that can be only partially accounted for through binding to classical plasma membrane estrogen receptor sites. This potentiation of ICl,cAMP by E2 may play a significant role in the observed clinical actions of E2 on the incidence of cardiac arrhythmias and hypertrophy.
Collapse
Affiliation(s)
- L Goodstadt
- MRC Functional Genetics Unit, Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
5
|
Ueda-Nishimura T, Niisato N, Miyazaki H, Naito Y, Yoshida N, Yoshikawa T, Nishino H, Marunaka Y. Synergic action of insulin and genistein on Na+/K+/2Cl − cotransporter in renal epithelium. Biochem Biophys Res Commun 2005; 332:1042-52. [PMID: 15925323 DOI: 10.1016/j.bbrc.2005.05.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 05/09/2005] [Indexed: 11/18/2022]
Abstract
Transepithelial Cl(-) secretion in polarized renal A6 cells is composed of two steps: (1) Cl(-) entry step across the basolateral membrane mediated by Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and (2) Cl(-) releasing step across the apical membrane via cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We estimated CFTR Cl(-) channel activity and transcellular Cl(-) secretion by measuring 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB, a blocker of CFTR Cl(-) channel)-sensitive transepithelial conductance (Gt) and short-circuit current (Isc), respectively. Pretreatment with 1 microM insulin for 24 h had no effects on NPPB-sensitive Gt or Isc. On the other hand, in A6 cells treated with carbobenzoxy-L-leucyl-leucyl-L-leucinal (MG132; 100 microM for 2 h) that inhibits endocytosis of proteins at the plasma membrane into the cytosolic space, insulin pretreatment increased the NPPB-sensitive Isc with no effects on NPPB-sensitive Gt. Genistein (100 microM) induced sustained increases in NPPB-sensitive Gt and Isc, which were diminished by brefeldin A (a blocker of protein translocation to Golgi apparatus from endoplasmic reticulum). Co-application of insulin and genistein synergically stimulated the NPPB-sensitive Isc without any effects on NPPB-sensitive Gt. These observations suggest that: (1) insertion and endocytosis of NKCC are stimulated by insulin, (2) the insulin-induced stimulation of NKCC insertion into the basolateral membrane is offset by the stimulatory action on NKCC endocytosis from the basolateral membrane, (3) genistein stimulates insertion of both CFTR Cl(-) channel into the apical membrane and NKCC into the basolateral membrane, and (4) insulin and genistein synergically stimulated NKCC insertion into the basolateral membrane.
Collapse
Affiliation(s)
- Tomoko Ueda-Nishimura
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Missan S, McDonald TF. Cardiac Na+-Ca2+ exchanger current induced by tyrphostin tyrosine kinase inhibitors. Br J Pharmacol 2004; 143:943-51. [PMID: 15545291 PMCID: PMC1575963 DOI: 10.1038/sj.bjp.0706011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tyrosine kinase (TK) inhibitors genistein and tyrphostin A23 (A23) inhibited Ca(2+) currents in guinea-pig ventricular myocytes investigated under standard whole-cell conditions (K(+)-free Tyrode's superfusate; EGTA-buffered (pCa-10.5) Cs(+) dialysate). However, the inhibitors (100 microM) also induced membrane currents that reversed between -40 and 0 mV, and the objective of the present study was to characterize these currents. Genistein-induced current behaved like Cl(-) current, and was unaffected by either the addition of divalent cations (0.5 mM Cd(2+); 3 mM Ni(2+)) that block the Na(+)-Ca(2+) exchanger (NCX), or the removal of external Na(+) and Ca(2+). A23-induced current was independent of Cl(-) driving force, and strongly suppressed by addition of Cd(2+) and Ni(2+), and by removal of either external Na(+) or Ca(2+). These and other results suggested that A23 activated an NCX current driven by submembrane Na(+) and Ca(2+) concentrations higher than those in the bulk cytoplasm. Improved control of intracellular Na(+) and Ca(2+) concentrations was obtained by suppressing cation influx (10 microM verapamil) and raising dialysate Na(+) to 7 mM and dialysate pCa to 7. Under these conditions, stimulation by A23 was described by the Hill equation with EC(50) 68 +/- 4 microM and coefficient 1.1, tyrphostin A25 was as effective as A23, and TK-inactive tyrphostin A1 was ineffective. Phosphotyrosyl phosphatase inhibitor orthovanadate (1 mM) antagonized the action of 100 microM A23. The results suggest that activation of cardiac NCX by A23 is due to inhibition of genistein-insensitive TK.
