1
|
Therkildsen ER, Lorentzen J, Perez MA, Nielsen JB. Evaluation of spasticity: IFCN Handbook Chapter. Clin Neurophysiol 2025; 173:1-23. [PMID: 40068367 DOI: 10.1016/j.clinph.2025.02.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025]
Abstract
There is no generally accepted definition of spasticity, but hyperexcitable stretch reflexes, exaggerated tendon jerks, clonus, spasms, cramps, increased resistance to passive joint movement, sustained involuntary muscle activity and aberrant muscle activation, including co-contraction of antagonist muscles are all signs and symptoms which are usually associated clinically to the term spasticity. This review describes how biomechanical and electrophysiological techniques may be used to provide quantitative and objective measures of each of these signs and symptoms. The review further describes how neurophysiological techniques may be used to evaluate pathophysiological changes in spinal motor control mechanisms. It is emphasized that understanding the pathophysiology and distinguishing the specific signs and symptoms associated with spasticity, using objective, valid, and reproducible measurements, is essential for providing optimal therapy.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; Department of Pediatrics, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 10, Dk-2100 Copenhagen Ø, Denmark
| | - Monica A Perez
- Shirley Ryan Ability Lab, Chicago, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA; Edward Jr. Hines VA Hospital, Chicago, USA
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; The Elsass Foundation, Holmegårdsvej 28, Charlottenlund, 2920, Denmark.
| |
Collapse
|
2
|
Umeda T, Yokoyama O, Suzuki M, Kaneshige M, Isa T, Nishimura Y. Future spinal reflex is embedded in primary motor cortex output. SCIENCE ADVANCES 2024; 10:eadq4194. [PMID: 39693430 DOI: 10.1126/sciadv.adq4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Mammals can execute intended limb movements despite the fact that spinal reflexes involuntarily modulate muscle activity. To generate appropriate muscle activity, the cortical descending motor output must coordinate with spinal reflexes, yet the underlying neural mechanism remains unclear. We simultaneously recorded activities in motor-related cortical areas, afferent neurons, and forelimb muscles of monkeys performing reaching movements. Motor-related cortical areas, predominantly primary motor cortex (M1), encode subsequent afferent activities attributed to forelimb movement. M1 also encodes a subcomponent of muscle activity evoked by these afferent activities, corresponding to spinal reflexes. Furthermore, selective disruption of the afferent pathway specifically reduced this subcomponent of muscle activity, suggesting that M1 output drives muscle activity not only through direct descending pathways but also through the "transafferent" pathway composed of descending plus subsequent spinal reflex pathways. Thus, M1 provides optimal motor output based on an internal forward model that prospectively computes future spinal reflexes.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto 6068501, Japan
- Department of Neurophysiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878502, Japan
| | - Osamu Yokoyama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Michiaki Suzuki
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Miki Kaneshige
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 6068501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 6068510, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 2400193, Japan
| | - Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 1568506, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 2400193, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 3320012, Japan
| |
Collapse
|
3
|
Robb KA, Perry SD. The topographical attenuation of cutaneous input is modulated at the ankle joint during gait. Exp Brain Res 2024; 242:149-161. [PMID: 37979067 DOI: 10.1007/s00221-023-06737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The attenuation of sensory inputs via various methods has been demonstrated to impair balance control and alter locomotor behavior during human walking; however, the effects of attenuating foot sole sensation under distinct areas of the foot sole on lower extremity motor output remains poorly understood. Thus, the purpose of this study was to attenuate cutaneous feedback via regional hypothermia under five different areas of the foot sole and investigate the resultant modulation of kinematic and muscle activity during level walking. Electromyography from eight lower leg muscles, kinematics, and location of center of pressure was recorded from 48 healthy young adults completing walking trials with normal and reduced cutaneous sensation from bilateral foot soles. The results of this study highlight the modulatory response of the tibialis anterior in terminal stance (propulsion and toe-off) and medial gastrocnemius muscle throughout the entire stance phase of gait. The topographical organization of foot sole skin in response to the attenuation of cutaneous feedback from different areas of the foot sole significantly modified locomotor activity. Furthermore, the locomotor response to cutaneous attenuation under the same regions that we previously facilitated with tactile feedback do not oppose each other, suggesting different physiological changes to foot sole skin generate unique gait behaviors.
Collapse
Affiliation(s)
- Kelly A Robb
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, 75 University Ave. West, Waterloo, ON, N2L 3C5, Canada.
| | - Stephen D Perry
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, 75 University Ave. West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
4
|
McCane LM, Wolpaw JR, Thompson AK. Effects of active and sham tDCS on the soleus H-reflex during standing. Exp Brain Res 2023; 241:1611-1622. [PMID: 37145136 PMCID: PMC10224818 DOI: 10.1007/s00221-023-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Weak transcranial direct current stimulation (tDCS) is known to affect corticospinal excitability and enhance motor skill acquisition, whereas its effects on spinal reflexes in actively contracting muscles are yet to be established. Thus, in this study, we examined the acute effects of Active and Sham tDCS on the soleus H-reflex during standing. In fourteen adults without known neurological conditions, the soleus H-reflex was repeatedly elicited at just above M-wave threshold throughout 30 min of Active (N = 7) or Sham (N = 7) 2-mA tDCS over the primary motor cortex in standing. The maximum H-reflex (Hmax) and M-wave (Mmax) were also measured before and immediately after 30 min of tDCS. The soleus H-reflex amplitudes became significantly larger (by 6%) ≈1 min into Active or Sham tDCS and gradually returned toward the pre-tDCS values, on average, within 15 min. With Active tDCS, the amplitude reduction from the initial increase appeared to occur more swiftly than with Sham tDCS. An acute temporary increase in the soleus H-reflex amplitude within the first minute of Active and Sham tDCS found in this study indicates a previously unreported effect of tDCS on the H-reflex excitability. The present study suggests that neurophysiological characterization of Sham tDCS effects is just as important as investigating Active tDCS effects in understanding and defining acute effects of tDCS on the excitability of spinal reflex pathways.
Collapse
Affiliation(s)
- Lynn M McCane
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, 02881, USA
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, 12208, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, 12208, USA
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, MSC 700, Charleston, SC, 29425, USA.
| |
Collapse
|
5
|
Raffalt PC, Yentes JM, Freitas SR, Vaz JR. Calculating sample entropy from isometric torque signals: methodological considerations and recommendations. Front Physiol 2023; 14:1173702. [PMID: 37324377 PMCID: PMC10267410 DOI: 10.3389/fphys.2023.1173702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
We investigated the effect of different sampling frequencies, input parameters and observation times for sample entropy (SaEn) calculated on torque data recorded from a submaximal isometric contraction. Forty-six participants performed sustained isometric knee flexion at 20% of their maximal contraction level and torque data was sampled at 1,000 Hz for 180 s. Power spectral analysis was used to determine the appropriate sampling frequency. The time series were downsampled to 750, 500, 250, 100, 50, and 25 Hz to investigate the effect of different sampling frequency. Relative parameter consistency was investigated using combinations of vector lengths of two and three and tolerance limits of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4, and data lengths between 500 and 18,000 data points. The effect of different observations times was evaluated using Bland-Altman plot for observations times between 5 and 90 s. SaEn increased at sampling frequencies below 100 Hz and was unaltered above 250 Hz. In agreement with the power spectral analysis, this advocates for a sampling frequency between 100 and 250 Hz. Relative consistency was observed across the tested parameters and at least 30 s of observation time was required for a valid calculation of SaEn from torque data.
Collapse
Affiliation(s)
- Peter C. Raffalt
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M. Yentes
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX, United States
| | - Sandro R. Freitas
- Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - João R. Vaz
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| |
Collapse
|
6
|
Usherwood JR. The collisional geometry of economical walking predicts human leg and foot segment proportions. J R Soc Interface 2023; 20:20220800. [PMID: 36946089 PMCID: PMC10031400 DOI: 10.1098/rsif.2022.0800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Human walking appears complicated, with many muscles and joints performing rapidly varying roles over the stride. However, the function of walking is simple: to support body weight as it translates economically. Here, a scenario is proposed for the sequence of joint and muscle actions that achieves this function, with the timing of muscle loading and unloading driven by simple changes in geometry over stance. In the scenario, joints of the legs and feet are sequentially locked, resulting in a vaulting stance phase and three or five rapid 'mini-vaults' over a series of 'virtual legs' during the step-to-step transition. Collision mechanics indicate that the mechanical work demand is minimized if the changes in the centre-of-mass trajectory over the step-to-step transition are evenly spaced, predicting an even spacing of the virtual legs. The scenario provides a simple account for the work-minimizing mechanisms of joints and muscles in walking, and collision geometry allows leg and foot proportions to be predicted, accounting for the location of the knee halfway down the leg, and the relatively stiff, plantigrade, asymmetric, short-toed human foot.
Collapse
Affiliation(s)
- James R Usherwood
- Structure and Motion Lab., The Royal Veterinary College, North Mymms, Hatfield, Herts AL9 7TA UK
| |
Collapse
|
7
|
Rayati M, Nasiri R, Ahmadabadi MN. Improving Muscle Force Distribution Model Using Reflex Excitation: Toward a Model-Based Exoskeleton Torque Optimization Approach. IEEE Trans Neural Syst Rehabil Eng 2023; 31:720-728. [PMID: 37015449 DOI: 10.1109/tnsre.2022.3230795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we improve the existing model for force distribution over the muscles by considering reflex excitation as a nonvoluntary mechanism of our neuromuscular system. The improved model can explain the large difference between biological torque and experimentally optimized assistive torque profiles. Accordingly, we hypothesize that the "nonvoluntary nature of reflexive excitation highly restricts biological torque compensation". The proposed model can also potentially characterize co-activation behavior in antagonistic muscles. Using our improved model, we introduce a well-posed framework to optimize the exoskeleton torque profile by metabolic rate minimization. METHODS To support our hypothesis and the proposed method, we utilize two experimental datasets for exoskeleton torque optimization; passive and active ankle exoskeletons. First, we use the passive exoskeleton dataset to identify the parameters of our model; i.e., reflex gains. Then, to validate the proposed model, the identified parameters are used to optimize the exoskeleton torque profile for the second experimental study. LIMITATIONS It is assumed that joint kinematic and reflex gains are fixed with and without exoskeleton. RESULTS 74% of biological torque at the ankle joint cannot be experimentally compensated and the existing models can only explain that 17% of the biological torque is uncompensable. Our improved model can explain that 58% of biological torque is uncompensable (but still 16% remains unexplained). This achievement provides support for our hypothesis and shows undeniable contribution of reflex excitation for exoskeleton torque profile optimization.
