1
|
Moldwin T, Azran LS, Segev I. A generalized mathematical framework for the calcium control hypothesis describes weight-dependent synaptic plasticity. J Comput Neurosci 2025:10.1007/s10827-025-00894-6. [PMID: 40100329 DOI: 10.1007/s10827-025-00894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
The brain modifies synaptic strengths to store new information via long-term potentiation (LTP) and long-term depression (LTD). Evidence has mounted that long-term synaptic plasticity is controlled via concentrations of calcium ([Ca2+]) in postsynaptic dendritic spines. Several mathematical models describe this phenomenon, including those of Shouval, Bear, and Cooper (SBC) (Shouval et al., 2002, 2010) and Graupner and Brunel (GB) (Graupner & Brunel, 2012). Here we suggest a generalized version of the SBC and GB models, the fixed point - learning rate (FPLR) framework, where the synaptic [Ca2+] specifies a fixed point toward which the synaptic weight approaches asymptotically at a [Ca2+]-dependent rate. The FPLR framework offers a straightforward phenomenological interpretation of calcium-based plasticity: the calcium concentration tells the synaptic weight where it is going and how quickly it goes there. The FPLR framework can flexibly incorporate various experimental findings, including the existence of multiple regions of [Ca2+] where no plasticity occurs, or plasticity observed experimentally in cerebellar Purkinje cells, where the directionality of calcium-based synaptic changes is reversed relative to cortical and hippocampal neurons. We also suggest a modeling approach that captures the dependency of late-phase plasticity stabilization on protein synthesis. We demonstrate that due to the asymptotic nature of synaptic changes in the FPLR rule, the plastic changes induced by frequency- and spike-timing-dependent plasticity protocols are weight-dependent. Finally, we show how the FPLR framework can explain the weight-dependence observed in behavioral time scale plasticity (BTSP).
Collapse
Affiliation(s)
- Toviah Moldwin
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Li Shay Azran
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Chou CYC, Droogers WJ, Lalanne T, Fineberg E, Klimenko T, Owens H, Sjöström PJ. Postsynaptic spiking determines anti-Hebbian LTD in visual cortex basket cells. Front Synaptic Neurosci 2025; 17:1548563. [PMID: 40040787 PMCID: PMC11872923 DOI: 10.3389/fnsyn.2025.1548563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Long-term plasticity at pyramidal cell to basket cell (PC → BC) synapses is important for the functioning of cortical microcircuits. It is well known that at neocortical PC → PC synapses, dendritic calcium (Ca2+) dynamics signal coincident pre-and postsynaptic spiking which in turn triggers long-term potentiation (LTP). However, the link between dendritic Ca2+ dynamics and long-term plasticity at PC → BC synapses of primary visual cortex (V1) is not as well known. Here, we explored if PC → BC synaptic plasticity in developing V1 is sensitive to postsynaptic spiking. Two-photon (2P) Ca2+ imaging revealed that action potentials (APs) in dendrites of V1 layer-5 (L5) BCs back-propagated decrementally but actively to the location of PC → BC putative synaptic contacts. Pairing excitatory inputs with postsynaptic APs elicited dendritic Ca2+ supralinearities for pre-before-postsynaptic but not post-before-presynaptic temporal ordering, suggesting that APs could impact synaptic plasticity. In agreement, extracellular stimulation as well as high-throughput 2P optogenetic mapping of plasticity both revealed that pre-before-postsynaptic but not post-before-presynaptic pairing resulted in anti-Hebbian long-term depression (LTD). Our results demonstrate that V1 BC dendritic Ca2+ nonlinearities and synaptic plasticity at PC → BC connections are both sensitive to somatic spiking.
Collapse
Affiliation(s)
- Christina Y. C. Chou
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Wouter J. Droogers
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Txomin Lalanne
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- EphyX Neuroscience, Bordeaux, France
| | - Eric Fineberg
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Tal Klimenko
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
3
|
Ghanavati E, Salehinejad MA, Beaupain MC, Melo L, Frese A, Kuo M, Nitsche MA. Contribution of Glutamatergic and GABAergic Mechanisms to the Plasticity-Modulating Effects of Dopamine in the Human Motor Cortex. Hum Brain Mapp 2025; 46:e70162. [PMID: 39945316 PMCID: PMC11822652 DOI: 10.1002/hbm.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Dopamine, a key neuromodulator in the central nervous system, regulates cortical excitability and plasticity by interacting with glutamate and GABA receptors, which are affected by dopamine receptor subtypes (D1- and D2-like). Non-invasive brain stimulation techniques can induce plasticity and monitor cortical facilitation and inhibition in humans. In a randomized, placebo-controlled, double-blinded study, we investigated how dopamine and D1- and D2-like receptors impact transcranial direct current stimulation (tDCS)-induced plasticity concerning glutamatergic and GABAergic mechanisms. Eighteen healthy volunteers received 1 mA anodal (13 min) and cathodal tDCS (9 min) over the left motor cortex combined with the dopaminergic agents l-dopa (general dopamine activation), bromocriptine (D2-like receptor agonist), combined D2 antagonism via sulpiride and general dopaminergic activation via l-dopa to activate D1-like receptors, and placebo medication. Glutamate-related cortical facilitation and GABA-related cortical inhibition were monitored using transcranial magnetic stimulation techniques, including I-O curve, intracortical facilitation (ICF), short-interval intracortical inhibition (SICI), and I-wave facilitation protocols. Our results indicate that anodal tDCS alone enhanced the I-O curve and ICF while decreasing SICI. Conversely, cathodal tDCS decreased the I-O curve and ICF while increasing SICI. General dopamine and D2 receptor activation combined with anodal tDCS decreased the I-O curve and ICF, but enhanced SICI compared to tDCS alone. When paired with cathodal tDCS, general Dopamine and D2-like receptor activity enhancement prolonged the cathodal tDCS effect on excitability. After anodal tDCS, D1-like receptor activation increased the I-O curve and ICF while reducing SICI. These effects were abolished with cathodal tDCS. Dopaminergic substances combined with anodal and cathodal tDCS did not have a significant effect on I-wave facilitation. These results suggest that D1-like receptor activation enhanced LTP-like plasticity and abolished LTD-like plasticity via glutamatergic NMDA receptor enhancement, while global dopaminergic and D2-like receptor enhancement weakened LTP-like but strengthened LTD-like plasticity primarily via glutamatergic NMDA receptor activity diminution.
