1
|
Therkildsen ER, Nielsen JB, Lorentzen J. The calcium channel blocker nimodipine inhibits spinal reflex pathways in humans. J Neurophysiol 2025; 133:428-439. [PMID: 39718533 DOI: 10.1152/jn.00585.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Voltage-sensitive calcium channels contribute to depolarization of both motor neurons and interneurons in animal studies, but less is known of their contribution to human motor control and whether blocking them has potential in future antispasmodic treatment in humans. Therefore, this study investigated the acute effect of nimodipine on the transmission of human spinal reflex pathways involved in spasticity. In a double-blinded, crossover study, we measured soleus muscle stretch reflexes and H reflexes and tibialis anterior cutaneous reflexes in 19 healthy subjects before and after nimodipine (tablet 60 mg) or baclofen (tablet 25 mg). Baclofen was used as a control to compare nimodipine's effects with known antispastic treatment. Changes in the size of the maximum H reflex (Hmax)/maximum direct motor response in muscle (Mmax) ratio and stretch and cutaneous reflexes following intervention with nimodipine and baclofen, respectively, were analyzed with a one-way repeated-measures (RM) ANOVA. Nimodipine significantly reduced the Hmax/Mmax ratio [F(2.5,42) = 15; P < 0.0001] and the normalized soleus stretch reflex [F(2.6,47) = 4.8; P = 0.0073] after administration. A similar tendency was seen after baclofen [Hmax/Mmax ratio: F(2.1,39) = 4.0, P = 0.024; normalized stretch reflex: F(2.8,50) = 2.4; P = 0.083]. The Mmax response was unaffected by either intervention. Interestingly, during voluntary soleus activation, the stretch reflex remained unchanged with either treatment. For the cutaneous reflexes, there was a trend toward reduced early inhibition [F(1.6,9.3) = 4.5; P = 0.050] and subsequent facilitation [F(1.3,8.0) = 4.3; P = 0.065] after nimodipine. No severe adverse effects were reported after nimodipine. These findings suggest that nimodipine acutely reduced electrophysiological measures related to spasticity in healthy individuals. The effect seemed located at the spinal level, and voluntary contraction counterbalanced the reduction of the stretch reflex, highlighting its relevance for future studies on antispastic therapies.NEW & NOTEWORTHY The calcium channel antagonist nimodipine significantly reduces the size of the soleus H reflex and stretch reflex in healthy individuals without affecting maximum direct motor response (Mmax) or the stretch reflex during voluntary activation. This underscores the importance of exploring nimodipine as a potential antispastic medication in the future.
Collapse
Affiliation(s)
| | - Jens Bo Nielsen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- The Elsass FoundationCharlottenlundDenmark
| | - Jakob Lorentzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of PaediatricsRigshospitaletCopenhagenDenmark
| |
Collapse
|
2
|
Madsen LP, Friedman AMH, Docherty CL, Kitano K, Koceja DM. Middle and Long Latency Cutaneous Reflexes During the Stance Phase of Gait in Individuals with and Without Chronic Ankle Instability. Brain Sci 2024; 14:1225. [PMID: 39766424 PMCID: PMC11727029 DOI: 10.3390/brainsci14121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lower limb cutaneous reflex amplitudes can modulate across gait, which helps humans adjust rhythmic motor outputs to maintain balance in an ever-changing environment. Preliminary evidence suggests people who suffer from repetitive ankle sprains and residual feelings of giving way demonstrate altered cutaneous reflex patterns in the gastrocnemius. However, before cutaneous reflex assessment can be implemented as a clinical outcome measure, there is a need to substantiate these early findings by measuring reflex amplitudes across longer latency periods and exploring the variability of reflexes within each subject. METHODS Forty-eight subjects with and without chronic ankle instability (CAI) walked on a treadmill at 4 km/h while activity of the lateral gastrocnemius (LG) was measured via surface electromyography. Non-noxious stimulations were elicited randomly to the ipsilateral sural nerve at the mid-stance phase of gait, and reflex amplitudes were calculated offline by comparing muscle activity during unstimulated and stimulated gait cycles. Two primary outcome measures were compared between groups at the middle latency (MLR: 80-120 ms) and late latency (LLR: 120-150 ms) time windows: (1) average reflex amplitudes and (2) standard deviation of reflex amplitudes for each subject across 10 trials. RESULTS Both groups demonstrated an equal amount of LG inhibition at the MLR and LG facilitation at the LLR. However, subjects with CAI showed significantly higher variability in LLR amplitude across trials than healthy controls. CONCLUSIONS Increased variability of cutaneous reflex amplitudes may relate to symptoms associated with CAI. These findings suggest that reflex variability following sural nerve stimulation could serve as an objective measure to track treatment progress in patients with CAI, offering clinicians a new tool for conducting rehabilitation assessments in a controlled environment.
Collapse
Affiliation(s)
- Leif P. Madsen
- Department of Kinesiology, Indiana University, 1025 E 7th St, Bloomington, IN 47405, USA; (C.L.D.); (K.K.); (D.M.K.)
| | - Annalee M. H. Friedman
- Department of Applied Medicine and Rehabilitation, Indiana State University, 210 N 7th St, Terre Haute, IN 47809, USA;
| | - Carrie L. Docherty
- Department of Kinesiology, Indiana University, 1025 E 7th St, Bloomington, IN 47405, USA; (C.L.D.); (K.K.); (D.M.K.)
| | - Koichi Kitano
- Department of Kinesiology, Indiana University, 1025 E 7th St, Bloomington, IN 47405, USA; (C.L.D.); (K.K.); (D.M.K.)
| | - David M. Koceja
- Department of Kinesiology, Indiana University, 1025 E 7th St, Bloomington, IN 47405, USA; (C.L.D.); (K.K.); (D.M.K.)
| |
Collapse
|
3
|
Saito A, Mizuno T. Effects of patterned electrical sensory nerve stimulation and static stretching on joint range of motion and passive torque. Front Neurosci 2023; 17:1205602. [PMID: 37674515 PMCID: PMC10478221 DOI: 10.3389/fnins.2023.1205602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
Static stretching and proprioceptive neuromuscular facilitation stretching techniques can modulate specific neural mechanisms to improve the range of motion. However, the effects of modulation of these neural pathways on changes in the range of motion with static stretching remain unclear. Patterned electrical stimulation of the sensory nerve induces plastic changes in reciprocal Ia inhibition. The present study examined the effects of patterned electrical stimulation and static stretching on a range of motion and passive torque in plantarflexion muscles. The subjects were 14 young men (age 20.8 ± 1.3 years). The effects of patterned electrical stimulation (10 pulses at 100 Hz every 1.5 s) or uniform electrical stimulation (one pulse every 150 ms) to the common peroneal nerve for 20 min on reciprocal Ia inhibition of the Hoffman reflex (H-reflex) were examined. Reciprocal Ia inhibition was evaluated as short-latency suppression of the soleus H-reflex by conditioning stimulation of the common peroneal nerve. Then, the effects of transcutaneous electrical nerve stimulation (patterned electrical stimulation or uniform electrical stimulation) or prolonged resting (without electrical stimulation) and static 3-min stretching on the maximal dorsiflexion angle and passive torque were investigated. The passive ankle dorsiflexion test was performed on an isokinetic dynamometer. Stretch tolerance and stiffness of the muscle-tendon unit were evaluated by the peak and slope of passive torques, respectively. Patterned electrical stimulation significantly increased reciprocal Ia inhibition of soleus H-reflex amplitude (9.7 ± 6.1%), but uniform electrical stimulation decreased it significantly (19.5 ± 8.8%). The maximal dorsiflexion angle was significantly changed by patterned electrical stimulation (4.0 ± 1.4°), uniform electrical stimulation (3.8 ± 2.3°), and stretching without electrical stimulation (2.1 ± 3.3°). The increase in stretch tolerance was significantly greater after patterned electrical stimulation and uniform electrical stimulation than after stretching without electrical stimulation. Stiffness of the muscle-tendon unit was significantly decreased by patterned electrical stimulation, uniform electrical stimulation, and stretching without electrical stimulation. Transcutaneous electrical nerve stimulation and static stretching improve stretch tolerance regardless of the degree of reciprocal Ia inhibition.
Collapse
Affiliation(s)
- Akira Saito
- Center for Health and Science, Kyushu Sangyo University, Fukuoka, Japan
| | - Takamasa Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Hu N, Piirainen JM, Kidgell DJ, Walker S, Avela J. Corticospinal Adaptation to Short-Term Horizontal Balance Perturbation Training. Brain Sci 2023; 13:1209. [PMID: 37626565 PMCID: PMC10452523 DOI: 10.3390/brainsci13081209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Sensorimotor training and strength training can improve balance control. Currently, little is known about how repeated balance perturbation training affects balance performance and its neural mechanisms. This study investigated corticospinal adaptation assessed by transcranial magnetic stimulation (TMS) and Hoffman-reflex (H-reflex) measurements during balance perturbation induced by perturbation training. Fourteen subjects completed three perturbation sessions (PS1, PS2, and PS3). The perturbation system operated at 0.25 m/s, accelerating at 2.5 m/s2 over a 0.3 m displacement in anterior and posterior directions. Subjects were trained by over 200 perturbations in PS2. In PS1 and PS3, TMS and electrical stimulation elicited motor evoked potentials (MEP) and H-reflexes in the right leg soleus muscle, at standing rest and two time points (40 ms and 140 ms) after perturbation. Body sway was assessed using the displacement and velocity of the center of pressure (COP), which showed a decrease in PS3. No significant changes were observed in MEP or H-reflex between sessions. Nevertheless, Δ MEP at 40 ms demonstrated a positive correlation with Δ COP, while Δ H-reflex at 40 ms demonstrated a negative correlation with Δ COP. Balance perturbation training led to less body sway and a potential increase in spinal-level involvement, indicating that movement automaticity may be suggested after perturbation training.
Collapse
Affiliation(s)
- Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.W.); (J.A.)
| | - Jarmo M. Piirainen
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, FI-88610 Vuokatti, Finland;
| | - Dawson J. Kidgell
- School of Primary and Allied Health Care, Department of Physiotherapy, Monash University, Frankston P.O. Box 527, Australia;
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.W.); (J.A.)