Collapse
|
8
|
Temporal dynamics of the sensorimotor convergence underlying voluntary limb movement. Proc Natl Acad Sci U S A 2022; 119:e2208353119. [PMID: 36409890 PMCID: PMC9860324 DOI: 10.1073/pnas.2208353119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Descending motor drive and somatosensory feedback play important roles in modulating muscle activity. Numerous studies have characterized the organization of neuronal connectivity in which descending motor pathways and somatosensory afferents converge on spinal motor neurons as a final common pathway. However, how inputs from these two pathways are integrated into spinal motor neurons to generate muscle activity during actual motor behavior is unknown. Here, we simultaneously recorded activity in the motor cortices (MCx), somatosensory afferent neurons, and forelimb muscles in monkeys performing reaching and grasping movements. We constructed a linear model to explain the instantaneous muscle activity using the activity of MCx (descending input) and peripheral afferents (afferent input). Decomposition of the reconstructed muscle activity into each subcomponent indicated that muscle activity before movement onset could first be explained by descending input from mainly the primary motor cortex and muscle activity after movement onset by both descending and afferent inputs. Descending input had a facilitative effect on all muscles, whereas afferent input had a facilitative or suppressive effect on each muscle. Such antagonistic effects of afferent input can be explained by reciprocal effects of the spinal reflex. These results suggest that descending input contributes to the initiation of limb movement, and this initial movement subsequently affects muscle activity via the spinal reflex in conjunction with the continuous descending input. Thus, spinal motor neurons are subjected to temporally organized modulation by direct activation through the descending pathway and the lagged action of the spinal reflex during voluntary limb movement.
Collapse
|
9
|
Charalambous CC, Hadjipapas A. Is there frequency-specificity in the motor control of walking? The putative differential role of alpha and beta oscillations. Front Syst Neurosci 2022; 16:922841. [PMID: 36387306 PMCID: PMC9650482 DOI: 10.3389/fnsys.2022.922841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2023] Open
Abstract
Alpha and beta oscillations have been assessed thoroughly during walking due to their potential role as proxies of the corticoreticulospinal tract (CReST) and corticospinal tract (CST), respectively. Given that damage to a descending tract after stroke can cause walking deficits, detailed knowledge of how these oscillations mechanistically contribute to walking could be utilized in strategies for post-stroke locomotor recovery. In this review, the goal was to summarize, synthesize, and discuss the existing evidence on the potential differential role of these oscillations on the motor descending drive, the effect of transcranial alternate current stimulation (tACS) on neurotypical and post-stroke walking, and to discuss remaining gaps in knowledge, future directions, and methodological considerations. Electrophysiological studies of corticomuscular, intermuscular, and intramuscular coherence during walking clearly demonstrate that beta oscillations are predominantly present in the dorsiflexors during the swing phase and may be absent post-stroke. The role of alpha oscillations, however, has not been pinpointed as clearly. We concluded that both animal and human studies should focus on the electrophysiological characterization of alpha oscillations and their potential role to the CReST. Another approach in elucidating the role of these oscillations is to modulate them and then quantify the impact on walking behavior. This is possible through tACS, whose beneficial effect on walking behavior (including boosting of beta oscillations in intramuscular coherence) has been recently demonstrated in both neurotypical adults and stroke patients. However, these studies still do not allow for specific roles of alpha and beta oscillations to be delineated because the tACS frequency used was much lower (i.e., individualized calculated gait frequency was used). Thus, we identify a main gap in the literature, which is tACS studies actually stimulating at alpha and beta frequencies during walking. Overall, we conclude that for beta oscillations there is a clear connection to descending drive in the corticospinal tract. The precise relationship between alpha oscillations and CReST remains elusive due to the gaps in the literature identified here. However, better understanding the role of alpha (and beta) oscillations in the motor control of walking can be used to progress and develop rehabilitation strategies for promoting locomotor recovery.
Collapse
Affiliation(s)
- Charalambos C. Charalambous
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
10
|
Harris CM, Szczecinski NS, Büschges A, Zill SN. Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies. J Neurophysiol 2022; 128:790-807. [PMID: 36043841 PMCID: PMC9529259 DOI: 10.1152/jn.00285.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In control of walking, sensory signals of decreasing forces are used to regulate leg lifting in initiation of swing and to detect loss of substrate grip (leg slipping). We used extracellular recordings in two insect species to characterize and model responses to force decrements of tibial campaniform sensilla, receptors that detect forces as cuticular strains. Discharges to decreasing forces did not occur upon direct stimulation of the sites of mechanotransduction (cuticular caps) but were readily elicited by bending forces applied to the leg. Responses to bending force decreases were phasic but had rate sensitivities similar to discharges elicited by force increases in the opposite direction. Application of stimuli of equivalent amplitude at different offset levels showed that discharges were strongly dependent upon the tonic level of loading: firing was maximal to complete unloading of the leg but substantially decreased or eliminated by sustained loads. The contribution of cuticle properties to sensory responses was also evaluated: discharges to force increases showed decreased adaptation when mechanical stress relaxation was minimized; firing to force decreases could be related to viscoelastic “creep” in the cuticle. Discharges to force decrements apparently occur due to cuticle viscoelasticity that generates transient strains similar to bending in the opposite direction. Tuning of sensory responses through cuticular and membrane properties effectively distinguishes loss of substrate grip/complete unloading from force variations due to gait in walking. We have successfully reproduced these properties in a mathematical model of the receptors. Sensors with similar tuning could fulfil these functions in legs of walking machines. NEW & NOTEWORTHY Decreases in loading of legs are important in the regulation of posture and walking in both vertebrates and invertebrates. Recordings of activities of tibial campaniform sensilla, which encode forces in insects, showed that their responses are specifically tuned to detect force decreases at the end of the stance phase of walking or when a leg slips. These results have been reproduced in a mathematical model of the receptors and also have potential applications in robotics.
Collapse
Affiliation(s)
- Christian M Harris
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
11
|
Bruel A, Ghorbel SB, Russo AD, Stanev D, Armand S, Courtine G, Ijspeert A. Investigation of neural and biomechanical impairments leading to pathological toe and heel gaits using neuromusculoskeletal modelling. J Physiol 2022; 600:2691-2712. [PMID: 35442531 PMCID: PMC9401908 DOI: 10.1113/jp282609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/11/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Pathological toe and heel gaits are commonly present in various conditions such as spinal cord injury, stroke or cerebral palsy. These conditions present various neural and biomechanical impairments and the cause-effect relationships between these impairments and pathological gaits are hard to establish clinically. Based on neuromechanical simulation, this study focuses on the plantarflexor muscles and builds a new reflex circuit controller to model and evaluate the potential effect of both neural and biomechanical impairments on gait. Our results suggest an important contribution of active reflex mechanisms in pathological toe gait. This "what if" based on neuromechanical modelling is thus deemed of great interest to target potential pathological gait causes. ABSTRACT This study investigates the pathological toe and heel gaits in human locomotion using neuromusculoskeletal modelling and simulation. In particular, it aims at investigating potential cause-effect relationships between biomechanical or neural impairments and pathological gaits. Toe and heel gaits are commonly present in spinal cord injury, stroke or cerebral palsy. Toe walking is mainly attributed to spasticity and contracture at plantarflexor muscles, whereas heel walking can be attributed to muscle weakness from biomechanical or neural origin. To investigate the effect of these impairments on gait, this study focuses on the soleus and gastrocnemius muscles as they contribute to ankle plantarflexion. We built a reflex circuit model on top of Geyer and Herr's work (2010) with additional pathways affecting the plantarflexor muscles. The SCONE software, which provides optimisation tools for 2D neuromechanical simulation of human locomotion, is used to optimise the corresponding reflex parameters and simulate healthy gait. We then modelled various bilateral plantarflexors biomechanical and neural impairments, and individually introduced them in the healthy model. We characterised the resulting simulated gaits as pathological or not by comparing ankle kinematics and ankle moment with the healthy optimised gait based on metrics used in clinical studies. Our simulations suggest that toe walking can be generated by hyperreflexia, whereas muscle and neural weaknesses induce partially heel gait. Thus, this "what if" approach is deemed of great interest as it allows the investigation of the effect of various impairments on gait and suggests an important contribution of active reflex mechanisms in pathological toe gait. Abstract figure legend Various biomechanical and neural impairments are individually modelled at the level of the plantarflexor muscles in a musculoskeletal model and a complex reflex circuit-based gait controller. For instance, as shown on the left, the plantarflexors spindle reflex gain (KS) is increased to mimic hyperreflexia. The gait controller is then optimised for each of the impaired condition and the resulting gaits are characterised as pathological gait based on ankle kinematics and ankle moment metrics used in clinical studies. Thus, this "what if" approach allows the investigation of the effect of various impairments on gait presented in the table on the right. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alice Bruel
- BioRobotics laboratory, EPFL, Lausanne, 1015, Switzerland
| | | | | | - Dimitar Stanev
- BioRobotics laboratory, EPFL, Lausanne, 1015, Switzerland
| | | | | | - Auke Ijspeert
- BioRobotics laboratory, EPFL, Lausanne, 1015, Switzerland
| |
Collapse
|
12
|
Rasul A, Lorentzen J, Frisk RF, Sinkjær T, Nielsen JB. Contribution of sensory feedback to Soleus muscle activity during voluntary contraction in humans. J Neurophysiol 2022; 127:1147-1158. [PMID: 35320034 DOI: 10.1152/jn.00430.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback contributes to plantar flexor muscle activity during walking, but it is unknown whether this is also the case during non-locomotor movements. Here, we explored the effect of reduction of sensory feedback to ankle plantar flexors during voluntary isometric contractions. 13 adult volunteers were seated with the right leg attached to a foot plate which could be moved in dorsi- or plantarflexion direction by a computer-controlled motor. During static plantar flexion while the plantar flexors were slowly stretched, a sudden plantar flexion caused a decline in Soleus EMG at stretch reflex latency. This decline in EMG remained when transmission from dorsiflexors was blocked. It disappeared following block of transmission from plantar flexors. Imposed plantarflexion failed to produce a similar decline in EMG during static or ramp-and-hold plantar flexion in the absence of slow stretch. Instead, a decline in EMG was observed 15-20 ms later, which disappeared following block of transmission from dorsiflexors. Imposed plantarflexion in the stance phase during walking caused a decline in SOL EMG which in contrast remained following block of transmission from dorsiflexors. These findings imply that the contribution of spinal interneurons to the neural drive to muscles during gait and voluntary movement differs and supports that a locomotion specific spinal network contributes to plantar flexor muscle activity during human walking.