Collapse
Affiliation(s)
- Elham Ghanavati
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
- Department of PsychologyRuhr University BochumBochumGermany
| | - Mohammad Ali Salehinejad
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
- School of Cognitive SciencesInstitute for Research in Fundamental SciencesTehranIran
| | - Marie C. Beaupain
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
- Department of PsychologyRuhr University BochumBochumGermany
| | - Lorena Melo
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Amba Frese
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
- International Graduate School of Neuroscience, Ruhr University BochumBochumGermany
| | - Min‐Fang Kuo
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Michael A. Nitsche
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel FoundationUniversity Clinic of Psychiatry PsychotherapyBielefeldGermany
- German Center for Mental Health (DZPG)BochumGermany
| |
Collapse
|
4
|
Chmiel J, Kurpas D, Stępień-Słodkowska M. The Potential of Transcranial Direct Current Stimulation (tDCS) in Improving Quality of Life in Patients with Multiple Sclerosis: A Review and Discussion of Mechanisms of Action. J Clin Med 2025; 14:373. [PMID: 39860377 PMCID: PMC11766291 DOI: 10.3390/jcm14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being. There are psychological interventions that can improve QoL, but their number is limited. Therefore, searching for new methods that are as effective and safe as possible is ongoing. Methods: This review examines the potential effectiveness of transcranial direct current stimulation (tDCS) in improving the quality of life in patients with MS. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. Results: The search yielded seven studies in which QoL was a primary or secondary outcome. Stimulation protocols displayed heterogeneity, especially concerning the choice of the stimulation site. Four studies demonstrated the effectiveness of tDCS in improving QoL, all of which (two) used anodal stimulation of the left DLPFC. Stimulation of the motor cortex has produced mixed results. The potential mechanisms of action of tDCS in improving QoL in MS are explained. These include improved synaptic plasticity, increased cerebral blood flow, salience network engagement through tDCS, and reduction of beta-amyloid deposition. The limitations are also detailed, and recommendations for future research are made. Conclusions: While the evidence is limited, tDCS has shown potential to improve QoL in MS patients in some studies. Prefrontal stimulation appears promising, and further research is recommended to explore this approach.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland;
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| |
Collapse
|
5
|
Moldwin T, Azran LS, Segev I. The calcitron: A simple neuron model that implements many learning rules via the calcium control hypothesis. PLoS Comput Biol 2025; 21:e1012754. [PMID: 39879254 PMCID: PMC11835382 DOI: 10.1371/journal.pcbi.1012754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 02/18/2025] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules. We propose a simple, perceptron-like neuron model, the calcitron, that has four sources of [Ca2+]: local (following the activation of an excitatory synapse and confined to that synapse), heterosynaptic (resulting from the activity of other synapses), postsynaptic spike-dependent, and supervisor-dependent. We demonstrate that by modulating the plasticity thresholds and calcium influx from each calcium source, we can reproduce a wide range of learning and plasticity protocols, such as Hebbian and anti-Hebbian learning, frequency-dependent plasticity, and unsupervised recognition of frequently repeating input patterns. Moreover, by devising simple neural circuits to provide supervisory signals, we show how the calcitron can implement homeostatic plasticity, perceptron learning, and BTSP-inspired one-shot learning. Our study bridges the gap between theoretical learning algorithms and their biological counterparts, not only replicating established learning paradigms but also introducing novel rules.