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.W.); (J.A.)
| |
Collapse
|
5
|
Martino G, Beck ON, Ting LH. Voluntary muscle coactivation in quiet standing elicits reciprocal rather than coactive agonist-antagonist control of reactive balance. J Neurophysiol 2023; 129:1378-1388. [PMID: 37162064 PMCID: PMC10259861 DOI: 10.1152/jn.00458.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
Muscle coactivation increases in challenging balance conditions as well as with advanced age and mobility impairments. Increased muscle coactivation can occur both in anticipation of (feedforward) and in reaction to (feedback) perturbations, however, the causal relationship between feedforward and feedback muscle coactivation remains elusive. Here, we hypothesized that feedforward muscle coactivation would increase both the body's initial mechanical resistance due to muscle intrinsic properties and the later feedback-mediated muscle coactivation in response to postural perturbations. Young adults voluntarily increased leg muscle coactivation using visual biofeedback before support-surface perturbations. In contrast to our hypothesis, feedforward muscle coactivation did not increase the body's initial intrinsic resistance to perturbations, nor did it increase feedback muscle coactivation. Rather, perturbations with feedforward muscle coactivation elicited a medium- to long-latency increase of feedback-mediated agonist activity but a decrease of feedback-mediated antagonist activity. This reciprocal rather than coactivation effect on ankle agonist and antagonist muscles enabled faster reactive ankle torque generation, reduced ankle dorsiflexion, and reduced center of mass (CoM) motion. We conclude that in young adults, voluntary feedforward muscle coactivation can be independently modulated with respect to feedback-mediated muscle coactivation. Furthermore, our findings suggest feedforward muscle coactivation may be useful for enabling quicker joint torque generation through reciprocal, rather than coactivated, agonist-antagonist feedback muscle activity. As such our results suggest that behavioral context is critical to whether muscle coactivation functions to increase agility versus stability.NEW & NOTEWORTHY Feedforward and feedback muscle coactivation are commonly observed in older and mobility impaired adults and are considered strategies to improve stability by increasing body stiffness prior to and in response to perturbations. In young adults, voluntary feedforward coactivation does not necessarily increase feedback coactivation in response to perturbations. Instead, feedforward coactivation enabled faster ankle torques through reciprocal agonist-antagonist muscle activity. As such, coactivation may promote either agility or stability depending on the behavioral context.
Collapse
Affiliation(s)
- Giovanni Martino
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Owen N Beck
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Nevanperä S, Hu N, Walker S, Avela J, Piirainen JM. Modulation of H-reflex and V-wave responses during dynamic balance perturbations. Exp Brain Res 2023; 241:1599-1610. [PMID: 37142781 DOI: 10.1007/s00221-023-06625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Motoneuron excitability is possible to measure using H-reflex and V-wave responses. However, it is not known how the motor control is organized, how the H-reflex and V-wave responses modulate and how repeatable these are during dynamic balance perturbations. To assess the repeatability, 16 participants (8 men, 8 women) went through two, identical measurement sessions with ~ 48 h intervals, where maximal isometric plantar flexion (IMVC) and dynamic balance perturbations in horizontal, anterior-posterior direction were performed. Soleus muscle (SOL) neural modulation during balance perturbations were measured at 40, 70, 100 and 130 ms after ankle movement by using both H-reflex and V-wave methods. V-wave, which depicts the magnitude of efferent motoneuronal output (Bergmann et al. in JAMA 8:e77705, 2013), was significantly enhanced as early as 70 ms after the ankle movement. Both the ratio of M-wave-normalized V-wave (0.022-0.076, p < 0.001) and H-reflex (0.386-0.523, p < 0.001) increased significantly at the latency of 70 ms compared to the latency of 40 ms and remained at these levels at latter latencies. In addition, M-wave normalized V-wave/H-reflex ratio increased from 0.056 to 0.179 (p < 0.001). The repeatability of V-wave demonstrated moderate-to-substantial repeatability (ICC = 0.774-0.912) whereas the H-reflex was more variable showing fair-to-substantial repeatability (ICC = 0.581-0.855). As a conclusion, V-wave was enhanced already at 70 ms after the perturbation, which may indicate that increased activation of motoneurons occurred due to changes in descending drive. Since this is a short time-period for voluntary activity, some other, potentially subcortical responses might be involved for V-wave increment rather than voluntary drive. Our results addressed the usability and repeatability of V-wave method during dynamic conditions, which can be utilized in future studies.
Collapse
Affiliation(s)
- Samuli Nevanperä
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland.
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland.
| | - Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Jarmo M Piirainen
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| |
Collapse
|
7
|
Fujio K, Obata H, Takeda K, Kawashima N. Cortical oscillations and interareal synchronization as a preparatory activity for postural response. Eur J Neurosci 2023; 57:1516-1528. [PMID: 36878880 DOI: 10.1111/ejn.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and β-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Hiroki Obata
- Department of Humanities and Social Science Laboratory, Institute of Liberal Arts, Kyushu Institute of Technology, Fukuoka, Japan
| | - Kenta Takeda
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
8
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
9
|
Hu N, Avela J, Kidgell DJ, Piirainen JM, Walker S. Modulations of corticospinal excitability following rapid ankle dorsiflexion in skill- and endurance-trained athletes. Eur J Appl Physiol 2022; 122:2099-2109. [PMID: 35729431 PMCID: PMC9212199 DOI: 10.1007/s00421-022-04981-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Purpose Long-term sports training, such as skill and endurance training, leads to specific neuroplasticity. However, it remains unclear if muscle stretch-induced proprioceptive feedback influences corticospinal facilitation/inhibition differently between skill- and endurance-trained athletes. This study investigated modulation of corticospinal excitability following rapid ankle dorsiflexion between well-trained skill and endurance athletes. Methods Ten skill- and ten endurance-trained athletes participated in the study. Corticospinal excitability was tested by single- and paired-pulse transcranial magnetic stimulations (TMS) at three different latencies following passive rapid ankle dorsiflexion. Motor evoked potential (MEP), short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), and long-latency intracortical inhibition (LICI) were recorded by surface electromyography from the soleus muscle. Results Compared to immediately before ankle dorsiflexion (Onset), TMS induced significantly greater MEPs during the supraspinal reaction period (~ 120 ms after short-latency reflex, SLR) in the skill group only (from 1.7 ± 1.0 to 2.7 ± 1.8%M-max, P = 0.005) despite both conditions being passive. ICF was significantly greater over all latencies in skill than endurance athletes (F(3, 45) = 4.64, P = 0.007), although no between-group differences for stimulations at specific latencies (e.g., at SLR) were observed. Conclusion The skill group showed higher corticospinal excitability during the supraspinal reaction phase, which may indicate a “priming” of corticospinal excitability following rapid ankle dorsiflexion for a supraspinal reaction post-stretch, which appears absent in endurance-trained athletes.
Collapse
Affiliation(s)
- Nijia Hu
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Janne Avela
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Jarmo M Piirainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simon Walker
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
11
|
Al'joboori Y, Hannah R, Lenham F, Borgas P, Kremers CJP, Bunday KL, Rothwell J, Duffell LD. The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability. Front Neurosci 2021; 15:749042. [PMID: 34744614 PMCID: PMC8566815 DOI: 10.3389/fnins.2021.749042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Rehabilitative interventions involving electrical stimulation show promise for neuroplastic recovery in people living with Spinal Cord Injury (SCI). However, the understanding of how stimulation interacts with descending and spinal excitability remain unclear. In this study we compared the immediate and short-term (within a few minutes) effects of pairing Transcranial Magnetic Stimulation (TMS) with transcutaneous Spinal Cord stimulation (tSCS) and Peripheral Nerve Stimulation (PNS) on Corticospinal excitability in healthy subjects. Three separate experimental conditions were assessed. In Experiment I, paired associative stimulation (PAS) was applied, involving repeated pairing of single pulses of TMS and tSCS, either arriving simultaneously at the spinal motoneurones (PAS0ms) or slightly delayed (PAS5ms). Corticospinal and spinal excitability, and motor performance, were assessed before and after the PAS interventions in 24 subjects. Experiment II compared the immediate effects of tSCS and PNS on corticospinal excitability in 20 subjects. Experiment III compared the immediate effects of tSCS with tSCS delivered at the same stimulation amplitude but modulated with a carrier frequency (in the kHz range) on corticospinal excitability in 10 subjects. Electromyography (EMG) electrodes were placed over the Tibialis Anterior (TA) soleus (SOL) and vastus medialis (VM) muscles and stimulation electrodes (cathodes) were placed on the lumbar spine (tSCS) and lateral to the popliteal fossa (PNS). TMS over the primary motor cortex (M1) was paired with tSCS or PNS to produce Motor Evoked Potentials (MEPs) in the TA and SOL muscles. Simultaneous delivery of repetitive PAS (PAS0ms) increased corticospinal excitability and H-reflex amplitude at least 5 min after the intervention, and dorsiflexion force was increased in a force-matching task. When comparing effects on descending excitability between tSCS and PNS, a subsequent facilitation in MEPs was observed following tSCS at 30-50 ms which was not present following PNS. To a lesser extent this facilitatory effect was also observed with HF- tSCS at subthreshold currents. Here we have shown that repeated pairing of TMS and tSCS can increase corticospinal excitability when timed to arrive simultaneously at the alpha-motoneurone and can influence functional motor output. These results may be useful in optimizing stimulation parameters for neuroplasticity in people living with SCI.