Collapse
Affiliation(s)
- Aqella Rasul
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Rasmus Feld Frisk
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark
| | - Thomas Sinkjær
- Department of Health Science and Technology. Aalborg University, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, Univ. of Copenhagen, Copenhagen, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
13
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Bona RL, Bonezi A, Biancardi CM, Castro FADS, Clausell N. Electromyographical and Physiological Correlation in Patient with Heart Disease. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Alteration of H-reflex amplitude modulation is a marker of impaired postural responses in individuals with incomplete spinal cord injury. Exp Brain Res 2021; 239:1779-1794. [PMID: 33787956 DOI: 10.1007/s00221-021-06081-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Individuals with incomplete spinal cord injury (iSCI) show altered postural reactions leading to increased risk of falls. To investigate neural correlates underlying this deficit, we assessed the modulation pattern of the Soleus H-reflex in iSCI individuals following unexpected perturbations of a base of support. Ten men with iSCI (AIS D) and 8 age-matched controls (CTRL) stood on a force-platform randomly tilted forward or backward. The center of pressure (CoP) excursion, 95% confidence ellipse area and electromyographic (EMG) activity of the Soleus (SOL) and Tibialis Anterior (TA) muscles were analyzed. SOL H-reflex amplitude was assessed by stimulating the tibial nerve prior to and at 100, 150 and 200 ms following perturbation onset. Although SOL and TA short-latency EMG responses were comparable in both groups, long-latency EMG responses occurred later in the iSCI group for both directions: during backward tilt, a decrease in H-reflex amplitude was observed at all stimulus timings post-tilt in CTRL, but only at 200 ms in iSCI. The decrease in H-reflex amplitude was smaller in iSCI participants. During forward tilt, an increase in H-reflex amplitude was observed at 150 and 200 ms in the CTRL group, but no increase was observed in the iSCI group. Decreased and delayed SOL H-reflex amplitude modulation in the iSCI group accompanied impaired balance control as assessed clinically with the Berg Balance Scale and biomechanically through CoP displacement. Overall, delayed and reduced spinal reflex processing may contribute to impaired balance control in people with iSCI.
Collapse
|
16
|
De Groote F, Falisse A. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait. Proc Biol Sci 2021; 288:20202432. [PMID: 33653141 PMCID: PMC7935082 DOI: 10.1098/rspb.2020.2432] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
Locomotion results from complex interactions between the central nervous system and the musculoskeletal system with its many degrees of freedom and muscles. Gaining insight into how the properties of each subsystem shape human gait is challenging as experimental methods to manipulate and assess isolated subsystems are limited. Simulations that predict movement patterns based on a mathematical model of the neuro-musculoskeletal system without relying on experimental data can reveal principles of locomotion by elucidating cause-effect relationships. New computational approaches have enabled the use of such predictive simulations with complex neuro-musculoskeletal models. Here, we review recent advances in predictive simulations of human movement and how those simulations have been used to deepen our knowledge about the neuromechanics of gait. In addition, we give a perspective on challenges towards using predictive simulations to gain new fundamental insight into motor control of gait, and to help design personalized treatments in patients with neurological disorders and assistive devices that improve gait performance. Such applications will require more detailed neuro-musculoskeletal models and simulation approaches that take uncertainty into account, tools to efficiently personalize those models, and validation studies to demonstrate the ability of simulations to predict gait in novel circumstances.
Collapse
Affiliation(s)
- Friedl De Groote
- Department of Movement Sciences, KU Leuven, Leuven, Flanders, Belgium
| | - Antoine Falisse
- Department of Movement Sciences, KU Leuven, Leuven, Flanders, Belgium
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Yentes JM, Raffalt PC. Entropy Analysis in Gait Research: Methodological Considerations and Recommendations. Ann Biomed Eng 2021; 49:979-990. [PMID: 33560467 PMCID: PMC8051436 DOI: 10.1007/s10439-020-02616-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/08/2020] [Indexed: 10/22/2022]
Abstract
The usage of entropy analysis in gait research has grown considerably the last two decades. The present paper reviews the application of different entropy analyses in gait research and provides recommendations for future studies. While single-scale entropy analysis such as approximate and sample entropy can be used to quantify regularity/predictability/probability, they do not capture the structural richness and component entanglement characterized by a complex system operating across multiple spatial and temporal scales. Thus, for quantification of complexity, either multiscale entropy or refined composite multiscale entropy is recommended. For both single- and multiscale-scale entropy analyses, care should be made when selecting the input parameters of tolerance window r, vector length m, time series length N and number of scales. This selection should be based on the proposed research question and the type of data collected and not copied from previous studies. Parameter consistency should be investigated and published along with the main results to ensure transparency and enable comparisons between studies. Furthermore, since the interpretation of the absolute size of both single- and multiscale entropy analyses outcomes is not straightforward, comparisons should always be made with a control condition or group.
Collapse
Affiliation(s)
- Jennifer M Yentes
- Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, 68182-0860, USA.
| | - Peter C Raffalt
- Department of Physical Performance, Norwegian School of Sport Sciences, Sognsveien 220, 0806, Oslo, Norway
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
18
|
Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, White JJ, Sillitoe RV. Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nat Commun 2021; 12:1295. [PMID: 33637754 PMCID: PMC7910465 DOI: 10.1038/s41467-021-21417-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Deep brain stimulation (DBS) relieves motor dysfunction in Parkinson's disease, and other movement disorders. Here, we demonstrate the potential benefits of DBS in a model of ataxia by targeting the cerebellum, a major motor center in the brain. We use the Car8 mouse model of hereditary ataxia to test the potential of using cerebellar nuclei DBS plus physical activity to restore movement. While low-frequency cerebellar DBS alone improves Car8 mobility and muscle function, adding skilled exercise to the treatment regimen additionally rescues limb coordination and stepping. Importantly, the gains persist in the absence of further stimulation. Because DBS promotes the most dramatic improvements in mice with early-stage ataxia, we postulated that cerebellar circuit function affects stimulation efficacy. Indeed, genetically eliminating Purkinje cell neurotransmission blocked the ability of DBS to reduce ataxia. These findings may be valuable in devising future DBS strategies.
Collapse
Affiliation(s)
- Lauren N. Miterko
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Tao Lin
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Joy Zhou
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Meike E. van der Heijden
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Jaclyn Beckinghausen
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Joshua J. White
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Roy V. Sillitoe
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
19
|
Felicetti G, Thoumie P, Do MC, Schieppati M. Cutaneous and muscular afferents from the foot and sensory fusion processing: Physiology and pathology in neuropathies. J Peripher Nerv Syst 2021; 26:17-34. [PMID: 33426723 DOI: 10.1111/jns.12429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
The foot-sole cutaneous receptors (section 2), their function in stance control (sway minimisation, exploratory role) (2.1), and the modulation of their effects by gait pattern and intended behaviour (2.2) are reviewed. Experimental manipulations (anaesthesia, temperature) (2.3 and 2.4) have shown that information from foot sole has widespread influence on balance. Foot-sole stimulation (2.5) appears to be a promising approach for rehabilitation. Proprioceptive information (3) has a pre-eminent role in balance and gait. Reflex responses to balance perturbations are produced by both leg and foot muscle stretch (3.1) and show complex interactions with skin input at both spinal and supra-spinal levels (3.2), where sensory feedback is modulated by posture, locomotion and vision. Other muscles, notably of neck and trunk, contribute to kinaesthesia and sense of orientation in space (3.3). The effects of age-related decline of afferent input are variable under different foot-contact and visual conditions (3.4). Muscle force diminishes with age and sarcopenia, affecting intrinsic foot muscles relaying relevant feedback (3.5). In neuropathy (4), reduction in cutaneous sensation accompanies the diminished density of viable receptors (4.1). Loss of foot-sole input goes along with large-fibre dysfunction in intrinsic foot muscles. Diabetic patients have an elevated risk of falling, and vision and vestibular compensation strategies may be inadequate (4.2). From Charcot-Marie-Tooth 1A disease (4.3) we have become aware of the role of spindle group II fibres and of the anatomical feet conditions in balance control. Lastly (5) we touch on the effects of nerve stimulation onto cortical and spinal excitability, which may participate in plasticity processes, and on exercise interventions to reduce the impact of neuropathy.
Collapse
Affiliation(s)
- Guido Felicetti
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Neuromotor Rehabilitation, Institute of Montescano, Pavia, Italy
| | - Philippe Thoumie
- Service de rééducation neuro-orthopédique, Hôpital Rothschild APHP, Université Sorbonne, Paris, France.,Agathe Lab ERL Inserm U-1150, Paris, France
| | - Manh-Cuong Do
- Université Paris-Saclay, CIAMS, Orsay, France.,Université d'Orléans, CIAMS, Orléans, France
| | | |
Collapse
|
20
|
Mileti I, Serra A, Wolf N, Munoz-Martel V, Ekizos A, Palermo E, Arampatzis A, Santuz A. Muscle Activation Patterns Are More Constrained and Regular in Treadmill Than in Overground Human Locomotion. Front Bioeng Biotechnol 2020; 8:581619. [PMID: 33195143 PMCID: PMC7644811 DOI: 10.3389/fbioe.2020.581619] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022] Open
Abstract
The use of motorized treadmills as convenient tools for the study of locomotion has been in vogue for many decades. However, despite the widespread presence of these devices in many scientific and clinical environments, a full consensus on their validity to faithfully substitute free overground locomotion is still missing. Specifically, little information is available on whether and how the neural control of movement is affected when humans walk and run on a treadmill as compared to overground. Here, we made use of linear and non-linear analysis tools to extract information from electromyographic recordings during walking and running overground, and on an instrumented treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-negative matrix factorization. We then investigated how the motor modules (or time-invariant muscle weightings) were used in the two locomotion environments. Subsequently, we examined the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating their duration, the time of main activation, and their Hurst exponent, a non-linear metric derived from fractal analysis. We found that motor modules were not influenced by the locomotion environment, while motor primitives were overall more regular in treadmill than in overground locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our results suggest that the spatial and sensory constraints imposed by the treadmill environment might have forced the central nervous system to adopt a different neural control strategy than that used for free overground locomotion, a data-driven indication that treadmills could induce perturbations to the neural control of locomotion.