Collapse
Affiliation(s)
- Toviah Moldwin
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Li Shay Azran
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Krishnamurthy R, Krishnamoorthy C, Dietsch AM, Natarajan SK. Molecular biomarkers of dysphagia targeted exercise induced neuroplasticity: A review of mechanistic processes and preliminary data on detraining effects. Brain Res 2025; 1846:149287. [PMID: 39437875 DOI: 10.1016/j.brainres.2024.149287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
While molecular adaptations accompanying neuroplasticity during physical exercises are well-established, little is known about adaptations during dysphagia-targeted exercises. This research article has two primary purposes. First, we aim to review the existing literature on the intersection between resistance (strength) training, molecular markers of neuroplasticity, and dysphagia rehabilitation. Specifically, we discuss the molecular mechanisms of two potential molecular markers: brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) in exercise-induced neuroplasticity. Second, we present preliminary data on the effects of two weeks of detraining on circulating serum BDNF, IGF-1 levels, and expiratory muscle strength. This subset is a part of our more extensive studies related to dysphagia-targeted resistance exercise and neuroplasticity. Five young adult males underwent four weeks of expiratory muscle strength training, followed by two weeks of detraining. We measured expiratory strength, circulating levels of BDNF, and IGF-1 at post-training and detraining conditions. Our results show that expiratory muscle strength, serum BDNF, and IGF-1 levels decreased after detraining; however, this effect was statistically significant only for serum BDNF levels. Oropharyngeal and upper airway musculature involved in swallowing undergoes similar adaptation patterns to skeletal muscles during physical exercise. To fully comprehend the mechanisms underlying the potential neuroplastic benefits of targeted exercise on swallowing functions, mechanistic studies (models) investigating neuroplasticity induced by exercises addressing dysphagia are critical. Such models would ensure that interventions effectively and efficiently achieve neuroplastic benefits and improve patient outcomes, ultimately advancing our understanding of dysphagia-targeted exercise-induced neuroplasticity.
Collapse
Affiliation(s)
- Rahul Krishnamurthy
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, United States; Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States.
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| | - Angela M Dietsch
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, United States
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| |
Collapse
|
7
|
Patel HJ, Stollberg LS, Choi CH, Nitsche MA, Shah NJ, Binkofski F. A study of long-term GABA and high-energy phosphate alterations in the primary motor cortex using anodal tDCS and 1H/ 31P MR spectroscopy. Front Hum Neurosci 2024; 18:1461417. [PMID: 39734666 PMCID: PMC11672121 DOI: 10.3389/fnhum.2024.1461417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Anodal transcranial direct current stimulation (tDCS) has been reported to modulate gamma-aminobutyric acid levels and cerebral energy consumption in the brain. This study aims to investigate long-term GABA and cerebral energy modulation following anodal tDCS over the primary motor cortex. Method To assess GABA and energy level changes, proton and phosphorus magnetic resonance spectroscopy data were acquired before and after anodal or sham tDCS. In anodal stimulation, a 1 mA current was applied for 20 min, and the duration of ramping the current up/down at the start and end of the intervention was 10 s. In the sham-stimulation condition, the current was first ramped up over a period of 10 s, then immediately ramped down, and the condition was maintained for the next 20 min. Results The GABA concentration increased significantly following anodal stimulation in the first and second post-stimulation measurements. Likewise, both ATP/Pi and PCr/Pi ratios increased after anodal stimulation in the first and second post-stimulation measurements. Conclusion The approach employed in this study shows the feasibility of measuring long-term modulation of GABA and high-energy phosphates following anodal tDCS targeting the left M1, offering valuable insights into the mechanisms of neuroplasticity and energy metabolism, which may have implications for applications of this intervention in clinical populations.
Collapse
Affiliation(s)
- Harshal Jayeshkumar Patel
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Lea-Sophie Stollberg
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, Jülich, Germany
- JARA-BRAIN-Translational Medicine, Jülich-Aachen-Research-Alliance (JARA), Aachen, Germany
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Neuroscience and Medicine-11, Forschungszentrum Juelich, Jülich, Germany
| | - Ferdinand Binkofski
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, Jülich, Germany
- JARA-BRAIN-Translational Medicine, Jülich-Aachen-Research-Alliance (JARA), Aachen, Germany
| |
Collapse
|
8
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024; 41:2455-2477. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
9
|
Zhang N, Nitsche MA, Miao Y, Xiong Z, Vicario CM, Qi F. Transcranial Direct-Current Stimulation Over the Primary Motor Cortex and Cerebellum Improves Balance and Shooting Accuracy in Elite Ice Hockey Players. Int J Sports Physiol Perform 2024; 19:1107-1114. [PMID: 39179224 DOI: 10.1123/ijspp.2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE To investigate the effects of transcranial direct-current stimulation (tDCS) applied over the primary motor cortex (M1) and cerebellum on balance control and shooting accuracy in elite ice hockey players. METHODS Twenty-one elite ice hockey players underwent anodal tDCS over the M1 (a-tDCSM1), anodal tDCS over the cerebellum (a-tDCSCB), concurrent dual-site anodal tDCS over the M1 and the cerebellum (a-tDCSM1+CB), and sham stimulation (tDCSSHAM). Before and after receiving tDCS (2 mA for 15 min), participants completed an ice hockey shooting-accuracy test, Pro-Kin balance test (includes stance test and proprioceptive assessment), and Y-balance test in randomized order. RESULTS For static balance performance, the ellipse area in the 2-legged stance with eyes open and the 1-legged stance with the dominant leg significantly improved following a-tDCSM1, a-tDCSCB, and concurrent dual-site a-tDCSM1+CB, compared with tDCSSHAM (all P < .05, Cohen d = 0.64-1.06). In dynamic balance performance, the average trace error of the proprioceptive assessment and the composite score of the Y-balance test with the dominant leg significantly improved following a-tDCSM1 and concurrent dual-site a-tDCSM1+CB (all P < .05, Cohen d = 0.77-1.00). For the ice hockey shooting-accuracy test, shooting-accuracy while standing on the unstable platform significantly increased following a-tDCSM1 (P = .010, Cohen d = 0.81) and a-tDCSCB (P = .010, Cohen d = 0.92) compared with tDCSSHAM. CONCLUSION tDCS could potentially be a valuable tool in enhancing static and dynamic balance and shooting accuracy on unstable platforms in elite ice hockey players.