Collapse
Affiliation(s)
- Yazi Al'joboori
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Francesca Lenham
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Pia Borgas
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Charlotte J P Kremers
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Karen L Bunday
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom.,Psychology, School of Social Sciences, University of Westminster, London, United Kingdom
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Lynsey D Duffell
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
12
|
Therkildsen ER, Nielsen JB, Beck MM, Yamaguchi T, Lorentzen J. The effect of cathodal transspinal direct current stimulation on tibialis anterior stretch reflex components in humans. Exp Brain Res 2021; 240:159-171. [PMID: 34686909 DOI: 10.1007/s00221-021-06243-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023]
Abstract
Spinal DC stimulation (tsDCS) shows promise as a technique for the facilitation of functional recovery of motor function following central nervous system (CNS) lesion. However, the network mechanisms that are responsible for the effects of tsDCS are still uncertain. Here, in a series of experiments, we tested the hypothesis that tsDCS increases the excitability of the long-latency stretch reflex, leading to increased excitability of corticospinal neurons in the primary motor cortex. Experiments were performed in 33 adult human subjects (mean age 28 ± 7 years/14 females). Subjects were seated in a reclining armchair with the right leg attached to a footplate, which could be quickly plantarflexed (100 deg/s; 6 deg amplitude) to induce stretch reflexes in the tibialis anterior (TA) muscle at short (45 ms) and longer latencies (90-95 ms). This setup also enabled measuring motor evoked potentials (MEPs) and cervicomedullary evoked potentials (cMEPs) from TA evoked by transcranial magnetic stimulation (TMS) and electrical stimulation at the cervical junction, respectively. Cathodal tsDCS at 2.5 and 4 mA was found to increase the long-latency reflex without any significant effect on the short-latency reflex. Furthermore, TA MEPs, but not cMEPs, were increased following tsDCS. We conclude that cathodal tsDCS over lumbar segments may facilitate proprioceptive transcortical reflexes in the TA muscle, and we suggest that the most likely explanation of this facilitation is an effect on ascending fibers in the dorsal columns.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute 33.3, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute 33.3, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Elsass Foundation, Holmegaardsvej 28, 2920, Charlottenlund, Denmark
| | - Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, 2200, Copenhagen, Denmark
| | - Tomofumi Yamaguchi
- Department of Neuroscience, Panum Institute 33.3, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1Bunkyo-ku, HongoTokyo, Japan
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute 33.3, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
13
|
Abnormal center of mass feedback responses during balance: A potential biomarker of falls in Parkinson's disease. PLoS One 2021; 16:e0252119. [PMID: 34043678 PMCID: PMC8158870 DOI: 10.1371/journal.pone.0252119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 02/01/2023] Open
Abstract
Although Parkinson disease (PD) causes profound balance impairments, we know very little about how PD impacts the sensorimotor networks we rely on for automatically maintaining balance control. In young healthy people and animals, muscles are activated in a precise temporal and spatial organization when the center of body mass (CoM) is unexpectedly moved that is largely automatic and determined by feedback of CoM motion. Here, we show that PD alters the sensitivity of the sensorimotor feedback transformation. Importantly, sensorimotor feedback transformations for balance in PD remain temporally precise, but become spatially diffuse by recruiting additional muscle activity in antagonist muscles during balance responses. The abnormal antagonist muscle activity remains precisely time-locked to sensorimotor feedback signals encoding undesirable motion of the body in space. Further, among people with PD, the sensitivity of abnormal antagonist muscle activity to CoM motion varies directly with the number of recent falls. Our work shows that in people with PD, sensorimotor feedback transformations for balance are intact but disinhibited in antagonist muscles, likely contributing to balance deficits and falls.
Collapse
|
14
|
Chambers V, Artemiadis P. A Model-Based Analysis of Supraspinal Mechanisms of Inter-Leg Coordination in Human Gait: Toward Model-Informed Robot-Assisted Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:740-749. [PMID: 33844630 DOI: 10.1109/tnsre.2021.3072771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stroke survivors are often left suffering from gait instability due to hemiparesis. This gait dysfunction can lead to higher fall rates and an overall decrease in quality of life. Though there are many post-stroke gait rehabilitation methods in use currently, none of them allow patients to regain complete functionality. Interlimb coordination is one of the main mechanisms of walking and is usually overlooked in most post-stroke gait rehabilitation protocols. This work attempts to help further understand the mechanism of interlimb coordination and how the brain is involved in it, studying the contralateral response to unilateral stiffness perturbations. A unique robotic device, the Variable Stiffness Treadmill (VST), is used in conjunction with a pre-established neuromuscular gait model to analyze for the first time the supraspinal control mechanisms involved in inter-leg coordination induced after unilateral perturbations. The attempt to explain the observed kinematic and muscular activation data via the gait model results in the identification of two control variables that seem to play an important role in gait stability and recovery after perturbations: the target angle of attack and target hip to ankle span. This is significant because these two parameters are directly related to longer stride length and larger foot clearance during swing phase. Both variables work toward correcting common issues with hemiparetic gait, such as a shorter stride and toe drag during swing phase of the paretic leg. The results of this work could aid in the design of future model-based stroke rehabilitation methods that would perturb the subject in a systematic way and allow targeted interventions with specific functional outcomes on gait. Additionally, this work-along with future studies-could assist in improving controllers for robust bipedal robots as well as our understanding of how the brain controls balance during perturbed walking.
Collapse
|
15
|
|
16
|
Saito A, Nakagawa K, Masugi Y, Nakazawa K. Inter-muscle differences in modulation of motor evoked potentials and posterior root-muscle reflexes evoked from lower-limb muscles during agonist and antagonist muscle contractions. Exp Brain Res 2020; 239:463-474. [PMID: 33221989 PMCID: PMC7936942 DOI: 10.1007/s00221-020-05973-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 01/28/2023]
Abstract
Voluntary contraction facilitates corticospinal and spinal reflex circuit excitabilities of the contracted muscle and inhibits spinal reflex circuit excitability of the antagonist. It has been suggested that modulation of spinal reflex circuit excitability in agonist and antagonist muscles during voluntary contraction differs among lower-limb muscles. However, whether the effects of voluntary contraction on the excitabilities of corticospinal and spinal reflex circuits depend on the tested muscles remains unknown. The purpose of this study was to examine inter-muscle differences in modulation of the corticospinal and spinal reflex circuit excitabilities of multiple lower-limb muscles during voluntary contraction. Eleven young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and flexion at low torque levels. Motor evoked potentials (MEPs) and posterior root-muscle reflexes from seven lower-leg and thigh muscles were evoked by transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively, at rest and during weak voluntary contractions. MEP and posterior root-muscle reflex amplitudes of agonists were significantly increased as agonist torque level increased, except for the reflex of the tibialis anterior. MEP amplitudes of antagonists were significantly increased in relation to the agonist torque level, but those of the rectus femoris were slightly depressed during knee flexion. Regarding the posterior root-muscle reflex of the antagonists, the amplitudes of triceps surae and the hamstrings were significantly decreased, but those of the quadriceps femoris were significantly increased as the agonist torque level increased. These results demonstrate that modulation of corticospinal and spinal reflex circuit excitabilities during agonist and antagonist muscle contractions differed among lower-limb muscles.
Collapse
Affiliation(s)
- Akira Saito
- Center for Health and Sports Science, Kyushu Sangyo University, Matsukadai, Higashi-ku, Fukuoka, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan. .,Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo, Japan.
| | - Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Yohei Masugi
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Matoba, Kawagoe, Saitama, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
17
|
Lockyer EJ, Soran N, Power KE. Modulation of Corticospinal Excitability with Contralateral Arm Cycling. Neuroscience 2020; 449:88-98. [DOI: 10.1016/j.neuroscience.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
|
18
|
Colebatch JG, Govender S. Axial perturbations evoke increased postural reflexes in Parkinson's disease with postural instability. Clin Neurophysiol 2020; 131:928-935. [PMID: 32078922 DOI: 10.1016/j.clinph.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To measure axially-evoked postural reflexes in 11 Parkinson's disease (PD) subjects, both stable and unstable, and to compare these with 13 age-matched controls. METHODS We measured the short-latency electromyography (EMG) reflex effects of brief impulsive displacements applied to the upper sternum or C7 for tibialis anterior (TA) and soleus. Our subjects were studied standing normally and when leaning both forwards and backwards. RESULTS The initial mechanical effects of the stimuli were similar but the reflex responses for the unstable PD group were increased, even after allowing for the increased levels of tonic activation. For TA, unstable PD subjects had significantly larger responses than the stable PD group whose responses were in turn significantly larger than controls. For soleus, unstable PD subjects had significantly greater responses than controls. CONCLUSIONS These findings are consistent with previous evidence that exaggerated postural responses are characteristic of unstable PD subjects. SIGNIFICANCE Increased postural reflexes are characteristic of unstable PD subjects and may contribute to the instability seen for these patients in response to larger perturbations.
Collapse
Affiliation(s)
- James G Colebatch
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW 2031, Australia.
| | - Sendhil Govender
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW 2031, Australia
| |
Collapse
|
19
|
Effect of Time and Direction Preparation on Ankle Muscle Response During Backward Translation of a Support Surface in Stance. Motor Control 2020; 24:253-273. [PMID: 31982002 DOI: 10.1123/mc.2019-0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 11/18/2022]
Abstract
This study investigated the effect of the time and direction preparation on the electromyographic (EMG) response of the ankle extensor to the backward translation of the support surface in stance. Fifteen healthy adult males aged 35.9 ± 6.2 years participated in this study. In the constant session, the interval between the warning cue and the onset of the backward support surface translation was constant. In the random time session, the interval was randomly assigned in each trial, but the direction was backward across the trials. In the random direction session, the direction was randomly assigned in each trial, but the interval was constant. The EMG amplitude in the time epochs 100-175 ms after translation onset in the random time session was significantly greater than that in the constant session in the soleus, gastrocnemius, and tibialis anterior muscles. The EMG amplitude in the time epochs 120-185 ms after translation onset in the random direction session was significantly greater than that in the constant session in the gastrocnemius and tibialis anterior muscles. This finding indicates that time and direction preparation reduces the late component of the ankle EMG response to backward translation of the support surface. This finding is explained by the supposed process through which uncertainty of the upcoming event causes disinhibition of response or by how time and direction preparation optimizes the magnitude of the long-latency response mediated by the transcortical pathway.
Collapse
|
20
|
Lower extremity long-latency reflexes differentiate walking function after stroke. Exp Brain Res 2019; 237:2595-2605. [PMID: 31372688 DOI: 10.1007/s00221-019-05614-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023]
Abstract
The neural mechanisms of walking impairment after stroke are not well characterized. Specifically, there is a need for understanding the mechanisms of impaired plantarflexor power generation in late stance. Here, we investigated the association between two neurophysiologic markers, the long-latency reflex (LLR) response and dynamic facilitation of antagonist motor-evoked responses, and walking function. Fourteen individuals with chronic post-stroke hemiparesis and thirteen healthy controls performed both isometric and dynamic plantarflexion. Transcranial magnetic stimulation (TMS) assessed supraspinal drive to the tibialis anterior. LLR activity was assessed during dynamic voluntary plantarflexion and individuals post-stroke were classified as either LLR present (LLR+) or absent (LLR-). All healthy controls and nine individuals post-stroke exhibited LLRs, while five did not. LLR+ individuals revealed higher clinical scores, walking speeds, and greater ankle plantarflexor power during walking compared to LLR- individuals. LLR- individuals exhibited exaggerated responses to TMS during dynamic plantarflexion relative to healthy controls. The LLR- subset revealed dysfunctional modulation of stretch responses and antagonist supraspinal drive relative to healthy controls and the higher functioning LLR+ individuals post-stroke. These abnormal physiologic responses allow for characterization of individuals post-stroke along a dimension that is clinically relevant and provides additional information beyond standard behavioral assessments. These findings provide an opportunity to distinguish among the heterogeneity of lower extremity motor impairments present following stroke by associating them with responses at the nervous system level.