Collapse
Affiliation(s)
- Sergey Missan
- Department of Physiology and Biophysics, Dalhousie University, 5859 University Avenue, Halifax, Nova Scotia, Canada B3H 4H7.
| | | |
Collapse
|
7
|
Sims C, Harvey RD. Redox modulation of basal and beta-adrenergically stimulated cardiac L-type Ca(2+) channel activity by phenylarsine oxide. Br J Pharmacol 2004; 142:797-807. [PMID: 15172960 PMCID: PMC1575054 DOI: 10.1038/sj.bjp.0705845] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Phenylarsine oxide (PAO) is commonly used to inhibit tyrosine phosphatase activity. However, PAO can affect a variety of different processes because of its ability to promote sulfhydryl oxidation. In the present study, we investigated the effects that PAO has on basal and beta-adrenergically stimulated L-type Ca(2+) channel activity in isolated cardiac myocytes. 2. Extracellular application of PAO transiently stimulated the basal L-type Ca(2+) channel activity, whereas it irreversibly inhibited protein kinase A (PKA)-dependent regulation of channel activity by isoproterenol, forskolin and 8-CPT-cAMP (8-p-chlorophenylthioadenosine 3',5'-cyclic monophosphate). PAO also inhibited channel activity irreversibly stimulated in the presence of adenosine 5'-(3-thiotriphosphate) tetralithium salt. 3. Neither the stimulatory nor the inhibitory effects of PAO were affected by the tyrosine kinase inhibitor lavendustin A, suggesting that tyrosine phosphorylation is not involved. 4. Extracellular application of the sulfhydryl-reducing agent dithiothreitol (DTT) antagonized both the stimulatory and inhibitory effects of PAO. Yet, following intracellular dialysis with DTT, only the inhibitory effect of PAO was antagonized. 5. The inhibitory effect of PAO was mimicked by intracellular, but not extracellular application of the membrane impermeant thiol oxidant 5,5'-dithio-bis(2-nitrobenzoic acid). 6. These results suggest that the stimulatory effect of PAO results from oxidation of sulfhydryl residues at an extracellular site and the inhibitory effect is due to redox regulation of an intracellular site that affects the response of the channel to PKA-dependent phosphorylation. It is concluded that the redox state of the cell may play a critical role in modulating beta-adrenergic responsiveness of the L-type Ca(2+) channel in cardiac myocytes.
Collapse
MESH Headings
- Animals
- Arsenicals/antagonists & inhibitors
- Arsenicals/pharmacology
- Calcium/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Colforsin/pharmacology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- Dithiothreitol/pharmacology
- Drug Evaluation, Preclinical/methods
- Electrophysiology
- Guinea Pigs
- Isoproterenol/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/physiology
- Oxidation-Reduction/drug effects
- Phosphorylation/drug effects
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/drug effects
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/drug effects
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Signal Transduction
- Thionucleotides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Carl Sims
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, U.S.A
| | - Robert D Harvey
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, U.S.A
- Author for correspondence:
| |
Collapse
|
8
|
Niisato N, Nishio K, Marunaka Y. Activation of CFTR Cl(-) channel by tyrphostins via a protein tyrosine kinase-independent pathway in forskolin-stimulated renal epithelial A6 cells. Life Sci 2002; 71:1199-207. [PMID: 12095540 DOI: 10.1016/s0024-3205(02)01824-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We studied effects of tyrphostin A23 (an inhibitor of protein tyrosine kinase; PTK) and tyrphostin A63 (an inactive analog of tyrphostin A23) on forskolin-activated cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and Cl(-) secretion in renal epithelial A6 cells. Tyrphostin A23 and A63 had no effects on the basal CFTR Cl(-) channel and Cl(-) secretion. However, under the forskolin-stimulated condition, tyrphostin A23 and A63 stimulated Cl(-) secretion by activating CFTR Cl(-) channels. These observations suggest that: 1) tyrphostin A23 and A63 stimulate the cAMP-activated CFTR Cl(-) channel via a PTK-independent, structure-dependent mechanism, and 2) tyrphostin A23 and A63 do not stimulate the basal CFTR Cl(-) channel. These lead us to an idea that: 1) cAMP might cause a conformational change of CFTR Cl(-) channel which is accessible by tyrphostins, and 2) tyrphostins would stimulate translocation of the cAMP-modified channel to the apical membrane by binding to the channel.