Collapse
Affiliation(s)
- Na Zhang
- Sports Coaching College, Beijing Sport University, Beijing, BJ, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, BJ, China
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Yu Miao
- Sports Coaching College, Beijing Sport University, Beijing, BJ, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, BJ, China
| | - Zheng Xiong
- China Ice Sports College, Beijing Sport University, Beijing, BJ, China
| | - Carmelo Mario Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina, Italy
| | - Fengxue Qi
- Sports Coaching College, Beijing Sport University, Beijing, BJ, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, BJ, China
| |
Collapse
|
10
|
Chater TE, Eggl MF, Goda Y, Tchumatchenko T. Competitive processes shape multi-synapse plasticity along dendritic segments. Nat Commun 2024; 15:7572. [PMID: 39217140 PMCID: PMC11365941 DOI: 10.1038/s41467-024-51919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neurons receive thousands of inputs onto their dendritic arbour, where individual synapses undergo activity-dependent plasticity. Long-lasting changes in postsynaptic strengths correlate with changes in spine head volume. The magnitude and direction of such structural plasticity - potentiation (sLTP) and depression (sLTD) - depend upon the number and spatial distribution of stimulated synapses. However, how neurons allocate resources to implement synaptic strength changes across space and time amongst neighbouring synapses remains unclear. Here we combined experimental and modelling approaches to explore the elementary processes underlying multi-spine plasticity. We used glutamate uncaging to induce sLTP at varying number of synapses sharing the same dendritic branch, and we built a model incorporating a dual role Ca2+-dependent component that induces spine growth or shrinkage. Our results suggest that competition among spines for molecular resources is a key driver of multi-spine plasticity and that spatial distance between simultaneously stimulated spines impacts the resulting spine dynamics.
Collapse
Affiliation(s)
- Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Maximilian F Eggl
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute of Neuroscience, CSIC-UMH, Alicante, Spain
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan.
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
11
|
Chmiel J, Kurpas D, Rybakowski F, Leszek J. The Effects of Transcranial Direct Current Stimulation (tDCS) in HIV Patients-A Review. J Clin Med 2024; 13:3288. [PMID: 38892999 PMCID: PMC11173062 DOI: 10.3390/jcm13113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction: HIV is a severe and incurable disease that has a devastating impact worldwide. It affects the immune system and negatively affects the nervous system, leading to various cognitive and behavioral problems. Scientists are actively exploring different therapeutic approaches to combat these issues. One promising method is transcranial direct current stimulation (tDCS), a non-invasive technique that stimulates the brain. Methods: This review aims to examine how tDCS can help HIV patients. Searches were conducted in the Pubmed/Medline, Research Gate, and Cochrane databases. Results: The literature search resulted in six articles focusing on the effects of tDCS on cognitive and behavioral measures in people with HIV. In some cases, tDCS showed positive improvements in the measures assessed, improving executive functions, depression, attention, reaction time, psychomotor speed, speed of processing, verbal learning and memory, and cognitive functioning. Furthermore, the stimulation was safe with no severe side effects. However, the included studies were of low quality, had small sample sizes, and did not use any relevant biomarkers that would help to understand the mechanisms of action of tDCS in HIV. Conclusions: tDCS may help patients with HIV; however, due to the limited number of studies and the diversity of protocols used, caution should be exercised when recommending this treatment option in clinical settings. More high-quality research, preferably involving neurophysiological and neuroimaging measurements, is necessary to better understand how tDCS works in individuals with HIV.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
12
|
Faralli A, Fucà E, Lazzaro G, Menghini D, Vicari S, Costanzo F. Transcranial Direct Current Stimulation in neurogenetic syndromes: new treatment perspectives for Down syndrome? Front Cell Neurosci 2024; 18:1328963. [PMID: 38456063 PMCID: PMC10917937 DOI: 10.3389/fncel.2024.1328963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
This perspective review aims to explore the potential neurobiological mechanisms involved in the application of transcranial Direct Current Stimulation (tDCS) for Down syndrome (DS), the leading cause of genetically-based intellectual disability. The neural mechanisms underlying tDCS interventions in genetic disorders, typically characterized by cognitive deficits, are grounded in the concept of brain plasticity. We initially present the neurobiological and functional effects elicited by tDCS applications in enhancing neuroplasticity and in regulating the excitatory/inhibitory balance, both associated with cognitive improvement in the general population. The review begins with evidence on tDCS applications in five neurogenetic disorders, including Rett, Prader-Willi, Phelan-McDermid, and Neurofibromatosis 1 syndromes, as well as DS. Available evidence supports tDCS as a potential intervention tool and underscores the importance of advancing neurobiological research into the mechanisms of tDCS action in these conditions. We then discuss the potential of tDCS as a promising non-invasive strategy to mitigate deficits in plasticity and promote fine-tuning of the excitatory/inhibitory balance in DS, exploring implications for cognitive treatment perspectives in this population.