Collapse
|
21
|
Mrachacz-Kersting N, Kersting UG, de Brito Silva P, Makihara Y, Arendt-Nielsen L, Sinkjær T, Thompson AK. Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. J Neurophysiol 2019; 122:435-446. [PMID: 31166816 DOI: 10.1152/jn.00211.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.
Collapse
Affiliation(s)
- N Mrachacz-Kersting
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - U G Kersting
- Institute for Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany
| | - P de Brito Silva
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - Y Makihara
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - T Sinkjær
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - A K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
22
|
Vlutters M, van Asseldonk EHF, van der Kooij H. Ankle muscle responses during perturbed walking with blocked ankle joints. J Neurophysiol 2019; 121:1711-1717. [PMID: 30864874 DOI: 10.1152/jn.00752.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ankle joint muscles can contribute to balance during walking by modulating the center of pressure and ground reaction forces through an ankle moment. This is especially effective in the sagittal plane through ankle plantar- or dorsiflexion. If the ankle joints were to be physically blocked to make an ankle strategy ineffective, there would be no functional contribution of these muscles to balance during walking, nor would these muscles generate afferent output regarding ankle joint rotation. Consequently, ankle muscle activation for the purpose of balance control would be expected to disappear. We have performed an experiment in which subjects received anteroposterior pelvis perturbations during walking while their ankle joints could not contribute to the balance recovery. The latter was realized by physically blocking the ankle joints through a pair of modified ankle-foot orthoses. In this article we present the lower limb muscle activity responses in reaction to these perturbations. Of particular interest are the tibialis anterior and gastrocnemius medialis muscles, which could not contribute to the balance recovery through the ankle joint or encode muscle length changes caused by ankle joint rotation. Yet, these muscles showed long-latency responses, ~100 ms after perturbation onset. The response amplitudes were dependent on the perturbation magnitude and direction, as well as the state of the leg. The results imply that ankle muscle responses can be evoked without changes in proprioceptive information of those muscles through ankle rotation. This suggest a more centralized regulation of balance control, not strictly related to the ankle joint kinematics. NEW & NOTEWORTHY Walking human subjects received forward-backward perturbations at the pelvis while wearing "pin-shoes," a pair of modified ankle-foot orthoses that physically blocked ankle joint movement and reduced the base of support of each foot to a single point. The lower leg muscles showed long-latency perturbation-dependent activity changes, despite having no functional contributions to balance control through the ankle joint and not having been subjected to muscle length changes through ankle joint rotation.
Collapse
Affiliation(s)
- Mark Vlutters
- Department of Biomechanical Engineering, University of Twente , Enschede , The Netherlands
| | | | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente , Enschede , The Netherlands
| |
Collapse
|
23
|
Medium latency excitatory reflex of soleus re-examined. Exp Brain Res 2019; 237:1717-1725. [PMID: 31016349 DOI: 10.1007/s00221-019-05544-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022]
Abstract
We aimed to study the receptor origin and postsynaptic potential profile of the medium latency reflex (MLR) response that develops in the soleus muscle when common peroneal nerve of antagonist tibialis anterior (TA) muscle is electrically stimulated. To achieve this aim, we electrically stimulated common peroneal nerve and recorded surface electromyography (SEMG) responses of soleus and TA muscles of informed volunteers. Additionally, we recorded intramuscular EMG from the soleus muscle. Stimulation of common peroneal nerve induced a direct motor response (M-response) in the TA and MLR in SEMG of the soleus. Using voluntarily-activated single motor units (SMUs) from the soleus muscle we noted that there were two distinct responses following the stimulus. The first response was a reciprocal inhibitory reflex probably originating from the antagonist muscle spindle primary (Ia) afferents. This was followed by an indirect reflex response activated by the contraction of the TA muscle during the M-response. This contraction generated a rapid acceleration in the direction of dorsiflexion hence inducing a stretch stimulus on soleus muscle. The response of soleus to this stimulus was a stretch reflex. We suggest that this stretch reflex is the main contributor to the so-called soleus MLR in the literature. This study illustrated the importance of using SMUs and also using discharge-rate based analysis for closely examining previously 'established' reflexes.
Collapse
|
24
|
Sousa ASP, Valente I, Pinto A, Santos R. Reliability of two methods for identifying the timing of medium latency responses in subjects with and without chronic ankle instability. Sci Rep 2019; 9:3115. [PMID: 30816323 PMCID: PMC6395691 DOI: 10.1038/s41598-019-40073-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/29/2019] [Indexed: 11/09/2022] Open
Abstract
This study aims to: (1) to compare 2 methods of assessing the timing of medium latency responses (MLR), in regard to intrasession reliability and mean values, in subjects with and without chronic ankle instability (CAI), and (2) to analyze the influence of CAI in timing of MLR and in its reliability. Thirty six athletes with (16) and without (20) CAI participated. Bilateral electromyography of peroneus longus (PL), peroneus brevis (PB), tibialis anterior (TA) and soleus (SOL) muscles was collected during a unilateral sudden inversion perturbation to assess the timing of MLR onset, in both standing and perturbed positions, through a baseline-based method and a peak-response-based method. The group without CAI presented higher relative reliability of SOL and peroneal muscles MLR with the peak response-based method than with the baseline-based method. Compared with the group without CAI and in both methods, the group with CAI presented a delayed and less reliable TA MLR, as well decreased coefficient variation of PL MLR in the uninjured limb. In conclusion, regardless of the method subjects with CAI present delayed and less reliable TA MLR while in subjects without CAI the peak response-based method provides higher reliability.
Collapse
Affiliation(s)
- Andreia S P Sousa
- Área Científica de Fisioterapia, Escola Superior de Saúde do Porto, Politécnico do Porto, Centro de Investigação em Reabilitação - Centro de Estudos de Movimento e Atividade Humana, Rua Dr. António Bernardino de Almeida, 400, 4200 - 072, Porto, Portugal.
| | - Isabel Valente
- Área Científica de Fisioterapia, Escola Superior de Saúde do Porto, Politécnico do Porto, Centro de Investigação em Reabilitação - Centro de Estudos de Movimento e Atividade Humana, Rua Dr. António Bernardino de Almeida, 400, 4200 - 072, Porto, Portugal
| | - Ana Pinto
- Área Científica de Fisioterapia, Escola Superior de Saúde do Porto, Politécnico do Porto, Centro de Investigação em Reabilitação - Centro de Estudos de Movimento e Atividade Humana, Rua Dr. António Bernardino de Almeida, 400, 4200 - 072, Porto, Portugal
| | - Rubim Santos
- Área Científica de Física, Escola Superior de Saúde do Porto, Politécnico do Porto, Centro de Investigação em Reabilitação - Centro de Estudos de Movimento e Atividade Humana, Rua Dr. António Bernardino de Almeida, 400, 4200 - 072, Porto, Portugal
| |
Collapse
|
25
|
Fujio K, Obata H, Kawashima N, Nakazawa K. Presetting of the Corticospinal Excitability in the Tibialis Anterior Muscle in Relation to Prediction of the Magnitude and Direction of Postural Perturbations. Front Hum Neurosci 2019; 13:4. [PMID: 30705626 PMCID: PMC6344449 DOI: 10.3389/fnhum.2019.00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/04/2019] [Indexed: 11/13/2022] Open
Abstract
The prediction of upcoming perturbation modulates postural responses in the ankle muscles. The effects of this prediction on postural responses vary according to predictable factors. When the amplitude of perturbation can be predicted, the long-latency response is set at an appropriate size for the required response, whereas when the direction of perturbation can be predicted, there is no effect. The neural mechanisms underlying these phenomena are poorly understood. Here, we examined how the corticospinal excitability of the ankle muscles [i.e., the tibialis anterior (TA), the soleus (SOL), and the medial gastrocnemius (MG), with a focus on the TA], would be modulated in five experimental conditions: (1) No-perturbation; (2) Low (anterior translation with small amplitude); (3) High (anterior translation with large amplitude); (4) Posterior (posterior translation with large amplitude); and (5) Random (Low, High, and Posterior in randomized order). We measured the motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) at 50 ms before surface-translation in each condition. The electromyographic (EMG) responses evoked by surface-translations were also measured. The results showed that the TA-MEP amplitude was greater in the High condition (where the largest TA-EMG response was evoked among the five conditions) compared to that in the No-perturbation, Low, and Posterior conditions (High vs. No-perturbation, p < 0.001; High vs. Low, p = 0.001; High vs. Posterior, p = 0.001). In addition, the MEP amplitude in the Random condition was significantly greater than that in the No-perturbation and Low conditions (Random vs. No-perturbation, p = 0.002; Random vs. Low, p = 0.002). The EMG response in the TA evoked by perturbation was significantly smaller when a perturbation can be predicted (predictable vs. unpredictable, p < 0.001). In the SOL and MG muscles, no prominent modulations of the MEP amplitude or EMG response were observed, suggesting that the effects of prediction on corticospinal excitability differ between the dorsiflexor and plantar flexor muscles. These findings suggest that the corticospinal excitability in the TA is scaled in parallel with the prediction of the direction and magnitude of an upcoming perturbation in advance.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation Science, Faculty of Health Care Science, Chiba Prefectural University of Health Sciences, Chiba, Japan.,Department of Rehabilitation for the Movement Functions, Research Institute of the National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Hiroki Obata
- Department of Humanities and Social Sciences, Institute of Liberal Arts, Kyushu Institute of Technology, Fukuoka, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute of the National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Kimitaka Nakazawa
- Sports Science Laboratory, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Jochumsen M, Cremoux S, Robinault L, Lauber J, Arceo JC, Navid MS, Nedergaard RW, Rashid U, Haavik H, Niazi IK. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. SENSORS 2018; 18:s18113761. [PMID: 30400325 PMCID: PMC6264113 DOI: 10.3390/s18113761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022]
Abstract
Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination of afferent feedback modalities to increase cortical excitability in a BCI training intervention. In three experimental sessions, 12 healthy participants imagined a dorsiflexion that was decoded by a BCI which activated relevant afferent feedback: (1) electrical nerve stimulation (ES) (peroneal nerve-innervating tibialis anterior), (2) passive movement (PM) of the ankle joint, or (3) combined electrical stimulation and passive movement (Comb). The cortical excitability was assessed with transcranial magnetic stimulation determining motor evoked potentials (MEPs) in tibialis anterior before, immediately after and 30 min after the BCI training. Linear mixed regression models were used to assess the changes in MEPs. The three interventions led to a significant (p < 0.05) increase in MEP amplitudes immediately and 30 min after the training. The effect sizes of Comb paradigm were larger than ES and PM, although, these differences were not statistically significant (p > 0.05). These results indicate that the timing of movement imagery and afferent feedback is the main determinant of induced cortical plasticity whereas the specific type of feedback has a moderate impact. These findings can be important for the translation of such a BCI protocol to the clinical practice where by combining the BCI with the already available equipment cortical plasticity can be effectively induced. The findings in the current study need to be validated in stroke populations.