Collapse
Affiliation(s)
- Naomi Niisato
- Department of Cellular and Molecular Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
| | | | | |
Collapse
|
9
|
Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 2001; 281:H1835-62. [PMID: 11668044 DOI: 10.1152/ajpheart.2001.281.5.h1835] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.
Collapse
Affiliation(s)
- M J Davis
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Mall M, Wissner A, Seydewitz HH, Hübner M, Kuehr J, Brandis M, Greger R, Kunzelmann K. Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes. Br J Pharmacol 2000; 130:1884-92. [PMID: 10952679 PMCID: PMC1572276 DOI: 10.1038/sj.bjp.0703520] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2000] [Revised: 05/08/2000] [Accepted: 06/05/2000] [Indexed: 11/08/2022] Open
Abstract
The flavonoid genistein has been shown to activate a Cl(-) conductance in various cell types expressing CFTR. We examined if similar effects can be observed when genistein is applied to native ex vivo tissues from human respiratory tract and rectum. We further compared the effects when genistein was applied to oocytes of Xenopus laevis expressing CFTR. In oocytes, both wtCFTR and DeltaF508-CFTR were activated by genistein while both cyclic AMP (K(v)LQT1) and Ca(2+) (SK4) activated K(+) channels were inhibited at high concentrations of genistein. Biopsies from nasal polyps and rectal mucosa were obtained from normal individuals (non-CF) and CF patients and in the presence of amiloride (10 micromol l(-1); mucosal side) the effects of genistein were assessed using a perfused Ussing chamber. In non-CF airway epithelia, genistein (50 micromol l(-1); mucosal side) increased lumen negative I(sc) but had no additional effects on tissues pre-stimulated with IBMX and forskolin (100 micromol l(-1) and 1 micromol l(-1); both sides). In non-CF rectal biopsies, in the presence of amiloride (10 micromol l(-1); mucosal side) and indomethacin (10 micromol l(-1); basolateral side), genistein increased lumen negative I(sc) and enabled cholinergic (carbachol; CCH, 100 micromol l(-1); basolateral side) stimulation of Cl(-) secretion indicating activation of luminal CFTR Cl(-) channels. However, after stimulation with IBMX/forskolin, genistein induced opposite effects and significantly inhibited CCH activated I(sc). In CF airway and intestinal tissues genistein failed to induce Cl(-) secretion. Thus, genistein is able to activate luminal CFTR Cl(-) conductance in non-CF tissues and mutant CFTR in oocytes. However, additional inhibitory effects on basolateral K(+) conductance and missing effects in native CF tissues do not support the use for pharmacological intervention in CF.