Collapse
Affiliation(s)
- Alessio Faralli
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
- Life Sciences and Public Health Department, Catholic University of Sacred Heart, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| |
Collapse
|
13
|
Xing B, Barbour AJ, Vithayathil J, Li X, Dutko S, Fawcett-Patel J, Lancaster E, Talos DM, Jensen FE. Reversible synaptic adaptations in a subpopulation of murine hippocampal neurons following early-life seizures. J Clin Invest 2024; 134:e175167. [PMID: 38227384 PMCID: PMC10904056 DOI: 10.1172/jci175167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
Early-life seizures (ELSs) can cause permanent cognitive deficits and network hyperexcitability, but it is unclear whether ELSs induce persistent changes in specific neuronal populations and whether these changes can be targeted to mitigate network dysfunction. We used the targeted recombination of activated populations (TRAP) approach to genetically label neurons activated by kainate-induced ELSs in immature mice. The ELS-TRAPed neurons were mainly found in hippocampal CA1, remained uniquely susceptible to reactivation by later-life seizures, and displayed sustained enhancement in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated (AMPAR-mediated) excitatory synaptic transmission and inward rectification. ELS-TRAPed neurons, but not non-TRAPed surrounding neurons, exhibited enduring decreases in Gria2 mRNA, responsible for encoding the GluA2 subunit of the AMPARs. This was paralleled by decreased synaptic GluA2 protein expression and heightened phosphorylated GluA2 at Ser880 in dendrites, indicative of GluA2 internalization. Consistent with increased GluA2-lacking AMPARs, ELS-TRAPed neurons showed premature silent synapse depletion, impaired long-term potentiation, and impaired long-term depression. In vivo postseizure treatment with IEM-1460, an inhibitor of GluA2-lacking AMPARs, markedly mitigated ELS-induced changes in TRAPed neurons. These findings show that enduring modifications of AMPARs occur in a subpopulation of ELS-activated neurons, contributing to synaptic dysplasticity and network hyperexcitability, but are reversible with early IEM-1460 intervention.
Collapse
|
14
|
Khalil R, Karim AA, Godde B. Less might be more: 1 mA but not 1.5 mA of tDCS improves tactile orientation discrimination. IBRO Neurosci Rep 2023; 15:186-192. [PMID: 37746157 PMCID: PMC10511473 DOI: 10.1016/j.ibneur.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a frequently used brain stimulation method; however, studies on tactile perception using tDCS are inconsistent, which might be explained by the variations in endogenous and exogenous parameters that influence tDCS. Objectives We aimed to investigate the effect of one of these endogenous parameters-the tDCS amplitude-on tactile perception. Methods We conducted this experiment on 28 undergraduates/graduates aged 18-36 years. In separate sessions, participants received 20 min of 1 mA or 1.5 mA current tDCS in a counterbalanced order. Half of the participants received anodal tDCS of the left SI coupled with cathodal tDCS of the right SI, and this montage was reversed for the other half. Pre- and post-tDCS tactile discrimination performance was assessed using the Grating Orientation Task (GOT). In this task, plastic domes with gratings of different widths cut into their surfaces are placed on the fingertip, and participants have to rate the orientation of the gratings. Results Linear modeling with amplitude, dome, and session as within factors and montage as between factors revealed the following: significant main effects of grating width, montage, and session and a marginally significant interaction effect of session and amplitude. Posthoc t-tests indicated that performance in GOT improved after 1 mA but not 1.5 mA tDCS independent of the montage pattern of the electrodes. Conclusion Increasing the stimulation amplitude from 1 mA to 1.5 mA does not facilitate the tDCS effect on GOT performance. On the contrary, the effect seemed more robust for the lower-current amplitude.