Collapse
Affiliation(s)
- Mads Jochumsen
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| | - Sylvain Cremoux
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Lucien Robinault
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Jimmy Lauber
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Juan Carlos Arceo
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Muhammad Samran Navid
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg 9000, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Rasmus Wiberg Nedergaard
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg 9000, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Usman Rashid
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand.
| | - Heidi Haavik
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Imran Khan Niazi
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand.
| |
Collapse
|
27
|
Lower extremity joint-level responses to pelvis perturbation during human walking. Sci Rep 2018; 8:14621. [PMID: 30279499 PMCID: PMC6168500 DOI: 10.1038/s41598-018-32839-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 09/11/2018] [Indexed: 11/15/2022] Open
Abstract
The human leg joints play a major role in balance control during walking. They facilitate leg swing, and modulate the ground (re)action forces to prevent a fall. The aim of this study is to provide and explore data on perturbed human walking to gain a better understanding of balance recovery during walking through joint-level control. Healthy walking subjects randomly received anteroposterior and mediolateral pelvis perturbations at the instance of toe-off. The open-source modeling tool OpenSim was used to perform inverse kinematics and inverse dynamics analysis. We found hip joint involvement in accelerating and then halting leg swing, suggesting active preparation for foot placement. Additionally, responses in the stance leg’s ankle and hip joints contribute to balance recovery by decreasing the body’s velocity in the perturbation direction. Modulation also occurs in the plane perpendicular to the perturbation direction, to safeguard balance in both planes. Finally, the recorded muscle activity suggests both spinal and supra-spinal mediated contributions to balance recovery, scaling with perturbation magnitude and direction. The presented data provide a unique and multi-joint insight in the complexity of both frontal and sagittal plane balance control during human walking in terms of joint angles, moments, and power, as well as muscle EMG responses.
Collapse
|
28
|
Mrachacz-Kersting N, Gervasio S, Marchand-Pauvert V. Evidence for a Supraspinal Contribution to the Human Crossed Reflex Response During Human Walking. Front Hum Neurosci 2018; 12:260. [PMID: 30008667 PMCID: PMC6034574 DOI: 10.3389/fnhum.2018.00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023] Open
Abstract
In humans, an ipsilateral tibial nerve (iTN) stimulation elicits short-latency-crossed-responses (SLCR) comprised of two bursts in the contralateral gastrocnemius lateralis (cGL) muscle. The average onset latency has been reported to be 57-69 ms with a duration of 30.4 ± 6.6 ms. The aim of this study was to elucidate if a transcortical pathway contributes to the SLCR. In Experiment 1 (n = 9), single pulse supra-threshold transcranial magnetic stimulation (supraTMS) was applied alone or in combination with iTN stimulation (85% of the maximum M-wave) while participants walked on a treadmill (delay between the SLCR and the motor evoked potentials (MEP) varied between -30 and 200 ms). In Experiment 2 (n = 6), single pulse sub-threshold TMS (subTMS) was performed and the interstimulus interval (ISI) varied between 0-30 ms. In Experiment 3, somatosensory evoked potentials (SEPs) were recorded during the iTN stimulation to quantify the latency of the resulting afferent volley at the cortical level. SLCRs and MEPs in cGL occurred at 63 ± 6 ms and 29 ± 2 ms, respectively. The mean SEP latency was 30 ± 3 ms. Thus, a transcortical pathway could contribute no earlier than 62-69 ms (SEP+MEP+central-processing-delay) after iTN stimulation. Combined iTN stimulation and supraTMS resulted in a significant MEP extra-facilitation when supraTMS was timed so that the MEP would coincide with the late component of the SLCR, while subTMS significantly depressed this component. This is the first study that demonstrates the existence of a strong cortical control on spinal pathways mediating the SLCR. This likely serves to enhance flexibility, ensuring that the appropriate output is produced in accord with the functional demand.
Collapse
Affiliation(s)
| | - Sabata Gervasio
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
29
|
Fujio K, Obata H, Kitamura T, Kawashima N, Nakazawa K. Corticospinal Excitability Is Modulated as a Function of Postural Perturbation Predictability. Front Hum Neurosci 2018. [PMID: 29535618 PMCID: PMC5835041 DOI: 10.3389/fnhum.2018.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies demonstrated that the corticospinal pathway is one of the key nodes for the feedback control of human standing and that the excitability is flexibly changed according to the current state of posture. However, it has been unclear whether this pathway is also involved in a predictive control of human standing. Here, we investigated whether the corticospinal excitability of the soleus (SOL) and tibialis anterior (TA) muscles during standing would be modulated anticipatorily when perturbation was impending. We measured the motor-evoked potential (MEP) induced by transcranial magnetic stimulation over the motor cortex at six stimulus intensities. Three experimental conditions were set depending on predictabilities about perturbation occurrence and onset: No perturbation, No Cue, and Cue conditions. In the Cue condition, an acoustic signal was given as timing information of perturbation. The slope of the stimulus-response relation curve revealed that the TA-MEP was enhanced when postural perturbation was expected compared to when the perturbation was not expected (No Perturbation vs. No Cue, 0.023 ± 0.004 vs. 0.042 ± 0.007; No Perturbation vs. Cue, 0.023 ± 0.004 vs. 0.050 ± 0.009; Bonferroni correction, p = 0.01, respectively). In addition, two-way analysis of variance (intensity × condition) revealed the main effect of condition (F(1,13) = 6.31, p = 0.03) but not intensity and interaction when the MEP amplitude of the Cue and No Cue conditions was normalized by that in No Perturbation, suggesting the enhancement more apparent when timing information was given. The SOL-MEP was not modulated even when perturbation was expected, but it slightly reduced due to the timing information. The results of an additional experiment confirmed that the acoustic cue by itself did not affect the TA- and SOL-MEPs. Our findings suggest that a prediction of a future state of standing balance modulates the corticospinal excitability in the TA, and that the additional timing information facilitates this modulation. The corticospinal pathway thus appears to be involved in mechanisms of the predictive control as well as feedback control of standing posture.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation Science, Faculty of Health Care Science, Chiba Prefectural University of Health Sciences, Chiba, Japan.,Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Hiroki Obata
- Department of Humanities and Social Sciences, Institute of Liberal Arts, Kyushu Institute of Technology, Fukuoka, Japan
| | - Taku Kitamura
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Kimitaka Nakazawa
- Sports Science Laboratory, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Axial reflexes are present in older subjects and may contribute to balance responses. Exp Brain Res 2018; 236:1031-1039. [PMID: 29417172 DOI: 10.1007/s00221-018-5193-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
We studied the response to axial taps (mini-perturbations) of a group of 13 healthy older subjects (mean age 63 ± 12 years, 7 females, 6 males), 12 of whom were also studied using larger applied (macro-) perturbations requiring active postural responses. The mini-perturbation consisted of a brief impulsive force produced by a mini-shaker applied to the trunk at the level of the shoulders and anteriorly at the upper sternum which was perceived as a tap. Acceleration, force platform, and EMG measurements were made. The average peak accelerations for the mini-perturbations were 108 mG (anterior) and - 78.9 mG (posterior). Responses overall were very similar to those previously reported for younger subjects: the perturbation evoked short latency responses in leg muscles, modulated by degree and direction of lean, and were largest for the muscle most relevant for the postural correction. The increases in the amplitude for the main agonist were greater than the increase in tonic activity. With both anterior and posterior lean, co-contraction responses were present. The size of the EMG response to the mini-perturbations correlated with the corresponding earliest EMG responses (0-100, 100-200 ms intervals) to the larger postural perturbations, timing which corresponds to balance responses. The balance responses evoked by the larger imposed postural perturbations may, therefore, receive a contribution through the reflex pathway mediating the axial tap responses, whose efferent limb appears to be the reticulospinal tract.
Collapse
|
31
|
Kurtzer I, Bouyer LJ, Bouffard J, Jin A, Christiansen L, Nielsen JB, Scott SH. Variable impact of tizanidine on the medium latency reflex of upper and lower limbs. Exp Brain Res 2018; 236:665-677. [PMID: 29299640 DOI: 10.1007/s00221-017-5162-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023]
Abstract
Sudden limb displacement evokes a complex sequence of compensatory muscle activity. Following the short-latency reflex and preceding voluntary reactions is an epoch termed the medium-latency reflex (MLR) that could reflect spinal processing of group II muscle afferents. One way to test this possibility is oral ingestion of tizanidine, an alpha-2 adrenergic agonist that inhibits the interneurons transmitting group II signals onto spinal motor neurons. We examined whether group II afferents contribute to MLR activity throughout the major muscles that span the elbow and shoulder. MLRs of ankle muscles were also tested during walking on the same day, in the same participants as well as during sitting in a different group of subjects. In contrast to previous reports, the ingestion of tizanidine had minimal impact on MLRs of arm or leg muscles during motor actions. A significant decrease in magnitude was observed for 2/16 contrasts in arm muscles and 0/4 contrasts in leg muscles. This discrepancy with previous studies could indicate that tizanidine's efficacy is altered by subtle changes in protocol or that group II afferents do not substantially contribute to MLRs.