Collapse
Affiliation(s)
- Ilaria Mileti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Aurora Serra
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Nerses Wolf
- Department of Electrical Engineering and Informatics, Technische Universität Berlin, Berlin, Germany
| | - Victor Munoz-Martel
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonis Ekizos
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eduardo Palermo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Kim EH, Wilson JM, Thompson CK, Heckman CJ. Differences in estimated persistent inward currents between ankle flexors and extensors in humans. J Neurophysiol 2020; 124:525-535. [PMID: 32667263 DOI: 10.1152/jn.00746.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Persistent inward currents (PICs) are responsible for amplifying motoneuronal synaptic inputs and contribute to generating normal motoneuron activation. Delta-F (ΔF) is a well-established method that estimates PICs in humans indirectly from firing patterns of individual motor units. Traditionally, motor unit firing patterns are obtained by manually decomposing electromyography (EMG) signals recorded through intramuscular electrodes (iEMG). A previous iEMG study has shown that in humans the elbow extensors have higher ΔF than the elbow flexors. In this study, EMG signals were collected from the ankle extensors and flexors using high-density surface array electrodes during isometric sitting and standing at 10-30% maximum voluntary contraction. The signals were then decomposed into individual motor unit firings. We hypothesized that comparable to the upper limb, the lower limb extensor muscles (soleus) would have higher ΔF than the lower limb flexor muscles [tibialis anterior (TA)]. Contrary to our expectations, ΔF was higher in the TA than the soleus during sitting and standing despite the difference in cohort of participants and body positions. The TA also had significantly higher maximum discharge rate than the soleus while there was no difference in rate increase. When only the unit pairs with similar maximum discharge rates were compared, ∆F was still higher in the TA than the soleus. Future studies will focus on investigating the functional significance of the findings.NEW & NOTEWORTHY With the use of high-density surface array electrodes and convolutive blind source separation algorithm, thousands of motor units were decomposed from the soleus and tibialis anterior muscles. Persistent inward currents were estimated under seated and standing conditions via delta-F (∆F) calculation, and the results showed that unlike the upper limb, the flexor has higher ∆F than the extensor in the lower limb. Future studies will focus on functional significance of the findings.
Collapse
Affiliation(s)
- Edward H Kim
- Department of Physiology, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| | - Jessica M Wilson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| | - Charles J Heckman
- Department of Physiology, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab, Chicago, Illinois
| |
Collapse
|
22
|
Spastic movement disorder: should we forget hyperexcitable stretch reflexes and start talking about inappropriate prediction of sensory consequences of movement? Exp Brain Res 2020; 238:1627-1636. [DOI: 10.1007/s00221-020-05792-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
|
23
|
Cornwell T, Woodward J, Wu M, Jackson B, Souza P, Siegel J, Dhar S, Gordon KE. Walking With Ears: Altered Auditory Feedback Impacts Gait Step Length in Older Adults. Front Sports Act Living 2020; 2:38. [PMID: 33345030 PMCID: PMC7739652 DOI: 10.3389/fspor.2020.00038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
Auditory feedback may provide the nervous system with valuable temporal (e. g., footstep sounds) and spatial (e.g., external reference sounds) information that can assist in the control of upright walking. As such, hearing loss may directly contribute to declines in mobility among older adults. Our purpose was to examine the impact of auditory feedback on the control of walking in older adults. Twenty older adults (65-86 years) with no diagnosed hearing loss walked on a treadmill for three sound conditions: Baseline, Ear Plugs, and White Noise. We hypothesized that in response to reduced temporal auditory feedback during the Ear Plugs and White Noise conditions, participants would adapt shorter and faster steps that are traditionally believed to increase mechanical stability. This hypothesis was not supported. Interestingly, we observed increases in step length (p = 0.047) and step time (p = 0.026) during the Ear Plugs condition vs. Baseline. Taking longer steps during the Ear Plugs condition may have increased ground reaction forces, thus allowing participants to sense footsteps via an occlusion effect. As a follow-up, we performed a Pearson's correlation relating the step length increase during the Ear Plugs condition to participants' scores on a clinical walking balance test, the Functional Gait Assessment. We found a moderate negative relationship (rho = -0.44, p = 0.055), indicating that participants with worse balance made the greatest increases in step length during the Ear Plugs condition. This trend suggests that participants may have actively sought auditory feedback with longer steps, sacrificing a more mechanically stable stepping pattern. We also hypothesized that reduced spatial localization feedback during the Ear Plugs and White Noise conditions would decrease control of center of mass (COM) dynamics, resulting in an increase in lateral COM excursion, lateral margin of stability, and maximum Lyapunov exponent. However, we found no main effects of auditory feedback on these metrics (p = 0.580, p = 0.896, and p = 0.056, respectively). Overall, these results suggest that during a steady-state walking task, healthy older adults can maintain walking control without auditory feedback. However, increases in step length observed during the Ear Plugs condition suggest that temporal auditory cues provide locomotor feedback that becomes increasingly valuable as balance deteriorates with age.
Collapse
Affiliation(s)
- Tara Cornwell
- Northwestern University, Biomedical Engineering, Evanston, IL, United States.,Northwestern University, Physical Therapy and Human Movement Sciences, Chicago, IL, United States
| | | | - Mengnan/Mary Wu
- Northwestern University, Physical Therapy and Human Movement Sciences, Chicago, IL, United States
| | - Brennan Jackson
- Northwestern University, Biomedical Engineering, Evanston, IL, United States
| | - Pamela Souza
- Northwestern University, Communication Sciences and Disorders, Evanston, IL, United States
| | - Jonathan Siegel
- Northwestern University, Communication Sciences and Disorders, Evanston, IL, United States
| | - Sumitrajit Dhar
- Northwestern University, Communication Sciences and Disorders, Evanston, IL, United States
| | - Keith E Gordon
- Northwestern University, Physical Therapy and Human Movement Sciences, Chicago, IL, United States.,Edward Hines Jr. VA Hospital, Research Service, Hines, IL, United States
| |
Collapse
|
24
|
Cruz-Montecinos C, Pérez-Alenda S, Querol F, Cerda M, Maas H. Changes in Muscle Activity Patterns and Joint Kinematics During Gait in Hemophilic Arthropathy. Front Physiol 2020; 10:1575. [PMID: 32076411 PMCID: PMC7006441 DOI: 10.3389/fphys.2019.01575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hemophilic arthropathy is the result of repetitive intra-articular bleeding and synovial inflammation. In people with hemophilic arthropathy (PWHA), very little is known about the neural control of individual muscles during movement. The aim of the present study was to assess if the neural control of individual muscles and coordination between antagonistic muscle pairs and joint kinematics during gait are affected in PWHA. Thirteen control subjects (CG) walked overground at their preferred and slow velocity (1 m/s), and 14 PWHA walked overground at the preferred velocity (1 m/s). Joint kinematics and temporal gait parameters were assessed using four inertial sensors. Surface electromyography (EMG) was collected from gluteus maximus (GMAX), gluteus medius (GMED), vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL), tibialis anterior (TA), semitendinosus (ST), and biceps femoris (BF). Waveforms were compared using the time-series analysis through statistical parametric mapping. In PWHA compared to CG, EMG amplitude during the stance phase was higher for LG (for both velocities of the CG), BF (slow velocity only), and ST (preferred velocity only) (p < 0.05). Co-contraction during the stance phase was higher for MG-TA, LG-TA, VL-BF, VM-ST, LG-VL, and MG-VM (both velocities) (p < 0.05). MG and LG were excited earlier (preferred velocity only) (p < 0.05). A later offset during the stance phase was found for VL, BF, and ST (both velocities), and BF and GMAX (preferred velocity only) (p < 0.05). In addition, the range of motion in knee and ankle joints was lower in PWHA (both velocities) and hip joint (preferred velocity only) (p < 0.05). In conclusion, the neural control of individual muscles and coordination between antagonistic muscles during gait in PWHA differs substantially from control subjects.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Department of Physiotherapy, University of Valencia, Valencia, Spain
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Laboratory of Clinical Biomechanics, Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Felipe Querol
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Mauricio Cerda
- SCIAN-Lab, Anatomy and Developmental Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Dutt-Mazumder A, Segal RL, Thompson AK. Effect of Ankle Angles on the Soleus H-Reflex Excitability During Standing. Motor Control 2020; 24:189-203. [PMID: 31899887 PMCID: PMC7329593 DOI: 10.1123/mc.2018-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/18/2022]
Abstract
This study investigated effects of ankle joint angle on the Hoffman's reflex (H-reflex) excitability during loaded (weight borne with both legs) and unloaded (full body weight borne with the contralateral leg) standing in people without neurological injuries. Soleus H-reflex/M-wave recruitment curves were examined during upright standing on three different slopes that imposed plantar flexion (-15°), dorsiflexion (+15°), and neutral (0°) angles at the ankle, with the test leg loaded and unloaded. With the leg loaded and unloaded, maximum H-reflex/maximum M-wave ratio of -15° was significantly larger than those of 0° and +15° conditions. The maximum H-reflex/maximum M-wave ratios were 51%, 43%, and 41% with loaded and 56%, 46%, and 44% with unloaded for -15°, 0°, and +15° slope conditions, respectively. Thus, limb loading/unloading had limited impact on the extent of influence that ankle angles exert on the H-reflex excitability. This suggests that task-dependent central nervous system control of reflex excitability may regulate the influence of sensory input on the spinal reflex during standing.
Collapse
|
26
|
Changes in human walking dynamics induced by uneven terrain are reduced with ongoing exposure, but a higher variability persists. Sci Rep 2019; 9:17664. [PMID: 31776376 PMCID: PMC6881352 DOI: 10.1038/s41598-019-54050-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/06/2019] [Indexed: 11/08/2022] Open
Abstract
During walking, uneven terrain alters the action of the ground reaction force from stride to stride. The extent to which such environmental inconsistencies are withstood may be revealed by the regulation of whole-body angular momentum (L) during walking. L quantifies the balance of momenta of the body segments (thigh, trunk, etc.) about their combined center of mass, and remains close to zero during level walking. A failure to constrain L has been linked to falls. The aim of this study was to explore the ability of young adults to orchestrate their movement on uneven terrain, illustrated by the range of L (LR) and its variability (vLR). In eleven male adults, we observed significant increases in sagittal plane LR, and vLR in all three planes of motion during walking on an uneven in comparison to a flat surface. No reductions in these measures were observed within a 12-minute familiarisation period, suggesting that unimpaired adults either are unable to, or do not need to eliminate the effects of uneven terrain. Transverse plane LR, in contrast, was lower on immediate exposure, and then increased, pointing to the development of a less restrictive movement pattern, and would support the latter hypothesis.