Collapse
Affiliation(s)
- Radwa Khalil
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| | - Ahmed A. Karim
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
- Department of Psychiatry and Psychotherapy, University Clinic Tübingen, Tübingen, Germany
- Department of Health Psychology and Neurorehabilitation, SRH Mobile University, Riedlingen, Germany
| | - Ben Godde
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| |
Collapse
|
15
|
Chmiel J, Gladka A, Leszek J. The Effect of Transcranial Direct Current Stimulation (tDCS) on Anorexia Nervosa: A Narrative Review. Nutrients 2023; 15:4455. [PMID: 37892530 PMCID: PMC10610104 DOI: 10.3390/nu15204455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Introduction: Anorexia nervosa (AN) is a severe, debilitating disease with high incidence and high mortality. The methods of treatment used so far are moderately effective. Evidence from neuroimaging studies helps to design modern methods of therapy. One of them is transcranial direct current stimulation (tDCS), a non-invasive brain neuromodulation technique. (2) Methods: The purpose of this narrative review is to bring together all studies investigating the use of tDCS in the treatment of AN and to evaluate its effect and efficiency. Searches were conducted in the Pubmed/Medline, Research Gate, and Cochrane databases. (3) Results: The literature search resulted in five articles. These studies provide preliminary evidence that tDCS has the potential to alter eating behaviour, body weight, and food intake. Additionally, tDCS reduced symptoms of depression. Throughout all trials, stimulation targeted the left dorsolateral prefrontal cortex (DLPFC). Although the number of studies included is limited, attempts were made to elucidate the potential mechanisms underlying tDCS action in individuals with AN. Recommendations for future tDCS research in AN were issued. (4) Conclusions: The included studies have shown that tDCS stimulation of the left DLPFC has a positive effect on AN clinical symptoms and may improve them, as measured by various assessment measures. It is important to conduct more in-depth research on the potential benefits of using tDCS for treating AN. This should entail well-designed studies incorporating advanced neuroimaging techniques, such as fMRI. The aim is to gain a better understanding of how tDCS works in AN.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Anna Gladka
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
16
|
Keary KM, Gu QH, Chen J, Li Z. Dendritic distribution of autophagosomes underlies pathway-selective induction of LTD. Cell Rep 2023; 42:112898. [PMID: 37516958 PMCID: PMC10528062 DOI: 10.1016/j.celrep.2023.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The mechanism of long-term depression (LTD), a cellular substrate for learning, memory, and behavioral flexibility, is extensively studied in Schaffer collateral (SC) synapses, with inhibition of autophagy identified as a key factor. SC inputs terminate at basal and proximal apical dendrites, whereas distal apical dendrites receive inputs from the temporoammonic pathway (TAP). Here, we demonstrate that TAP and SC synapses have a shared LTD mechanism reliant on NMDA receptors, caspase-3, and autophagy inhibition. Despite this shared LTD mechanism, proximal apical dendrites contain more autophagosomes than distal apical dendrites. Additionally, unlike SC LTD, which diminishes with age, TAP LTD persists into adulthood. Our previous study shows that the high autophagy in adulthood disallows SC LTD induction. The reduction of autophagosomes from proximal to distal dendrites, combined with distinct LTD inducibility at SC and TAP synapses, suggests a model where the differential distribution of autophagosomes in dendrites gates LTD inducibility at specific circuits.
Collapse
Affiliation(s)
- Kevin M Keary
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Qin-Hua Gu
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy (AIM) Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Moldwin T, Kalmenson M, Segev I. Asymmetric Voltage Attenuation in Dendrites Can Enable Hierarchical Heterosynaptic Plasticity. eNeuro 2023; 10:ENEURO.0014-23.2023. [PMID: 37414554 PMCID: PMC10354808 DOI: 10.1523/eneuro.0014-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
Long-term synaptic plasticity is mediated via cytosolic calcium concentrations ([Ca2+]). Using a synaptic model that implements calcium-based long-term plasticity via two sources of Ca2+ - NMDA receptors and voltage-gated calcium channels (VGCCs) - we show in dendritic cable simulations that the interplay between these two calcium sources can result in a diverse array of heterosynaptic effects. When spatially clustered synaptic input produces a local NMDA spike, the resulting dendritic depolarization can activate VGCCs at nonactivated spines, resulting in heterosynaptic plasticity. NMDA spike activation at a given dendritic location will tend to depolarize dendritic regions that are located distally to the input site more than dendritic sites that are proximal to it. This asymmetry can produce a hierarchical effect in branching dendrites, where an NMDA spike at a proximal branch can induce heterosynaptic plasticity primarily at branches that are distal to it. We also explored how simultaneously activated synaptic clusters located at different dendritic locations synergistically affect the plasticity at the active synapses, as well as the heterosynaptic plasticity of an inactive synapse "sandwiched" between them. We conclude that the inherent electrical asymmetry of dendritic trees enables sophisticated schemes for spatially targeted supervision of heterosynaptic plasticity.
Collapse
Affiliation(s)
| | - Menachem Kalmenson
- Department of Neurobiology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences
- Department of Neurobiology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
18
|
Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias. Cells 2023; 12:cells12081193. [PMID: 37190102 DOI: 10.3390/cells12081193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The degenerative ataxias comprise a heterogeneous group of inherited and acquired disorders that are characterized by a progressive cerebellar syndrome, frequently in combination with one or more extracerebellar signs. Specific disease-modifying interventions are currently not available for many of these rare conditions, which underscores the necessity of finding effective symptomatic therapies. During the past five to ten years, an increasing number of randomized controlled trials have been conducted examining the potential of different non-invasive brain stimulation techniques to induce symptomatic improvement. In addition, a few smaller studies have explored deep brain stimulation (DBS) of the dentate nucleus as an invasive means to directly modulate cerebellar output, thereby aiming to alleviate ataxia severity. In this paper, we comprehensively review the clinical and neurophysiological effects of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and dentate nucleus DBS in patients with hereditary ataxias, as well as the presumed underlying mechanisms at the cellular and network level and perspectives for future research.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina França
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
19
|
Vimolratana O, Lackmy-Vallee A, Aneksan B, Hiengkaew V, Klomjai W. Non-linear dose response effect of cathodal transcranial direct current stimulation on muscle strength in young healthy adults: a randomized controlled study. BMC Sports Sci Med Rehabil 2023; 15:10. [PMID: 36717894 PMCID: PMC9887803 DOI: 10.1186/s13102-023-00621-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a technique that modulates brain excitability in humans. Increasing the stimulation intensity or duration within certain limits could enhance tDCS efficacy with a polarity-dependent effect; anodal stimulation increases cortical excitability, whereas cathodal stimulation decreases excitability. However, recent studies have reported a non-linear effect of cathodal tDCS on neuronal excitability in humans, and there is no conclusive result regarding the effect of cathodal tDCS on muscle performance. METHODS Our study aimed to investigate the immediate effects of different intensities (i.e., 1, 1.5, and 2 mA and sham tDCS) of cathodal tDCS on muscle strength in healthy participants. All participants [mean age 23.17 (3.90) years] were recruited and randomly allocated into four groups (1, 1.5, and 2 mA cathodal tDCS and sham tDCS). Muscle strength in bilateral upper and lower extremities was measured before and immediately after tDCS using a handheld dynamometer. RESULTS Our results showed that cathodal tDCS at 1 and 1.5 mA reduced muscle strength bilaterally in upper and lower extremity muscles, whereas stimulation at 2 mA tended to increase muscle strength on the dominant limb. CONCLUSION These findings support the non-linear effects of cathodal tDCS on muscle strength, which should be considered for the clinical use of tDCS in motor rehabilitation. TRIAL REGISTRATION NCT04672122, date of first registration 17/12/2020.