Collapse
Affiliation(s)
- Marcus Mall
- Universitäts-Kinderklink, Albert-Ludwigs-Universität Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 7, 79104 Freiburg, Germany
| | - Andreas Wissner
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 7, 79104 Freiburg, Germany
| | - Hans H Seydewitz
- Universitäts-Kinderklink, Albert-Ludwigs-Universität Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
| | - Martin Hübner
- Department of Physiology & Pharmacology University of Queensland, St. Lucia, QLD 4072 Brisbane, Australia
| | - Joachim Kuehr
- Universitäts-Kinderklink, Albert-Ludwigs-Universität Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
| | - Matthias Brandis
- Universitäts-Kinderklink, Albert-Ludwigs-Universität Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
| | - Rainer Greger
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 7, 79104 Freiburg, Germany
| | - Karl Kunzelmann
- Department of Physiology & Pharmacology University of Queensland, St. Lucia, QLD 4072 Brisbane, Australia
| |
Collapse
|
11
|
Abstract
Anion transport proteins in mammalian cells participate in a wide variety of cell and intracellular organelle functions, including regulation of electrical activity, pH, volume, and the transport of osmolites and metabolites, and may even play a role in the control of immunological responses, cell migration, cell proliferation, and differentiation. Although significant progress over the past decade has been achieved in understanding electrogenic and electroneutral anion transport proteins in sarcolemmal and intracellular membranes, information on the molecular nature and physiological significance of many of these proteins, especially in the heart, is incomplete. Functional and molecular studies presently suggest that four primary types of sarcolemmal anion channels are expressed in cardiac cells: channels regulated by protein kinase A (PKA), protein kinase C, and purinergic receptors (I(Cl.PKA)); channels regulated by changes in cell volume (I(Cl.vol)); channels activated by intracellular Ca(2+) (I(Cl.Ca)); and inwardly rectifying anion channels (I(Cl.ir)). In most animal species, I(Cl.PKA) is due to expression of a cardiac isoform of the epithelial cystic fibrosis transmembrane conductance regulator Cl(-) channel. New molecular candidates responsible for I(Cl.vol), I(Cl.Ca), and I(Cl.ir) (ClC-3, CLCA1, and ClC-2, respectively) have recently been identified and are presently being evaluated. Two isoforms of the band 3 anion exchange protein, originally characterized in erythrocytes, are responsible for Cl(-)/HCO(3)(-) exchange, and at least two members of a large vertebrate family of electroneutral cotransporters (ENCC1 and ENCC3) are responsible for Na(+)-dependent Cl(-) cotransport in heart. A 223-amino acid protein in the outer mitochondrial membrane of most eukaryotic cells comprises a voltage-dependent anion channel. The molecular entities responsible for other types of electroneutral anion exchange or Cl(-) conductances in intracellular membranes of the sarcoplasmic reticulum or nucleus are unknown. Evidence of cardiac expression of up to five additional members of the ClC gene family suggest a rich new variety of molecular candidates that may underlie existing or novel Cl(-) channel subtypes in sarcolemmal and intracellular membranes. The application of modern molecular biological and genetic approaches to the study of anion transport proteins during the next decade holds exciting promise for eventually revealing the actual physiological, pathophysiological, and clinical significance of these unique transport processes in cardiac and other mammalian cells.
Collapse
Affiliation(s)
- J R Hume
- Department of Physiology, University of Nevada School of Medicine, Reno, Nevada, USA.
| | | | | | | | | |
Collapse
|
12
|
Leung GP, Wong PY. Activation of cystic fibrosis transmembrane conductance regulator in rat epididymal epithelium by genistein. Biol Reprod 2000; 62:143-9. [PMID: 10611078 DOI: 10.1095/biolreprod62.1.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The effect of genistein on anion secretion via cystic fibrosis transmembrane conductance regulator (CFTR) in cultured rat cauda epididymal epithelia was studied by short-circuit current (Isc) technique. Genistein added apically stimulated a concentration-dependent rise in Isc due to Cl(-) and HCO(3)(-) secretion. The genistein-induced Isc was observed in basolaterally permeabilized monolayers, suggesting that the Isc response was mediated by the apical anion channel. The response could be blocked by the nonspecific Cl(-) channel blocker, diphenylamine-2-carboxylate (DPC), but not by the Ca(2+)-activated Cl(-) channel blocker, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Genistein did not increase intracellular cAMP, but H-89, a protein kinase A inhibitor, completely abolished the Isc response to genistein. Moreover, pretreatment of the tissues with MDL-12330A, an adenylate cyclase inhibitor, markedly attenuated the Isc response to genistein, but the response was restored upon the addition of exogenous cAMP. Ca(2+), protein kinase C, tyrosine kinase, and protein phosphatase signalling pathways were not involved in the action of genistein. It is speculated that genistein stimulates anion secretion by direct interaction with CFTR. This requires a low level of phosphorylation of CFTR by basal protein kinase A activity. It is suggested that genistein may provide therapeutic benefit to male infertility associated with cystic fibrosis.