Collapse
|
27
|
Sensory nerve stimulation causes an immediate improvement in motor function of persons with multiple sclerosis: A pilot study. Mult Scler Relat Disord 2019; 38:101508. [PMID: 31715503 DOI: 10.1016/j.msard.2019.101508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) symptoms reported in the first year of the disease include sensory impairment, fatigue, reduced mobility, and declines in hand function. The progressive reduction in motor function experienced by persons living with MS is invariably preceded by changes in sensory processing, which are strongly associated with the declines in both walking performance and manual dexterity. AIMS To assess the influence of concurrent sensory stimulation using augmented transcutaneous electrical nerve stimulation (aTENS) applied to leg and hand muscles on clinical tests of motor function in individuals whose mobility was compromised by MS. METHODS Thirteen persons with MS (52 ± 8 years; 6 women) and 12 age- and sex-matched healthy adults (52 ± 9 years) met the inclusion criteria. Participants visited the lab on two occasions with one week between visits. Each visit involved the participant performing four tests of motor function and completing two health-related questionnaires (PDDS and MSWS-12). The tests assessed walking performance (6-min test and 25-ft test), dynamic balance (chair-rise tes, and manual dexterity (grooved pegboard test). aTENS was applied through pads attached to the limbs over the tibialis anterior and rectus femoris muscles of the affected leg, and over the median nerve and the thenar eminence of the dominant hand. The pads were attached during both visits, but the current was only applied during the second visit. The stimulation comprised continuous asymmetrical biphasic pulses (0.2 ms) at a rate of 50 Hz and an intensity that elicited slight muscle contractions. RESULTS At baseline and during both treatment sessions, the performance on all four tests of motor function was worse for the MS group than the Control group. The MS group experienced significant improvements in all outcomes during the aTENS session with medium-to-large effect sizes. PDDS ratings improved (from 2.8 ± 1.3 to 2.0 ± 1.5; effect size d = -0.70) and the MSWS-12 scores declined (from 36 ± 11 to 28 ± 12; effect size d = -1.52). The concurrent application of aTENS enabled the MS group to walk further during the 6-min test (from 397 ± 174 m to 415 ± 172 m; effect size d = 0.81), to complete the 25-ft test in less time (6.7 ± 3.0 s to 6.3 ± 2.9 s; effect size d = -0.76), to increase the counts in the chair-rise test (from 11.2 ± 3.8 to 13.6 ± 4.8; effect size d = 1.52), and to perform the grooved pegboard test more quickly (from 110 ± 43 s to 99 ± 37 s; effect size d = -0.98). The only significant effect for the Control group was a significant increase in the 6-min walk distance (from 725 ± 79 to 740 ± 82 m; effect size d = 0.87). CONCLUSIONS Stimulation of sensory fibers with aTENS evoked clinically significant improvements in four tests of motor function and the self-reported level of walking limitations in persons who were moderately disabled by MS. Moreover, the improvements in function elicited by the concurrent application of aTENS were immediate.
Collapse
|
28
|
McCrimmon CM, Wang PT, Heydari P, Nguyen A, Shaw SJ, Gong H, Chui LA, Liu CY, Nenadic Z, Do AH. Electrocorticographic Encoding of Human Gait in the Leg Primary Motor Cortex. ACTA ACUST UNITED AC 2019; 28:2752-2762. [PMID: 28981644 DOI: 10.1093/cercor/bhx155] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 11/14/2022]
Abstract
While prior noninvasive (e.g., electroencephalographic) studies suggest that the human primary motor cortex (M1) is active during gait processes, the limitations of noninvasive recordings make it impossible to determine whether M1 is involved in high-level motor control (e.g., obstacle avoidance, walking speed), low-level motor control (e.g., coordinated muscle activation), or only nonmotor processes (e.g., integrating/relaying sensory information). This study represents the first invasive electroneurophysiological characterization of the human leg M1 during walking. Two subjects with an electrocorticographic grid over the interhemispheric M1 area were recruited. Both exhibited generalized γ-band (40-200 Hz) synchronization across M1 during treadmill walking, as well as periodic γ-band changes within each stride (across multiple walking speeds). Additionally, these changes appeared to be of motor, rather than sensory, origin. However, M1 activity during walking shared few features with M1 activity during individual leg muscle movements, and was not highly correlated with lower limb trajectories on a single channel basis. These findings suggest that M1 primarily encodes high-level gait motor control (i.e., walking duration and speed) instead of the low-level patterns of leg muscle activation or movement trajectories. Therefore, M1 likely interacts with subcortical/spinal networks, which are responsible for low-level motor control, to produce normal human walking.
Collapse
Affiliation(s)
- Colin M McCrimmon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Po T Wang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Payam Heydari
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA
| | - Angelica Nguyen
- Electrophysiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Susan J Shaw
- Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Hui Gong
- Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Luis A Chui
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Charles Y Liu
- Department of Neurosurgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.,Center for Neurorestoration, University of Southern California, Los Angeles, CA, USA.,Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Zoran Nenadic
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.,Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA
| | - An H Do
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
29
|
Altinkaynak ES, Roig G, Braun DJ. Multiphase and Multivariable Linear Controllers That Account for the Joint Torques in Normal Human Walking. IEEE Trans Biomed Eng 2019; 67:1573-1584. [PMID: 31502961 DOI: 10.1109/tbme.2019.2940241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The objective of this paper is to investigate whether a small number of sequentially composed multivariable linear controllers can be used to recover a defining relation between the joint torques, angles, and velocities hidden in the walking data of multiple human subjects. METHODS We solve a mixed integer programming problem that defines the optimal multivariable and multiphase relation between the torques, angles, and velocities for the hip, knee, and ankle joints. RESULTS Using the data of seven healthy subjects, we show that the aforementioned relation can be remarkably well represented by four sequentially composed and independently activated multivariable linear controllers; the controllers account for [Formula: see text] (mean ± sem) of the variance in the joint torques across subjects, and [Formula: see text] of the variance for a new subject. We further show that each controller is associated with one of the four phases of the gait cycle, separated by toe-off and heel-strike. CONCLUSION The proposed controller generalizes previously developed multiphase single variable, and single phase multivariable controllers, to a multiphase multivariable controller that better explains the walking data of multiple subjects, and better generalizes to new subjects. SIGNIFICANCE Our result provides strong support to extend previously developed decoupled single joint controllers to coupled multijoint multivariable controllers for the control of human assistive and augmentation devices.
Collapse
|
30
|
Koganemaru S, Kitatani R, Fukushima-Maeda A, Mikami Y, Okita Y, Matsuhashi M, Ohata K, Kansaku K, Mima T. Gait-Synchronized Rhythmic Brain Stimulation Improves Poststroke Gait Disturbance: A Pilot Study. Stroke 2019; 50:3205-3212. [PMID: 31500557 DOI: 10.1161/strokeaha.119.025354] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Gait disturbance is one of serious impairments lowering activity of daily life in poststroke patients. The patients often show reduced hip and knee joint flexion and ankle dorsiflexion of the lower limbs during the swing phase of gait, which is partly controlled by the primary motor cortex (M1). In the present study, we investigated whether gait-synchronized rhythmic brain stimulation targeting swing phase-related M1 activity can improve gait function in poststroke patients. Methods- Eleven poststroke patients in the chronic phase participated in this single-blind crossover study. Each patient received oscillatory transcranial direct current stimulation over the affected M1 foot area and sham stimulation during treadmill gait. The brain stimulation was synchronized with individual gait rhythm, and the electrical current peaks reached immediately before initiation of the swing phase of the paretic lower limb. Ankle dorsiflexion was assisted by electrical neuromuscular stimulation in both real and sham conditions. Results- Regarding the effects of a single intervention, the speed of self-paced gait was significantly increased after oscillatory transcranial direct current stimulation, but not after sham stimulation (paired t test, P=0.009). After we administered the intervention repeatedly, self- and maximally paced gait speed and timed up and go test performance were significantly improved (self-paced: F(1,21)=8.91, P=0.007, maximally paced: F(1,21)=7.09, P=0.015 and timed up and go test: F(1,21)=12.27, P=0.002), along with improved balance function and increased joint flexion of the paretic limbs during gait. Conclusions- These findings suggest that rhythmic brain stimulation synchronized with gait rhythm might be a promising approach to induce gait recovery in poststroke patients. Clinical Trial Registration- URL: https://www.umin.ac.jp/ctr/. Unique identifier: UMIN000013676.
Collapse
Affiliation(s)
- Satoko Koganemaru
- From the Department of Physiology and Biological Information, Dokkyo Medical University, Tochigi, Japan (S.K., K.K.)
| | - Ryosuke Kitatani
- Kansai Rehabilitation Hospital, Osaka, Japan (R.K., A.F.-M.).,Department of Physical Therapy (R.K., Y.O., K.O.), The Graduate School of Medicine, Kyoto University, Japan
| | | | - Yusuke Mikami
- Human Brain Research Center (Y.M., M.M.), The Graduate School of Medicine, Kyoto University, Japan
| | - Yusuke Okita
- Department of Physical Therapy (R.K., Y.O., K.O.), The Graduate School of Medicine, Kyoto University, Japan
| | - Masao Matsuhashi
- Human Brain Research Center (Y.M., M.M.), The Graduate School of Medicine, Kyoto University, Japan
| | - Koji Ohata
- Department of Physical Therapy (R.K., Y.O., K.O.), The Graduate School of Medicine, Kyoto University, Japan
| | - Kenji Kansaku
- From the Department of Physiology and Biological Information, Dokkyo Medical University, Tochigi, Japan (S.K., K.K.)