Collapse
Affiliation(s)
- Isaac Kurtzer
- Department of Biomedical Science, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, USA.
| | | | - J Bouffard
- Department of Rehabilitation, Université Laval, Quebec, Canada
| | - A Jin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Department of Medicine, Queen's University, Kingston, Canada
| | - L Christiansen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - J B Nielsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - S H Scott
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
32
|
Mrachacz-Kersting N, Voigt M, Stevenson A, Aliakbaryhosseinabadi S, Jiang N, Dremstrup K, Farina D. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity. Brain Res 2017; 1674:91-100. [DOI: 10.1016/j.brainres.2017.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/29/2017] [Accepted: 08/23/2017] [Indexed: 12/29/2022]
|
33
|
Krause A, Schönau E, Gollhofer A, Duran I, Ferrari-Malik A, Freyler K, Ritzmann R. Alleviation of Motor Impairments in Patients with Cerebral Palsy: Acute Effects of Whole-body Vibration on Stretch Reflex Response, Voluntary Muscle Activation and Mobility. Front Neurol 2017; 8:416. [PMID: 28861038 PMCID: PMC5561012 DOI: 10.3389/fneur.2017.00416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Individuals suffering from cerebral palsy (CP) often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV) has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP. METHODS 44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16-25 Hz, 1.5-3 mm). Assessment included (1) recordings of stretch reflex (SR) activity of the triceps surae, (2) electromyography (EMG) measurements of maximal voluntary muscle activation of lower limb muscles, and (3) neuromuscular activation during active range of motion (aROM). We recorded EMG of m. soleus (SOL), m. gastrocnemius medialis (GM), m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint. RESULTS After WBV, (1) SOL SRs were decreased (p < 0.01) while (2) maximal voluntary activation (p < 0.05) and (3) angular excursion in the knee joint (p < 0.01) were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist-antagonist ratios during aROM was significantly enhanced (p < 0.05). DISCUSSION The findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level), while the execution of voluntary movement (supraspinal level) is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor control.
Collapse
Affiliation(s)
- Anne Krause
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Eckhard Schönau
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Albert Gollhofer
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Ibrahim Duran
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Anja Ferrari-Malik
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Kathrin Freyler
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Ramona Ritzmann
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Taube W, Leukel C, Nielsen JB, Lundbye-Jensen J. Non-invasive Assessment of Changes in Corticomotoneuronal Transmission in Humans. J Vis Exp 2017. [PMID: 28570549 DOI: 10.3791/52663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The corticospinal pathway is the major pathway connecting the brain with the muscles and is therefore highly relevant for movement control and motor learning. There exists a number of noninvasive electrophysiological methods investigating the excitability and plasticity of this pathway. However, most methods are based on quantification of compound potentials and neglect that the corticospinal pathway consists of many different connections that are more or less direct. Here, we present a method that allows testing excitability of different fractions of the corticospinal transmission. This so called H-reflex conditioning technique allows one to assess excitability of the fastest (monosynaptic) and also polysynaptic corticospinal pathways. Furthermore, by using two different stimulation sites, the motor cortex and the cervicomedullary junction, it allows not only differentiation between cortical and spinal effects but also assessment of transmission at the corticomotoneural synapse. In this manuscript, we describe how this method can be used to assess corticomotoneural transmission after low-frequency repetitive transcranial magnetic stimulation, a method that was previously shown to reduce excitability of cortical cells. Here we demonstrate that not only cortical cells are affected by this repetitive stimulation but also transmission at the corticomotoneuronal synapse at the spinal level. This finding is important for the understanding of basic mechanisms and sites of neuroplasticity. Besides investigation of basic mechanisms, the H-reflex conditioning technique may be applied to test changes in corticospinal transmission following behavioral (e.g., training) or therapeutic interventions, pathology or aging and therefore allows a better understanding of neural processes that underlie movement control and motor learning.
Collapse
Affiliation(s)
- Wolfgang Taube
- Department of Medicine, Movement and Sport Science, University of Fribourg (Switzerland);
| | - Christian Leukel
- Department of Medicine, Movement and Sport Science, University of Fribourg (Switzerland); Department of Sport Science, University of Freiburg (Germany)
| | - Jens Bo Nielsen
- Department of Neuroscience and Pharmacology, University of Copenhagen; Department of Nutrition, Exercise and Sports, University of Copenhagen
| | - Jesper Lundbye-Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen; Department of Nutrition, Exercise and Sports, University of Copenhagen
| |
Collapse
|
35
|
Mrachacz-Kersting N, Stevenson AJT. Paired Associative Stimulation Targeting the Tibialis Anterior Muscle using either Mono or Biphasic Transcranial Magnetic Stimulation. Front Hum Neurosci 2017; 11:197. [PMID: 28473764 PMCID: PMC5397406 DOI: 10.3389/fnhum.2017.00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/04/2017] [Indexed: 12/02/2022] Open
Abstract
Paired associative stimulation (PAS) protocols induce plastic changes within the motor cortex. The objectives of this study were to investigate PAS effects targeting the tibialis anterior (TA) muscle using a biphasic transcranial magnetic stimulation (TMS) pulse form and, to determine whether a reduced intensity of this pulse would lead to significant changes as has been reported for hand muscles using a monophasic TMS pulse. Three interventions were investigated: (1) suprathreshold PAbi-PAS (n = 11); (2) suprathreshold PAmono-PAS (n = 11) where PAS was applied using a biphasic or monophasic pulse form at 120% resting motor threshold (RMT); (3) subthreshold PAbi-PAS (n = 10) where PAS was applied as for (1) at 95% active motor threshold (AMT). The peak-to-peak motor evoked potentials (MEPs) were quantified prior to, immediately following, and 30 min after the cessation of the intervention. TA MEP size increased significantly for all interventions immediately post (61% for suprathreshold PAbi-PAS, 83% for suprathreshold PAmono-PAS, 55% for subthreshold PAbi-PAS) and 30 min after the cessation of the intervention (123% for suprathreshold PAbi-PAS, 105% for suprathreshold PAmono-PAS, 80% for subthreshold PAbi-PAS. PAS using a biphasic pulse form at subthreshold intensities induces similar effects to conventional PAS.
Collapse
Affiliation(s)
- Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg UniversityAalborg, Denmark
| | - Andrew J T Stevenson
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
36
|
Tseng SC, Cole KR, Shaffer MA, Petrie MA, Yen CL, Shields RK. Speed, resistance, and unexpected accelerations modulate feed forward and feedback control during a novel weight bearing task. Gait Posture 2017; 52:345-353. [PMID: 28043056 PMCID: PMC5337176 DOI: 10.1016/j.gaitpost.2016.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
We developed a method to investigate feed-forward and feedback movement control during a weight bearing visuomotor knee tracking task. We hypothesized that a systematic increase in speed and resistance would show a linear decrease in movement accuracy, while unexpected perturbations would induce a velocity-dependent decrease in movement accuracy. We determined the effects of manipulating the speed, resistance, and unexpected events on error during a functional weight bearing task. Our long term objective is to benchmark neuromuscular control performance across various groups based on age, injury, disease, rehabilitation status, and/or training. Twenty-six healthy adults between the ages of 19-45 participated in this study. The study involved a single session using a custom designed apparatus to perform a single limb weight bearing task under nine testing conditions: three movement speeds (0.2, 0.4, and 0.6Hz) in combination with three levels of brake resistance (5%, 10%, and 15% of individual's body weight). Individuals were to perform the task according to a target with a fixed trajectory across all speeds, corresponding to a∼0 (extension) to 30° (flexion) of knee motion. An increase in error occurred with speed (p<0.0001, effect size (eta2): η2=0.50) and resistance (p<0.0001, η2=0.01). Likewise, during unexpected perturbations, the ratio of perturbed/non-perturbed error increased with each increment in velocity (p<0.0014, η2=0.08), and resistance (p<0.0001, η2=0.11). The hierarchical framework of these measurements offers a standardized functional weight bearing strategy to assess impaired neuro-muscular control and/or test the efficacy of therapeutic rehabilitation interventions designed to influence neuromuscular control of the knee.
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Keith R Cole
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Michael A Shaffer
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Michael A Petrie
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Chu-Ling Yen
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Richard K Shields
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States.
| |
Collapse
|
37
|
Lowrey CR, Nashed JY, Scott SH. Rapid and flexible whole body postural responses are evoked from perturbations to the upper limb during goal-directed reaching. J Neurophysiol 2016; 117:1070-1083. [PMID: 28003415 DOI: 10.1152/jn.01004.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022] Open
Abstract
An important aspect of motor control is the ability to perform tasks with the upper limbs while maintaining whole body balance. However, little is known about the coordination of upper limb voluntary and whole body postural control after mechanical disturbances that require both upper limb motor corrections to attain a behavioral goal and lower limb motor responses to maintain whole body balance. The present study identified the temporal organization of muscle responses and center of pressure (COP) changes following mechanical perturbations during reaching. Our results demonstrate that muscle responses in the upper limb are evoked first (∼50 ms), with lower limb muscle activity occurring immediately after, in as little as ∼60 ms after perturbation. Hand motion was immediately altered by the load, while COP changes occurred after ∼100 ms, when lower limb muscle activity was already present. Our secondary findings showed that both muscle activity and COP changes were influenced by behavioral context (by altering target shape, circle vs. rectangle). Voluntary and postural actions initially directed the hand toward the center of both target types, but after the perturbation upper limb and postural responses redirected the hand toward different spatial locations along the rectangle. Muscle activity was increased for both upper and lower limbs when correcting to the circle vs. the rectangle, and these differences emerged as early as the long-latency epoch (∼75-120 ms). Our results demonstrate that postural responses are rapidly and flexibly altered to consider the behavioral goal of the upper limb.NEW & NOTEWORTHY The present work establishes that, when reaching to a target while standing, perturbations applied to the upper limb elicit a rapid response in lower limb muscles. Unlike voluntary movements, postural responses do not occur before corrections of the upper limb. We show the first evidence that corrective postural adjustments are modulated by upper limb behavioral context (target shape). Importantly, this indicates that postural responses take into account upper limb feedback for online control.