Collapse
Affiliation(s)
- G P Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | | |
Collapse
|
13
|
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is associated with a wide spectrum of disease. In the search for modulators of CFTR, pharmacological agents that interact directly with the CFTR Cl- channel have been identified. Some agents stimulate CFTR by interacting with the nucleotide-binding domains that control channel gating, whereas others inhibit CFTR by binding within the channel pore and preventing Cl- permeation. Knowledge of the molecular pharmacology of CFTR might lead to new treatments for diseases caused by the dysfunction of CFTR.
Collapse
Affiliation(s)
- T C Hwang
- Department of Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | |
Collapse
|
14
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Ogura T, Shuba LM, McDonald TF. L-type Ca2+ current in guinea pig ventricular myocytes treated with modulators of tyrosine phosphorylation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1724-33. [PMID: 10330259 DOI: 10.1152/ajpheart.1999.276.5.h1724] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Guinea pig ventricular myocytes in whole cell configuration were treated with tyrosine kinase (TK) inhibitors [genistein (Gst), tyrphostin A23 (T23), and tyrphostin A25 (T25)] and with inactive analogs [daidzein, genistin, and tyrphostin A1 (T1)] to measure effects on L-type Ca2+ current (ICa,L). Gst inhibited ICa,L (IC50 = 47 microM) without affecting its time course or shifting the ICa, L-voltage relationship. At the highest concentration of isoflavone tested (200 microM), ICa,L was inhibited by 66 +/- 7% (Gst), 22 +/- 2% (daidzein), and 1 +/- 3% (genistin). Inhibition of ICa,L by the active tyrphostins was significantly larger than inhibition by T1; at 200 microM the inhibitions were 72 +/- 6% (T23), 71 +/- 6% (T25), and 27 +/- 6% (T1). The phosphotyrosine phosphatase inhibitor orthovanadate (1 mM) had a small stimulatory effect (6 +/- 2%) on basal ICa,L and blocked the inhibition of ICa,L by TK inhibitors. The data suggest a role for the TK-phosphotyrosine phosphatase system in the regulation of cardiac Ca2+ channels.
Collapse
Affiliation(s)
- T Ogura
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
16
|
Zhou SS, Hazama A, Okada Y. Tyrosine kinase-independent extracellular action of genistein on the CFTR Cl- channel in guinea pig ventricular myocytes and CFTR-transfected mouse fibroblasts. THE JAPANESE JOURNAL OF PHYSIOLOGY 1998; 48:389-96. [PMID: 9852348 DOI: 10.2170/jjphysiol.48.389] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of genistein, a protein tyrosine kinase inhibitor, on the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel were studied in guinea pig ventricular myocytes and in NIH3T3 mouse fibroblasts stably transfected with CFTR cDNA by the whole-cell patch-clamp technique. Genistein did not activate whole-cell Cl- currents when applied to the intracellular (pipette) solution. In contrast, when applied to the extracellular solution, genistein alone promptly activated the Cl- current in a fully reversible manner. Also, extracellular genistein reversibly potentiated the forskolin-activated Cl- current. However, both basal and forskolin-activated Cl- currents were not affected by other protein tyrosine kinase inhibitors, including herbimycin A, lavendustin A, tyrphostin 21, tyrphostin 47, and tyrphostin 51. A nonspecific inhibitor of protein phosphatases, orthovanadate, had no effect on the genistein-induced activation of CFTR. Pretreatment with a protein kinase inhibitor, either H-89 or H-7, or with an adenylate cyclase inhibitor, SQ 22536, also had no effect on the genistein-induced response. Thus, it is concluded that genistein alone activates CFTR by a protein tyrosine kinase-independent and protein phosphatase-independent mechanism from the extracellular side, but not from the intracellular side.
Collapse
Affiliation(s)
- S S Zhou
- Department of Cellular and Molecular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | | | | |
Collapse
|