Collapse
Affiliation(s)
- Oranich Vimolratana
- grid.10223.320000 0004 1937 0490Neuro Electrical Stimulation Laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Faculty of Physical Therapy, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170 Thailand
| | - Alexandra Lackmy-Vallee
- grid.462844.80000 0001 2308 1657Laboratoire d’Imagerie Biomédicale, LIB, CNRS, INSERM, Sorbonne Université, 75005 Paris, France
| | - Benchaporn Aneksan
- grid.10223.320000 0004 1937 0490Neuro Electrical Stimulation Laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Faculty of Physical Therapy, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170 Thailand
| | - Vimonwan Hiengkaew
- grid.10223.320000 0004 1937 0490Faculty of Physical Therapy, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170 Thailand
| | - Wanalee Klomjai
- grid.10223.320000 0004 1937 0490Neuro Electrical Stimulation Laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Faculty of Physical Therapy, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170 Thailand
| |
Collapse
|
20
|
Efficacy and safety of simultaneous rTMS-tDCS over bilateral angular gyrus on neuropsychiatric symptoms in patients with moderate Alzheimer's disease: A prospective, randomized, sham-controlled pilot study. Brain Stimul 2022; 15:1530-1537. [PMID: 36460293 DOI: 10.1016/j.brs.2022.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Treating neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD) remains highly challenging. Noninvasive brain stimulation using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) is of considerable interest in this context. OBJECTIVE To investigate the efficacy and safety of a novel technique involving simultaneous application of rTMS and tDCS (rTMS-tDCS) over bilateral angular gyrus (AG, P5/P6 electrode site) for AD-related NPS. METHODS Eighty-four AD patients were randomized to receive rTMS-tDCS, single-rTMS, single-tDCS, or sham stimulation for 4 weeks, with evaluation at week-4 (W4, immediately after treatment) and week-12 (W12, follow-up period) after initial examination. Primary outcome comprising Neuropsychiatric Inventory (NPI) score and secondary outcomes comprising mini-mental state examination (MMSE), AD assessment scale-cognitive subscale (ADAS-cog), and Pittsburgh sleep quality index (PSQI) scores were collected and analyzed by a two-factor (time and treatment), mixed-design ANOVA. RESULTS rTMS-tDCS produced greater improvement in NPI scores than single-tDCS and sham at W4 and W12 (both P < 0.017) and trended better than single-rTMS (W4: P = 0.058, W12: P = 0.034). rTMS-tDCS improved MMSE scores compared with single-tDCS at W4 (P = 0.011) and sham at W4 and W12 (both P < 0.017). rTMS-tDCS also significantly improved PSQI compared with single-rTMS and sham (both P < 0.017). Interestingly, rTMS-tDCS-induced NPI/PSQI improvement was significantly associated with MMSE/ADAS-cog improvement. tDCS- and/or rTMS-related adverse events appeared slightly and briefly. CONCLUSIONS rTMS-tDCS application to bilateral AG can effectively improve AD-related NPS, cognitive function, and sleep quality with considerable safety.
Collapse
|
21
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
23
|
Salehinejad MA, Ghanavati E, Reinders J, Hengstler JG, Kuo MF, Nitsche MA. Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain. eLife 2022; 11:e69308. [PMID: 35666097 PMCID: PMC9225005 DOI: 10.7554/elife.69308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data indicate that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
- International Graduate School of Neuroscience, Ruhr-University BochumBochumGermany
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumBochumGermany
| | - Jörg Reinders
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
- Department of Neurology, University Medical Hospital BergmannsheilBochumGermany
| |
Collapse
|
24
|
Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci 2022; 12:522. [PMID: 35624908 PMCID: PMC9139102 DOI: 10.3390/brainsci12050522] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Due to its safety, portability, and cheapness, transcranial direct current stimulation (tDCS) use largely increased in research and clinical settings. Despite tDCS's wide application, previous works pointed out inconsistent and low replicable results, sometimes leading to extreme conclusions about tDCS's ineffectiveness in modulating behavioral performance across cognitive domains. Traditionally, this variability has been linked to significant differences in the stimulation protocols across studies, including stimulation parameters, target regions, and electrodes montage. Here, we reviewed and discussed evidence of heterogeneity emerging at the intra-study level, namely inter-individual differences that may influence the response to tDCS within each study. This source of variability has been largely neglected by literature, being results mainly analyzed at the group level. Previous research, however, highlighted that only a half-or less-of studies' participants could be classified as responders, being affected by tDCS in the expected direction. Stable and variable inter-individual differences, such as morphological and genetic features vs. hormonal/exogenous substance consumption, partially account for this heterogeneity. Moreover, variability comes from experiments' contextual elements, such as participants' engagement/baseline capacity and individual task difficulty. We concluded that increasing knowledge on inter-dividual differences rather than undermining tDCS effectiveness could enhance protocols' efficiency and reproducibility.