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan (T.M.)
| |
Collapse
|
31
|
Naidu A, Graham SA, Brown DA. Fore-aft resistance applied at the center of mass using a novel robotic interface proportionately increases propulsive force generation in healthy nonimpaired individuals walking at a constant speed. J Neuroeng Rehabil 2019; 16:111. [PMID: 31492156 PMCID: PMC6731616 DOI: 10.1186/s12984-019-0577-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
Background Past studies have utilized external interfaces like resistive bands and motor-generated pulling systems to increase limb propulsion during walking on a motorized treadmill. However, assessing changes in limb propulsion against increasing resistance demands during self-controlled walking has not been undertaken. Purpose We assessed limb propulsion against increasing fore-aft loading demands by applying graded fore-aft (FA) resistance at the center of mass during walking in a novel, intent-driven treadmill environment that allowed participants to control their walking speeds. We hypothesized that to maintain a target speed against progressively increasing resistance, participants would proportionately increase their limb propulsion without increasing vertical force production, with accompanying increases in trailing limb angle and positive joint work. Methods Seventeen healthy-nonimpaired participants (mean age 52 yrs., SD = 11) walked at a target, self-controlled speed of 1.0 m/s against 10, 15, 20, and 25% (% body weight) FA resistance levels. We primarily assessed linear slope values across FA resistance levels for mean propulsive force and impulse and vertical impulse of the dominant limb using one-sample t-tests. We further assessed changes in trailing and leading limb angles and joint work using one-way ANOVAs. Results Participants maintained their target velocity within an a priori defined acceptable range of 1.0 m/s ± 0.2. They significantly increased propulsion proportional to FA resistance (propulsive force mean slope = 2.45, SD = 0.7, t (16) =14.44, p < 0.01; and propulsive impulse mean slope = 0.7, SD = 0.25, t (16) = 11.84, p < 0.01), but had no changes in vertical impulse (mean slope = − 0.04, SD =0.17, p > 0.05) across FA resistance levels. Mean trailing limb angle increased from 24.3° at 10% resistance to 27.4° at 25% (p < 0.05); leading limb angle decreased from − 18.4° to − 12.6° (p < 0.05). We also observed increases in total positive limb work (F (1.7, 26) = 16.88, p ≤ 0.001, η2 = 0.5), primarily attributed to the hip and ankle joints. Conclusions FA resistance applied during self-driven walking resulted in increased propulsive-force output of healthy-nonimpaired individuals with accompanying biomechanical changes that facilitated greater limb propulsion. Future rehabilitation interventions for neurological populations may be able to utilize this principle to design task-specific interventions like progressive strength training and workload manipulation during aerobic training for improving walking function. Electronic supplementary material The online version of this article (10.1186/s12984-019-0577-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Avantika Naidu
- Program in Rehabilitation Sciences, Departments of Physical & Occupational Therapy, School of Health Professions, University of Alabama at Birmingham, 1716 9th Avenue South, Birmingham, AL, 35233, USA. .,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Avenue, Boston, MA, 02129, 1575 Cambridge St, Cambridge, MA, 02138, USA.
| | - Sarah A Graham
- University of California San Diego, School of Health Sciences, 9500 Gilman Drive, La Jolla, CA, 92093-0012, USA
| | - David A Brown
- The University of Texas Medical Branch, School of Health Professions, 301 University Blvd, Galveston, TX, 77555-0128, USA
| |
Collapse
|
32
|
Modulation of soleus stretch reflexes during walking in people with chronic incomplete spinal cord injury. Exp Brain Res 2019; 237:2461-2479. [PMID: 31309252 PMCID: PMC6751142 DOI: 10.1007/s00221-019-05603-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
In people with spasticity due to chronic incomplete spinal cord injury (SCI), it has been presumed that the abnormal stretch reflex activity impairs gait. However, locomotor stretch reflexes across all phases of walking have not been investigated in people with SCI. Thus, to understand modulation of stretch reflex excitability during spastic gait, we investigated soleus stretch reflexes across the entire gait cycle in nine neurologically normal participants and nine participants with spasticity due to chronic incomplete SCI (2.5–11 year post-injury). While the participant walked on the treadmill at his/her preferred speed, unexpected ankle dorsiflexion perturbations (6° at 250°/s) were imposed every 4–6 steps. The soleus H-reflex was also examined. In participants without SCI, spinal short-latency “M1”, spinal medium latency “M2”, and long-latency “M3” were clearly modulated throughout the step cycle; the responses were largest in the mid-stance and almost completely suppressed during the stance-swing transition and swing phases. In participants with SCI, M1 and M2 were abnormally large in the mid–late-swing phase, while M3 modulation was similar to that in participants without SCI. The H-reflex was also large in the mid–late-swing phase. Elicitation of H-reflex and stretch reflexes in the late swing often triggered clonus and affected the soleus activity in the following stance. In individuals without SCI, moderate positive correlation was found between H-reflex and stretch reflex sizes across the step cycle, whereas in participants with SCI, such correlation was weak to non-existing, suggesting that H-reflex investigation would not substitute for stretch reflex investigation in individuals after SCI.
Collapse
|
33
|
Mrachacz-Kersting N, Kersting UG, de Brito Silva P, Makihara Y, Arendt-Nielsen L, Sinkjær T, Thompson AK. Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. J Neurophysiol 2019; 122:435-446. [PMID: 31166816 DOI: 10.1152/jn.00211.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.
Collapse
Affiliation(s)
- N Mrachacz-Kersting
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - U G Kersting
- Institute for Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany
| | - P de Brito Silva
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - Y Makihara
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - T Sinkjær
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - A K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
34
|
Li L, Zhang S, Dobson J. The contribution of small and large sensory afferents to postural control in patients with peripheral neuropathy. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:218-227. [PMID: 31193300 PMCID: PMC6523875 DOI: 10.1016/j.jshs.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/24/2018] [Accepted: 09/14/2018] [Indexed: 05/13/2023]
Abstract
Peripheral neuropathy (PN) is a multifarious disorder that is caused by damage to the peripheral nerves. Although the symptoms of PN vary with the etiology, most cases are characterized by impaired tactile and proprioceptive sensation that progresses in a distal to proximal manner. Balance also tends to deteriorate as the disorder becomes more severe, and those afflicted are substantially more likely to fall while walking compared with those who are healthy. Most patients with PN walk more cautiously and with greater stride variability than age-matched controls, but the majority of their falls occur when they must react to a perturbation such as a slippery or uneven surface. The purpose of this study was to first describe the role of somatosensory feedback in the control of posture and then discuss how that relationship is typically affected by the most common types of PN. A comprehensive review of the scientific literature was conducted using MEDLINE, and the relevant information was synthesized. The evidence indicates that the proprioceptive feedback that is conveyed primarily through larger type I afferents is important for postural control. However, the evidence indicates that the tactile feedback communicated through smaller type II afferents is particularly critical to the maintenance of balance. Many forms of PN often lead to chronic tactile desensitization in the soles of the feet and, although the central nervous system seems to adapt to this smaller type II afferent dysfunction by relying on more larger type I afferent reflex loops, the result is still decreased stability. We propose a model that is intended both to help explain the relationship between stability and the smaller type II afferent and the larger type I afferent feedback that may be impaired by PN and to assist in the development of pertinent rehabilitative interventions.
Collapse
Affiliation(s)
- Li Li
- College of Physical Education, Hunan Normal University, Changsha 410012, China
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA 30460, USA
- Corresponding author.
| | - Shuqi Zhang
- Department of Kinesiology and Physical Education, Northern Illinois University, DeKalb, IL 60115, USA
| | - John Dobson
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
35
|
Sahrmann AS, Stott NS, Besier TF, Fernandez JW, Handsfield GG. Soleus muscle weakness in cerebral palsy: Muscle architecture revealed with Diffusion Tensor Imaging. PLoS One 2019; 14:e0205944. [PMID: 30802250 PMCID: PMC6388915 DOI: 10.1371/journal.pone.0205944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/24/2019] [Indexed: 11/28/2022] Open
Abstract
Cerebral palsy (CP) is associated with movement disorders and reduced muscle size. This latter phenomenon has been observed by computing muscle volumes from conventional MRI, with most studies reporting significantly reduced volumes in leg muscles. This indicates impaired muscle growth, but without knowing muscle fiber orientation, it is not clear whether muscle growth in CP is impaired in the along-fiber direction (indicating shortened muscles and limited range of motion) or the cross-fiber direction (indicating weak muscles and impaired strength). Using Diffusion Tensor Imaging (DTI) we can determine muscle fiber orientation and construct 3D muscle architectures which can be used to examine both along-fiber length and cross-sectional area. Such an approach has not been undertaken in CP. Here, we use advanced DTI sequences with fast imaging times to capture fiber orientations in the soleus muscle of children with CP and age-matched, able-bodied controls. Cross sectional areas perpendicular to the muscle fiber direction were reduced (37 ± 11%) in children with CP compared to controls, indicating impaired muscle strength. Along-fiber muscle lengths were not different between groups. This study is the first to demonstrate along-fiber and cross-fiber muscle architecture in CP using DTI and implicates impaired cross-sectional muscle growth in children with cerebral palsy.
Collapse
Affiliation(s)
- Annika S. Sahrmann
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ngaire Susan Stott
- Department of Orthopaedic Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thor F. Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Justin W. Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Geoffrey G. Handsfield
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
36
|
Sombric CJ, Calvert JS, Torres-Oviedo G. Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry. Front Physiol 2019; 10:60. [PMID: 30800072 PMCID: PMC6376174 DOI: 10.3389/fphys.2019.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/18/2019] [Indexed: 11/23/2022] Open
Abstract
There is an interest to identify factors facilitating locomotor adaptation induced by split-belt walking (i.e., legs moving at different speeds) because of its clinical potential. We hypothesized that augmenting braking forces, rather than propulsion forces, experienced at the feet would increase locomotor adaptation during and after split-belt walking. To test this, forces were modulated during split-belt walking with distinct slopes: incline (larger propulsion than braking), decline (larger braking than propulsion), and flat (similar propulsion and braking). Step length asymmetry was compared between groups because it is a clinically relevant measure robustly adapted on split-belt treadmills. Unexpectedly, the group with larger propulsion demands (i.e., the incline group) changed their gait the most during adaptation, reached their final adapted state more quickly, and had larger after-effects when the split-belt perturbation was removed. We also found that subjects who experienced larger disruptions of propulsion forces in early adaptation exhibited greater after-effects, which further highlights the catalytic role of propulsion forces on locomotor adaptation. The relevance of mechanical demands on shaping our movements was also indicated by the steady state split-belt behavior, during which each group recovered their baseline leg orientation to meet leg-specific force demands at the expense of step length symmetry. Notably, the flat group was nearly symmetric, whereas the incline and decline group overshot and undershot step length symmetry, respectively. Taken together, our results indicate that forces propelling the body facilitate gait changes during and after split-belt walking. Therefore, the particular propulsion demands to walk on a split-belt treadmill might explain the gait symmetry improvements in hemiparetic gait following split-belt training.