Collapse
Affiliation(s)
- Catherine R Lowrey
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; .,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and.,Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
38
|
Yang Y, Solis-Escalante T, Yao J, van der Helm FCT, Dewald JPA, Schouten AC. Nonlinear Connectivity in the Human Stretch Reflex Assessed by Cross-Frequency Phase Coupling. Int J Neural Syst 2016; 26:1650043. [DOI: 10.1142/s012906571650043x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Communication between neuronal populations is facilitated by synchronization of their oscillatory activity. Although nonlinearity has been observed in the sensorimotor system, its nonlinear connectivity has not been widely investigated yet. This study investigates nonlinear connectivity during the human stretch reflex based on neuronal synchronization. Healthy participants generated isotonic wrist flexion while receiving a periodic mechanical perturbation to the wrist. Using a novel cross-frequency phase coupling metric, we estimate directional nonlinear connectivity, including time delay, from the perturbation to brain and to muscle, as well as from brain to muscle. Nonlinear phase coupling is significantly stronger from the perturbation to the muscle than to the brain, with a shorter time delay. The time delay from the perturbation to the muscle is 33 ms, similar to the reported latency of the spinal stretch reflex at the wrist. Source localization of nonlinear phase coupling from the brain to the muscle suggests activity originating from the motor cortex, although its effect on the stretch reflex is weak. As such nonlinear phase coupling between the perturbation and muscle activity is dominated by the spinal reflex loop. This study provides new evidence of nonlinear neuronal synchronization in the stretch reflex at the wrist joint with respect to spinal and transcortical loops.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Teodoro Solis-Escalante
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frans C. T. van der Helm
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Julius P. A. Dewald
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Alfred C. Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
39
|
Fujio K, Obata H, Kawashima N, Nakazawa K. The Effects of Temporal and Spatial Predictions on Stretch Reflexes of Ankle Flexor and Extensor Muscles While Standing. PLoS One 2016; 11:e0158721. [PMID: 27385043 PMCID: PMC4934788 DOI: 10.1371/journal.pone.0158721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
The purpose of the present study was to investigate how stretch reflex (SR) responses in the ankle extensor (soleus: SOL) and flexor (tibialis anterior: TA) muscles would be modulated with temporal and/or spatial predictions of external perturbations and whether their effects are specific to the standing posture. SR responses in the SOL/TA were elicited by imposing quick ankle toes-up/toes-down rotations while standing upright and in the supine position. We designed four experimental conditions based on pre-information about perturbations: no information (No Cue), the timing of the perturbation onset (TIM), the direction of the perturbation (DIR), and both the timing and direction of the perturbation (TIM/DIR). Each condition was separated and its order was counterbalanced. In the SR of TA evoked by toes-down rotation, integrated electromyography activities of the late component were significantly reduced in the TIM and TIM/DIR conditions as compared with those in the No Cue and DIR conditions. The occurrence rate of late SR components that reflects how often the reflex response was observed was also lower in the TIM and TIM/DIR conditions as compared with that in the No Cue and DIR conditions. On the other hand, no significant changes were seen among the four conditions in the early SR component in the TA and both SR components in the SOL. The same results in the occurrence rate were found in the supine position. The present results suggest (1) only temporal predictions have a remarkable effect on the SR excitability of the TA, and (2) this effect is independent of posture.
Collapse
Affiliation(s)
- Kimiya Fujio
- Sports Science Laboratory, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Hiroki Obata
- Sports Science Laboratory, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute of the National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kimitaka Nakazawa
- Sports Science Laboratory, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Butler JE, Godfrey S, Thomas CK. Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury. PLoS One 2016; 11:e0153063. [PMID: 27049521 PMCID: PMC4822972 DOI: 10.1371/journal.pone.0153063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/23/2016] [Indexed: 01/31/2023] Open
Abstract
Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury.
Collapse
Affiliation(s)
- Jane E. Butler
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Research Australia, Sydney, Australia
- University of New South Wales, Sydney, Australia
- * E-mail:
| | - Sharlene Godfrey
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Christine K. Thomas
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
41
|
Abstract
Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. Humans have direct cortical connections to spinal motoneurons, which bypass spinal interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior.
Collapse
Affiliation(s)
- Jens Bo Nielsen
- Department of Neuroscience and Pharmacology and Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2200 Copenhagen N, Denmark;
| |
Collapse
|
42
|
Stevenson AJ, Mrachacz-Kersting N, van Asseldonk E, Turner DL, Spaich EG. Spinal plasticity in robot-mediated therapy for the lower limbs. J Neuroeng Rehabil 2015; 12:81. [PMID: 26377324 PMCID: PMC4574007 DOI: 10.1186/s12984-015-0073-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/03/2015] [Indexed: 12/02/2022] Open
Abstract
Robot-mediated therapy can help improve walking ability in patients following injuries to the central nervous system. However, the efficacy of this treatment varies between patients, and evidence for the mechanisms underlying functional improvements in humans is poor, particularly in terms of neural changes in the spinal cord. Here, we review the recent literature on spinal plasticity induced by robotic-based training in humans and propose recommendations for the measurement of spinal plasticity using robotic devices. Evidence for spinal plasticity in humans following robotic training is limited to the lower limbs. Body weight-supported (BWS) robotic-assisted step training of patients with spinal cord injury (SCI) or stroke patients has been shown to lead to changes in the amplitude and phase modulation of spinal reflex pathways elicited by electrical stimulation or joint rotations. Of particular importance is the finding that, among other changes to the spinal reflex circuitries, BWS robotic-assisted step training in SCI patients resulted in the re-emergence of a physiological phase modulation of the soleus H-reflex during walking. Stretch reflexes elicited by joint rotations constitute a tool of interest to probe spinal circuitry since the technology necessary to produce these perturbations could be integrated as a natural part of robotic devices. Presently, ad-hoc devices with an actuator capable of producing perturbations powerful enough to elicit the reflex are available but are not part of robotic devices used for training purposes. A further development of robotic devices that include the technology to elicit stretch reflexes would allow for the spinal circuitry to be routinely tested as a part of the training and evaluation protocols.
Collapse
Affiliation(s)
- Andrew Jt Stevenson
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| | - Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| | - Edwin van Asseldonk
- Biomedical Engineering, University of Twente, 7522NB, Enschede, The Netherlands.
| | - Duncan L Turner
- NeuroRehabilitation Unit, School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, England.
| | - Erika G Spaich
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| |
Collapse
|
43
|
Mackey AS, Uttaro D, McDonough MP, Krivis LI, Knikou M. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Clin Neurophysiol 2015; 127:706-715. [PMID: 26122072 DOI: 10.1016/j.clinph.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Integration between descending and ascending inputs at supraspinal and spinal levels is a key characteristic of neural control of movement. In this study, we characterized convergence of the flexor reflex and corticospinal inputs on the tibialis anterior (TA) network in healthy human subjects. Specifically, we characterized the modulation profiles of the spinal TA flexor reflex following subthreshold and suprathreshold transcranial magnetic stimulation (TMS). We also characterized the modulation profiles of the TA motor evoked potentials (MEPs) following medial arch foot stimulation at sensory and above reflex threshold. METHODS TA flexor reflexes were evoked following stimulation of the medial arch of the foot with a 30 ms pulse train at innocuous intensities. TA MEPs were evoked following TMS of the leg motor cortex area. RESULTS TMS at 0.7 and at 1.2 MEP resting threshold increased the TA flexor reflex when TMS was delivered 40-100 ms after foot stimulation, and decreased the TA flexor reflex when TMS was delivered 25-110 ms before foot stimulation. Foot stimulation at sensory and above flexor reflex threshold induced a similar time-dependent modulation in resting TA MEPs, that were facilitated when foot stimulation was delivered 40-100 ms before TMS. The flexor reflex and MEPs recorded from the medial hamstring muscle were modulated in a similar manner to that observed for the TA flexor reflex and MEP. CONCLUSION Cutaneomuscular afferents from the distal foot can increase the output of the leg motor cortex area. Descending motor volleys that directly or indirectly depolarize flexor motoneurons increase the output of the spinal FRA interneuronal network. The parallel facilitation of flexor MEPs and flexor reflexes is likely cortical in origin. SIGNIFICANCE Afferent mediated facilitation of corticospinal excitability can be utilized to strengthen motor cortex output in neurological disorders.
Collapse
Affiliation(s)
- Ann S Mackey
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA
| | - Denise Uttaro
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA
| | - Maureen P McDonough
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA
| | - Lisa I Krivis
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA
| | - Maria Knikou
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA.
| |
Collapse
|
44
|
Labanca L, Laudani L, Casabona A, Menotti F, Mariani PP, Macaluso A. Early compensatory and anticipatory postural adjustments following anterior cruciate ligament reconstruction. Eur J Appl Physiol 2015; 115:1441-51. [DOI: 10.1007/s00421-015-3126-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/04/2015] [Indexed: 01/09/2023]
|
45
|
Habituation behavior of the medium-latency reflex over the anterior tibial muscle after electrical stimulation of the sural nerve. Neuroscience 2014; 280:111-20. [PMID: 25218809 DOI: 10.1016/j.neuroscience.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/21/2022]
Abstract
Over human leg muscles, three motor responses (MR) can commonly be elicited, namely short-latency reflex (SLR), medium-latency reflex (MLR), and long-latency reflex (LLR). The MLR is less well understood than SLR and LLR. As the response to subsequent stimuli may be used to characterize central influences of an MR, we were interested, whether the MLR differs from SLR and LLR with respect to its habituation and facilitation behavior. MR were examined over the anterior tibial (TA) muscle at different contraction levels after electrical single or train stimuli (time intervals of 3 ms) over the ipsilateral sural nerve. Furthermore, MR were selectively averaged after each of four subsequent stimuli (1Hz, 0.4 Hz, trains-of-3). After single stimuli, the peak latency values were 46.2±2.3 ms, 88.0±5.8 ms (MLR), and 131.7±22.2 ms (LLR). All three MR gained similarly strong and significantly in amplitude when up to 10 kg of weight was loaded compared with no weight load. After train stimuli, the LLR but not SLR and MLR gained significantly in amplitude as compared with single stimuli. Different to SLR and LLR, the MLR showed significant habituation behavior at a stimulus repetition rate of 1Hz but not of 0.4 Hz. Thus, inhibitory interneurons seem to be involved in the MLR pathway.