Collapse
Affiliation(s)
| | | | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Faras TJ, Laporte MD, Sandoval R, Najjar F, Ade V, Stubbs P. The effect of unilateral blood flow restriction on temporal and spatial gait parameters. Heliyon 2019; 5:e01146. [PMID: 30723827 PMCID: PMC6350218 DOI: 10.1016/j.heliyon.2019.e01146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/05/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Blood flow restriction walking (BFR-W) is becoming more frequently used in aerobic and strength training and it has been proposed that BFR-W can be used in clinical populations. BFR-W may change gait stability yet few studies have assessed gait changes during or following BFR-W. The aim of this study was to assess if spatial-temporal gait parameters change during and following BFR-W. Twenty-four participants completed two walking sessions (>48-hours apart); 1) Unilateral BFR-W applied at the dominant thigh, 2) walking without BFR. In each session participants performed a 5-min warmup, 15-min walking intervention and 10-min active recovery. The warmup and active recovery were performed without BFR on both days. Measurements were attained at baseline, during the intervention and post-intervention using the GAITRite®. Linear mixed models were applied to each measured variable. Fixed factors were timepoint (warmup, intervention, and active recovery), condition (BFR-W and control walking) and condition × timepoint. Random factors were subject and subject × condition. Participants took shorter (3.2-cm (mean difference), CI95%: 0.8–5.6-cm) and wider strides (1.4-cm, CI95%: 0.9–1.9-cm) during BFR-W. For single leg measures, participants took shorter steps (2.8-cm, CI95%: 1.7–4.0-cm) with a faster single support time (7.5-ms, CI95%: 2.9–12.0-ms) on the non-dominant (unoccluded) leg during BFR-W compared to the non-dominant leg during control walking. There were no differences in step length and single support time between the dominant (occluded) leg during BFR-W compared to the dominant leg during control walking. There were no significant changes in velocity, cadence or double support time between BFR-W and control walking (P > 0.05). BFR-W caused small transient changes to several gait parameters. These changes should be considered when using BFR-W in clinical populations.
Collapse
Affiliation(s)
- Timothy John Faras
- Discipline of Physiotherapy, Department of Health Professions, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Michael David Laporte
- Discipline of Physiotherapy, Department of Health Professions, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Remi Sandoval
- Discipline of Physiotherapy, Department of Health Professions, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Fadi Najjar
- Discipline of Physiotherapy, Department of Health Professions, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vanessa Ade
- Discipline of Physiotherapy, Department of Health Professions, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Peter Stubbs
- Discipline of Physiotherapy, Department of Health Professions, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.,Hammel Neurorehabilitation and Research Center, Aarhus University, Hammel, Denmark.,Discipline of Physiotherapy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
38
|
Jensen P, Frisk R, Spedden ME, Geertsen SS, Bouyer LJ, Halliday DM, Nielsen JB. Using Corticomuscular and Intermuscular Coherence to Assess Cortical Contribution to Ankle Plantar Flexor Activity During Gait. J Mot Behav 2019; 51:668-680. [PMID: 30657030 DOI: 10.1080/00222895.2018.1563762] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study used coherence and directionality analyses to explore whether the motor cortex contributes to plantar flexor muscle activity during the stance phase and push-off phase during gait. Subjects walked on a treadmill, while EEG over the leg motorcortex area and EMG from the medial gastrocnemius and soleus muscles was recorded. Corticomuscular and intermuscular coherence were calculated from pair-wise recordings. Significant EEG-EMG and EMG-EMG coherence in the beta and gamma frequency bands was found throughout the stance phase with the largest coherence towards push-off. Analysis of directionality revealed that EEG activity preceded EMG activity throughout the stance phase until the time of push-off. These findings suggest that the motor cortex contributes to ankle plantar flexor muscle activity and forward propulsion during gait.
Collapse
Affiliation(s)
- Peter Jensen
- Department of Nutrition Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Rasmus Frisk
- Elsass Institute , Charlottenlund, Denmark .,Department of Neuroscience, University of Copenhagen , Copenhagen , Denmark
| | | | - Svend Sparre Geertsen
- Department of Nutrition Exercise and Sports, University of Copenhagen , Copenhagen , Denmark .,Department of Neuroscience, University of Copenhagen , Copenhagen , Denmark
| | - Laurent J Bouyer
- CIRRIS-Department of Rehabilitation, Universite Laval , Quebec City , Canada
| | - David M Halliday
- Department of Electronic Engineering, University of York , York, UK
| | - Jens Bo Nielsen
- Elsass Institute , Charlottenlund, Denmark .,Department of Neuroscience, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
39
|
Nataraj R, van den Bogert AJ. Simulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking-Implications for Exoskeletons. J Biomech Eng 2019; 139:2648716. [PMID: 28787476 DOI: 10.1115/1.4037560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The linear quadratic regulator (LQR) is a classical optimal control approach that can regulate gait dynamics about target kinematic trajectories. Exoskeletons to restore gait function have conventionally utilized time-varying proportional-derivative (PD) control of leg joints. But, these PD parameters are not uniquely optimized for whole-body (full-state) performance. The objective of this study was to investigate the effectiveness of LQR full-state feedback compared to PD control to maintain bipedal walking of a sagittal-plane computational model against force disturbances. Several LQR controllers were uniquely solved with feedback gains optimized for different levels of tracking capability versus control effort. The main implications to future exoskeleton control systems include (1) which LQR controllers out-perform PD controllers in walking maintenance and effort, (2) verifying that LQR desirably produces joint torques that oppose rapidly growing joint state errors, and (3) potentially equipping accurate sensing systems for nonjoint states such as hip-position and torso orientation. The LQR controllers capable of longer walk times than respective PD controllers also required less control effort. During sudden leg collapse, LQR desirably behaved like PD by generating feedback torques that opposed the direction of leg-joint errors. Feedback from nonjoint states contributed to over 50% of the LQR joint torques and appear critical for whole-body LQR control. While LQR control poses implementation challenges, such as more sensors for full-state feedback and operation near the desired trajectories, it offers significant performance advantages over PD control.
Collapse
|
40
|
Brain Activation During Passive and Volitional Pedaling After Stroke. Motor Control 2019; 23:52-80. [PMID: 30012052 PMCID: PMC6685765 DOI: 10.1123/mc.2017-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/06/2018] [Accepted: 02/25/2018] [Indexed: 11/18/2022]
Abstract
Background: Prior work indicates that pedaling-related brain activation is lower in people with stroke than in controls. We asked whether this observation could be explained by between-group differences in volitional motor commands and pedaling performance. Methods: Individuals with and without stroke performed passive and volitional pedaling while brain activation was recorded with functional magnetic resonance imaging. The passive condition eliminated motor commands to pedal and minimized between-group differences in pedaling performance. Volume, intensity, and laterality of brain activation were compared across conditions and groups. Results: There were no significant effects of condition and no Group × Condition interactions for any measure of brain activation. Only 53% of subjects could minimize muscle activity for passive pedaling. Conclusions: Altered motor commands and pedaling performance are unlikely to account for reduced pedaling-related brain activation poststroke. Instead, this phenomenon may be due to functional or structural brain changes. Passive pedaling can be difficult to achieve and may require inhibition of excitatory descending drive.
Collapse
|
41
|
Jochumsen M, Cremoux S, Robinault L, Lauber J, Arceo JC, Navid MS, Nedergaard RW, Rashid U, Haavik H, Niazi IK. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. SENSORS 2018; 18:s18113761. [PMID: 30400325 PMCID: PMC6264113 DOI: 10.3390/s18113761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022]
Abstract
Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination of afferent feedback modalities to increase cortical excitability in a BCI training intervention. In three experimental sessions, 12 healthy participants imagined a dorsiflexion that was decoded by a BCI which activated relevant afferent feedback: (1) electrical nerve stimulation (ES) (peroneal nerve-innervating tibialis anterior), (2) passive movement (PM) of the ankle joint, or (3) combined electrical stimulation and passive movement (Comb). The cortical excitability was assessed with transcranial magnetic stimulation determining motor evoked potentials (MEPs) in tibialis anterior before, immediately after and 30 min after the BCI training. Linear mixed regression models were used to assess the changes in MEPs. The three interventions led to a significant (p < 0.05) increase in MEP amplitudes immediately and 30 min after the training. The effect sizes of Comb paradigm were larger than ES and PM, although, these differences were not statistically significant (p > 0.05). These results indicate that the timing of movement imagery and afferent feedback is the main determinant of induced cortical plasticity whereas the specific type of feedback has a moderate impact. These findings can be important for the translation of such a BCI protocol to the clinical practice where by combining the BCI with the already available equipment cortical plasticity can be effectively induced. The findings in the current study need to be validated in stroke populations.
Collapse
Affiliation(s)
- Mads Jochumsen
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
| | - Sylvain Cremoux
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Lucien Robinault
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Jimmy Lauber
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Juan Carlos Arceo
- LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts de France, Valenciennes 59313, France.
| | - Muhammad Samran Navid
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg 9000, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Rasmus Wiberg Nedergaard
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg 9000, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Usman Rashid
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand.
| | - Heidi Haavik
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
| | - Imran Khan Niazi
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark.
- New Zealand College of Chiropractic, Auckland 1060, New Zealand.
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand.
| |
Collapse
|
42
|
Duysens J, Forner-Cordero A. Walking with perturbations: a guide for biped humans and robots. BIOINSPIRATION & BIOMIMETICS 2018; 13:061001. [PMID: 30109860 DOI: 10.1088/1748-3190/aada54] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical with its flexor half linked more tightly to the rhythm generator. The stability of bipedal gait, which is an important problem for robots and biological systems, is also addressed. While it is not possible to determine how biological biped systems guarantee stability, robot solutions can be useful to propose new hypotheses for biology. In the second part of this review, the focus is on gait perturbations, which is an important topic in robotics in view of the frequent falls of robots when faced with perturbations. From the human physiology it is known that the initial reaction often consists of a brief interruption followed by an adequate response. For instance, the successful recovery from a trip is achieved using some basic reactions (termed elevating and lowering strategies), that depend on the phase of the step cycle of the trip occurrence. Reactions to stepping unexpectedly in a hole depend on comparing expected and real feedback. Implementation of these ideas in models and robotics starts to emerge, with the most advanced robots being able to learn how to fall safely and how to deal with complicated disturbances such as provided by walking on a split-belt.
Collapse
Affiliation(s)
- Jacques Duysens
- Biomechatronics Lab., Mechatronics Department, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2231, Cidade Universitária 05508-030, São Paulo-SP, Brasil. Department of Kinesiology, FaBeR, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
43
|
Mayer WP, Murray AJ, Brenner-Morton S, Jessell TM, Tourtellotte WG, Akay T. Role of muscle spindle feedback in regulating muscle activity strength during walking at different speed in mice. J Neurophysiol 2018; 120:2484-2497. [PMID: 30133381 DOI: 10.1152/jn.00250.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying how this speed-dependent amplitude modulation is achieved remains obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors that signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno-associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed-dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, is the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed-dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases. NEW & NOTEWORTHY Animals upregulate the activity of extensor muscles to increase their walking speed, but the mechanism behind this is not known. We show that this speed-dependent amplitude modulation requires proprioceptive sensory feedback from muscle spindles of ankle extensor muscle. In the absence of muscle spindle feedback, animals cannot walk at higher speeds as they can when muscle spindle feedback is present.
Collapse
Affiliation(s)
- William P Mayer
- Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada.,Department of Morphology, Federal University of Espirito Santo , Vitoria , Brazil
| | - Andrew J Murray
- Sainsbury Wellcome Center for Neural Circuits and Behaviour, University College London , London , United Kingdom
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Department of Neuroscience, Columbia University , New York, New York
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Department of Neuroscience, Columbia University , New York, New York
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedar Sinai Medical Center, West Hollywood, California
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada
| |
Collapse
|
44
|
Côté MP, Murray LM, Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front Physiol 2018; 9:784. [PMID: 29988534 PMCID: PMC6026662 DOI: 10.3389/fphys.2018.00784] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Systematic research on the physiological and anatomical characteristics of spinal cord interneurons along with their functional output has evolved for more than one century. Despite significant progress in our understanding of these networks and their role in generating and modulating movement, it has remained a challenge to elucidate the properties of the locomotor rhythm across species. Neurophysiological experimental evidence indicates similarities in the function of interneurons mediating afferent information regarding muscle stretch and loading, being affected by motor axon collaterals and those mediating presynaptic inhibition in animals and humans when their function is assessed at rest. However, significantly different muscle activation profiles are observed during locomotion across species. This difference may potentially be driven by a modified distribution of muscle afferents at multiple segmental levels in humans, resulting in an altered interaction between different classes of spinal interneurons. Further, different classes of spinal interneurons are likely activated or silent to some extent simultaneously in all species. Regardless of these limitations, continuous efforts on the function of spinal interneuronal circuits during mammalian locomotion will assist in delineating the neural mechanisms underlying locomotor control, and help develop novel targeted rehabilitation strategies in cases of impaired bipedal gait in humans. These rehabilitation strategies will include activity-based therapies and targeted neuromodulation of spinal interneuronal circuits via repetitive stimulation delivered to the brain and/or spinal cord.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- CÔTÉ Lab, Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lynda M. Murray
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| | - Maria Knikou
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| |
Collapse
|
45
|
Meng L, Macleod CA, Porr B, Gollee H. Bipedal robotic walking control derived from analysis of human locomotion. BIOLOGICAL CYBERNETICS 2018; 112:277-290. [PMID: 29399713 PMCID: PMC6002472 DOI: 10.1007/s00422-018-0750-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
This paper proposes the design of a bipedal robotic controller where the function between the sensory input and motor output is treated as a black box derived from human data. In order to achieve this, we investigated the causal relationship between ground contact information from the feet and leg muscle activity n human walking and calculated filter functions which transform sensory signals to motor actions. A minimal, nonlinear, and robust control system was created and subsequently analysed by applying it to our bipedal robot RunBot III without any central pattern generators or precise trajectory control. The results demonstrate that our controller can generate stable robotic walking. This indicates that complex locomotion patterns can result from a simple model based on reflexes and supports the premise that human-derived control strategies have potential applications in robotics or assistive devices.
Collapse
Affiliation(s)
- Lin Meng
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK.
| | - Catherine A Macleod
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Bernd Porr
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Henrik Gollee
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
46
|
Lorentzen J, Willerslev-Olsen M, Hüche Larsen H, Svane C, Forman C, Frisk R, Farmer SF, Kersting U, Nielsen JB. Feedforward neural control of toe walking in humans. J Physiol 2018; 596:2159-2172. [PMID: 29572934 DOI: 10.1113/jp275539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. ABSTRACT Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h-1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking.
Collapse
Affiliation(s)
- Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Maria Willerslev-Olsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | | | - Christian Svane
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Christian Forman
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Frisk
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Simon Francis Farmer
- Sobell Department of Motor Neuroscience & Movement Disorders, Institute of Neurology, University College London & Department of Clinical Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Uwe Kersting
- Department of sensory-motor interaction, Aalborg university, Aalborg, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
47
|
Abstract
The phenomenon of agonist-antagonist muscle coactivation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of coactivation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Furthermore, coactivation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle coactivation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist coactivation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by covaried adjustments in spaces of control variables. This hypothesis is able to account for higher levels of coactivation in young healthy persons performing challenging tasks and across various populations with movement impairments.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
48
|
Frisk RF, Jensen P, Kirk H, Bouyer LJ, Lorentzen J, Nielsen JB. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy. J Neurophysiol 2017; 118:3165-3174. [PMID: 28904105 DOI: 10.1152/jn.00508.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022] Open
Abstract
Exaggerated sensory activity has been assumed to contribute to functional impairment following lesion of the central motor pathway. However, recent studies have suggested that sensory contribution to muscle activity during gait is reduced in stroke patients and children with cerebral palsy (CP). We investigated whether this also occurs in CP adults and whether daily treadmill training is accompanied by alterations in sensory contribution to muscle activity. Seventeen adults with CP and 12 uninjured individuals participated. The participants walked on a treadmill while a robotized ankle-foot orthosis applied unload perturbations at the ankle, thereby removing sensory feedback naturally activated during push-off. Reduction of electromyographic (EMG) activity in the soleus muscle caused by unloads was compared and related to kinematics and ankle joint stiffness measurements. Similar measures were obtained after 6 wk of gait training. We found that sensory contribution to soleus EMG activation was reduced in CP adults compared with uninjured adults. The lowest contribution of sensory feedback was found in participants with lowest maximal gait speed. This was related to increased ankle plantar flexor stiffness. Six weeks of gait training did not alter the contribution of sensory feedback. We conclude that exaggerated sensory activity is unlikely to contribute to impaired gait in CP adults, because sensory contribution to muscle activity during gait was reduced compared with in uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait so that a larger part of plantar flexor muscle activity must be generated by descending motor commands.NEW & NOTEWORTHY Findings suggest that adults with cerebral palsy have less contribution of sensory feedback to ongoing soleus muscle activation during push-off than uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait, and/or sensory feedback is less integrated with central motor commands in the activation of spinal motor neurons. Consequently, muscle activation must to a larger extent rely on descending drive, which is already decreased because of the cerebral lesion.
Collapse
Affiliation(s)
- Rasmus F Frisk
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark; .,University College Zealand, Roskilde, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Peter Jensen
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Kirk
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Laurent J Bouyer
- CIRRIS-Department of Rehabilitation, Université Laval, Quebec City, Canada; and
| | - Jakob Lorentzen
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jens B Nielsen
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
49
|
Zhang L, Turpin NA, Feldman AG. Threshold position control of anticipation in humans: a possible role of corticospinal influences. J Physiol 2017; 595:5359-5374. [PMID: 28560812 DOI: 10.1113/jp274309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sudden unloading of preloaded wrist muscles elicits motion to a new wrist position. Such motion is prevented if subjects unload muscles using the contralateral arm (self-unloading). Corticospinal influences originated from the primary motor cortex maintain tonic influences on motoneurons of wrist muscles before sudden unloading but modify these influences prior to the onset and until the end of self-unloading. Results are interpreted based on the previous finding that intentional actions are caused by central, particularly corticospinal, shifts in the spatial thresholds at which wrist motoneurons are activated, thus predetermining the attractor point at which the neuromuscular periphery achieves mechanical balance with environment forces. By maintaining or shifting the thresholds, descending systems let body segments go to the equilibrium position in the respective unloading tasks without the pre-programming of kinematics or muscle activation patterns. The study advances the understanding of how motor actions in general, and anticipation in particular, are controlled. ABSTRACT The role of corticospinal (CS) pathways in anticipatory motor actions was evaluated using transcranial magnetic stimulation (TMS) of the primary motor cortex projecting to motoneurons (MNs) of wrist muscles. Preloaded wrist flexors were suddenly unloaded by the experimenter or by the subject using the other hand (self-unloading). After sudden unloading, the wrist joint involuntarily flexed to a new position. In contrast, during self-unloading the wrist remained almost motionless, implying that an anticipatory postural adjustment occurred. In the self-unloading task, anticipation was manifested by a decrease in descending facilitation of pre-activated flexor MNs starting ∼72 ms before changes in the background EMG activity. Descending facilitation of extensor MNs began to increase ∼61 ms later. Conversely, these influences remained unchanged before sudden unloading, implying the absence of anticipation. We also tested TMS responses during EMG silent periods produced by brief muscle shortening, transiently resulting in similar EMG levels before the onset and after the end of self-unloading. We found reduced descending facilitation of flexor MNs after self-unloading. To explain why the wrist excursion was minimized in self-unloading due to these changes in descending influences, we relied on previous demonstrations that descending systems pre-set the threshold positions of body segments at which muscles begin to be activated, thus predetermining the equilibrium point to which the system is attracted. Based on this notion, a more consistent explanation of the kinematic, EMG and descending patterns in the two types of unloading is proposed compared to the alternative notion of direct pre-programming of kinematic and/or EMG patterns.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| | - Nicolas A Turpin
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| | - Anatol G Feldman
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| |
Collapse
|
50
|
Geertsen SS, Willerslev-Olsen M, Lorentzen J, Nielsen JB. Development and aging of human spinal cord circuitries. J Neurophysiol 2017; 118:1133-1140. [PMID: 28566459 DOI: 10.1152/jn.00103.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023] Open
Abstract
The neural motor circuitries in the spinal cord receive information from our senses and the rest of the nervous system and translate it into purposeful movements, which allow us to interact with the rest of the world. In this review, we discuss how these circuitries are established during early development and the extent to which they are shaped according to the demands of the body that they control and the environment with which the body has to interact. We also discuss how aging processes and physiological changes in our body are reflected in adaptations of activity in the spinal cord motor circuitries. The complex, multifaceted connectivity of the spinal cord motor circuitries allows them to generate vastly different movements and to adapt their activity to meet new challenges imposed by bodily changes or a changing environment. There are thus plenty of possibilities for adaptive changes in the spinal motor circuitries both early and late in life.
Collapse
Affiliation(s)
- Svend Sparre Geertsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen N, Denmark; and
| | - Maria Willerslev-Olsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jakob Lorentzen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jens Bo Nielsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; .,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|