Collapse
|
46
|
Márquez G, Morenilla L, Taube W, Fernández-del-Olmo M. Effect of surface stiffness on the neural control of stretch-shortening cycle movements. Acta Physiol (Oxf) 2014; 212:214-25. [PMID: 25074473 DOI: 10.1111/apha.12356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/24/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Abstract
AIM It is accepted that leg stiffness (Kleg ) increases when surface stiffness decreases, and vice versa. However, little is known how the central nervous system fulfils this task. To understand the effect of surface stiffness on the neural control of stretch-shortening cycle movements, this study aimed to compare modulation of spinal and corticospinal excitability at distinct phases after ground contact during two-legged hopping when changing from solid to elastic ground. METHODS Motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) and H-reflexes were elicited at the time of the short (SLR)-, medium (MLR)- and long (LLR)-latency responses of the soleus muscle (SOL) during two-legged hopping on different stiffness surfaces, elastic and stiff. RESULTS Soleus H-reflexes during two-legged hopping on the elastic surface were lower at SLR and larger at LLR than on the stiff surface (P < 0.05 for both comparisons). SOL MEP size was higher at the time of SLR during hopping on the elastic surface than on the stiff surface (P < 0.05) although the background EMG was similar. CONCLUSION It is argued that this phase-specific adaptation in spinal reflex excitability is functionally relevant to adjust leg stiffness to optimally exploit the properties of the elastic surface. Thus, the increased corticospinal excitability on the elastic surface may reflect a more supraspinal control of the ankle muscles to compensate the decrease in reflexive stiffness at the beginning of touchdown and/or counteract the higher postural challenges associated with the elastic surface.
Collapse
Affiliation(s)
- G. Márquez
- Departamento de Ciencias de la Actividad Física y del Deporte; Facultad de Ciencias de la Actividad Física y del Deporte; UCAM, Universidad Católica San Antonio; Murcia Spain
| | - L. Morenilla
- Learning and Human Movement Control Group; Facultad de Ciencias de la Actividad Física y del Deporte; University of A Coruña; A Coruña Spain
| | - W. Taube
- Department of Medicine, Movement and Sports Science; University of Fribourg; Fribourg Switzerland
| | - M. Fernández-del-Olmo
- Learning and Human Movement Control Group; Facultad de Ciencias de la Actividad Física y del Deporte; University of A Coruña; A Coruña Spain
| |
Collapse
|
47
|
Evidence for sustained cortical involvement in peripheral stretch reflex during the full long latency reflex period. Neurosci Lett 2014; 584:214-8. [PMID: 25449867 DOI: 10.1016/j.neulet.2014.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/23/2022]
Abstract
Adaptation of reflexes to environment and task at hand is a key mechanism in optimal motor control, possibly regulated by the cortex. In order to locate the corticospinal integration, i.e. spinal or supraspinal, and to study the critical temporal window of reflex adaptation, we combined transcranial magnetic stimulation (TMS) and upper extremity muscle stretch reflexes at high temporal precision. In twelve participants (age 49 ± 13 years, eight male), afferent signals were evoked by 40 ms ramp and subsequent hold stretches of the m. flexor carpi radialis (FCR). Motor conduction delays (TMS time of arrival at the muscle) and TMS-motor threshold were individually assessed. Subsequently TMS pulses at 96% of active motor threshold were applied with a resolution of 5-10 ms between 10 ms before and 120 ms after onset of series of FCR stretches. Controlled for the individually assessed motor conduction delay, subthreshold TMS was found to significantly augment EMG responses between 60 and 90 ms after stretch onset. This sensitive temporal window suggests a cortical integration consistent with a long latency reflex period rather than a spinal integration consistent with a short latency reflex period. The potential cortical role in reflex adaptation extends over the full long latency reflex period, suggesting adaptive mechanisms beyond reflex onset.
Collapse
|
48
|
Nardone R, Höller Y, Thomschewski A, Brigo F, Orioli A, Höller P, Golaszewski S, Trinka E. rTMS modulates reciprocal inhibition in patients with traumatic spinal cord injury. Spinal Cord 2014; 52:831-5. [PMID: 25112970 DOI: 10.1038/sc.2014.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/20/2014] [Accepted: 07/13/2014] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Randomized, double-blind, crossover, sham-controlled trial. OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) leads to a significant reduction of spasticity in subjects with spinal cord injury (SCI), but the physiological basis of this effect is still not well understood. The purpose of this study was to evaluate the disynaptic reciprocal Ia inhibition of soleus motoneurons in SCI patients. SETTING Department of Neurology, Merano, Italy and TMS Laboratory, Paracelsus Medical University, Salzburg, Austria. METHODS Nine subjects with incomplete cervical or thoracic SCI received 5 days of daily sessions of real or sham rTMS applied over the contralateral M1. We compared the reciprocal inhibition, the Modified Ashworth Scale and the Spinal Cord Injury Assessment Tool for Spasticity at baseline, after the last session and 1 week later in the real rTMS and sham stimulation groups. RESULTS We found that real rTMS significantly reduced lower limb spasticity and restored the impaired excitability in the disynaptic reciprocal inhibitory pathway. CONCLUSIONS In a small proof-of-concept study, rTMS strengthened descending projections between the motor cortex and inhibitory spinal interneuronal circuits. This reversed a defect in reciprocal inhibition after SCI, and reduced leg spasticity.
Collapse
Affiliation(s)
- R Nardone
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Department of Neurology, Franz Tappeiner Hospital, Merano, Italy [3] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Y Höller
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - A Thomschewski
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - F Brigo
- 1] Department of Neurology, Franz Tappeiner Hospital, Merano, Italy [2] Department of Neurological, Neuropsychological, Morphological and Movement Sciences. Section of Clinical Neurology, University of Verona, Verona, Italy
| | - A Orioli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - P Höller
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - S Golaszewski
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - E Trinka
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
49
|
Knikou M. Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output. PLoS One 2014; 9:e102313. [PMID: 25007330 PMCID: PMC4090164 DOI: 10.1371/journal.pone.0102313] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/16/2014] [Indexed: 12/25/2022] Open
Abstract
The objective of this study was to assess changes in corticospinal excitability and spinal output following noninvasive transpinal and transcortical stimulation in humans. The size of the motor evoked potentials (MEPs), induced by transcranial magnetic stimulation (TMS) and recorded from the right plantar flexor and extensor muscles, was assessed following transcutaneous electric stimulation of the spine (tsESS) over the thoracolumbar region at conditioning-test (C-T) intervals that ranged from negative 50 to positive 50 ms. The size of the transpinal evoked potentials (TEPs), induced by tsESS and recorded from the right and left plantar flexor and extensor muscles, was assessed following TMS over the left primary motor cortex at 0.7 and at 1.1× MEP resting threshold at C-T intervals that ranged from negative 50 to positive 50 ms. The recruitment curves of MEPs and TEPs had a similar shape, and statistically significant differences between the sigmoid function parameters of MEPs and TEPs were not found. Anodal tsESS resulted in early MEP depression followed by long-latency MEP facilitation of both ankle plantar flexors and extensors. TEPs of ankle plantar flexors and extensors were increased regardless TMS intensity level. Subthreshold and suprathreshold TMS induced short-latency TEP facilitation that was larger in the TEPs ipsilateral to TMS. Noninvasive transpinal stimulation affected ipsilateral and contralateral actions of corticospinal neurons, while corticocortical and corticospinal descending volleys increased TEPs in both limbs. Transpinal and transcortical stimulation is a noninvasive neuromodulation method that alters corticospinal excitability and increases motor output of multiple spinal segments in humans.
Collapse
Affiliation(s)
- Maria Knikou
- The Graduate Center, City University of New York, New York, New York, United States of America
- Departments of Physical Therapy & Neuroscience, College of Staten Island/CUNY, Staten Island, New York, United States of America
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
50
|
Leukel C, Taube W, Rittweger J, Gollhofer A, Ducos M, Weber T, Lundbye-Jensen J. Changes in corticospinal transmission following 8weeks of ankle joint immobilization. Clin Neurophysiol 2014; 126:131-9. [PMID: 24794515 DOI: 10.1016/j.clinph.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/06/2014] [Accepted: 04/03/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Joint immobilization has previously been shown to modulate corticospinal excitability. The present study investigated changes in the excitability of distinct fractions of the corticospinal pathway by means of conditioning the H-reflex with transcranial magnetic stimulation (TMS) of the primary motor cortex (Hcond). This method allows assessment of transmission in fast (monosynaptic) and slow(er) (polysynaptic) corticospinal pathways. METHODS 9 subjects underwent 8weeks of unilateral ankle joint immobilization during daytime, 7 subjects served as controls. The measures obtained before and after immobilization included stretch- and H-reflexes assessing excitability of the spinal reflex circuitries, TMS recruitment curves estimating overall changes in corticospinal excitability, and Hcond. RESULTS TMS recruitment curves showed an overall increase in corticospinal excitability following immobilization. Importantly, Hcond revealed significant facilitation of conditioned reflexes, but only for longer conditioning intervals, suggesting that immobilization increased excitability only of slower, indirect corticospinal pathways. No changes were observed in the control group. Immobilization had no significant effects on spinal reflex measures. CONCLUSIONS 8weeks of ankle joint immobilization was accompanied by pathway-specific modulation of corticospinal transmission. SIGNIFICANCE It is particularly interesting that fast corticospinal projections were unaffected as these are involved in controlling many, if not most, movements in humans.
Collapse
Affiliation(s)
- Christian Leukel
- Department of Medicine, Movement and Sport Science, University of Fribourg, Switzerland.
| | - Wolfgang Taube
- Department of Medicine, Movement and Sport Science, University of Fribourg, Switzerland
| | - Jörn Rittweger
- German Aerospace Centre, Institute of Aerospace Medicine, Division Space Physiology, Cologne, Germany
| | | | - Michel Ducos
- German Aerospace Centre, Institute of Aerospace Medicine, Division Space Physiology, Cologne, Germany
| | - Tobias Weber
- German Aerospace Centre, Institute of Aerospace Medicine, Division Space Physiology, Cologne, Germany
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| |
Collapse
|