Collapse
Affiliation(s)
- Alessandra Vergallito
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Sarah Feroldi
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy;
| | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Leonor J. Romero Lauro
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| |
Collapse
|
25
|
Directionality of the injected current targeting the P20/N20 source determines the efficacy of 140 Hz transcranial alternating current stimulation (tACS)-induced aftereffects in the somatosensory cortex. PLoS One 2022; 17:e0266107. [PMID: 35324989 PMCID: PMC8947130 DOI: 10.1371/journal.pone.0266107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Interindividual anatomical differences in the human cortex can lead to suboptimal current directions and may result in response variability of transcranial electrical stimulation methods. These differences in brain anatomy require individualized electrode stimulation montages to induce an optimal current density in the targeted area of each individual subject. We aimed to explore the possible modulatory effects of 140 Hz transcranial alternating current stimulation (tACS) on the somatosensory cortex using personalized multi-electrode stimulation montages. In two randomized experiments using either tactile finger or median nerve stimulation, we measured by evoked potentials the plasticity aftereffects and oscillatory power changes after 140 Hz tACS at 1.0 mA as compared to sham stimulation (n = 17, male = 9). We found a decrease in the power of oscillatory mu-rhythms during and immediately after tactile discrimination tasks, indicating an engagement of the somatosensory system during stimulus encoding. On a group level both the oscillatory power and the evoked potential amplitudes were not modulated by tACS neither after tactile finger stimulation nor after median nerve stimulation as compared to sham stimulation. On an individual level we could however demonstrate that lower angular difference (i.e., differences between the injected current vector in the target region and the source orientation vector) is associated with significantly higher changes in both P20/N20 and N30/P30 source activities. Our findings suggest that the higher the directionality of the injected current correlates to the dipole orientation the greater the tACS-induced aftereffects are.
Collapse
|
26
|
Ghanavati E, Salehinejad MA, De Melo L, Nitsche MA, Kuo MF. NMDA receptor-related mechanisms of dopaminergic modulation of tDCS-induced neuroplasticity. Cereb Cortex 2022; 32:5478-5488. [PMID: 35165699 PMCID: PMC9712712 DOI: 10.1093/cercor/bhac028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/27/2022] Open
Abstract
Dopamine is a key neuromodulator of neuroplasticity and an important neuronal substrate of learning, and memory formation, which critically involves glutamatergic N-methyl-D-aspartate (NMDA) receptors. Dopamine modulates NMDA receptor activity via dopamine D1 and D2 receptor subtypes. It is hypothesized that dopamine focuses on long-term potentiation (LTP)-like plasticity, i.e. reduces diffuse widespread but enhances locally restricted plasticity via a D2 receptor-dependent NMDA receptor activity reduction. Here, we explored NMDA receptor-dependent mechanisms underlying dopaminergic modulation of LTP-like plasticity induced by transcranial direct current stimulation (tDCS). Eleven healthy, right-handed volunteers received anodal tDCS (1 mA, 13 min) over the left motor cortex combined with dopaminergic agents (the D2 receptor agonist bromocriptine, levodopa for general dopamine enhancement, or placebo) and the partial NMDA receptor agonist D-cycloserine (dosages of 50, 100, and 200 mg, or placebo). Cortical excitability was monitored by transcranial magnetic stimulation-induced motor-evoked potentials. We found that LTP-like plasticity was abolished or converted into LTD-like plasticity via dopaminergic activation, but reestablished under medium-dose D-cycloserine. These results suggest that diffuse LTP-like plasticity is counteracted upon via D2 receptor-dependent reduction of NMDA receptor activity.
Collapse
Affiliation(s)
- Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany
| | - Lorena De Melo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany,International Graduate School of Neuroscience, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | - Min-Fang Kuo
- Corresponding address: Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr 67, 44139 Dortmund, Germany.
| |
Collapse
|
27
|
Ravasenga T, Ruben M, Regio V, Polenghi A, Petrini EM, Barberis A. Spatial regulation of coordinated excitatory and inhibitory synaptic plasticity at dendritic synapses. Cell Rep 2022; 38:110347. [PMID: 35139381 PMCID: PMC8844559 DOI: 10.1016/j.celrep.2022.110347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 09/16/2021] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
The induction of synaptic plasticity at an individual dendritic glutamatergic spine can affect neighboring spines. This local modulation generates dendritic plasticity microdomains believed to expand the neuronal computational capacity. Here, we investigate whether local modulation of plasticity can also occur between glutamatergic synapses and adjacent GABAergic synapses. We find that the induction of long-term potentiation at an individual glutamatergic spine causes the depression of nearby GABAergic inhibitory synapses (within 3 μm), whereas more distant ones are potentiated. Notably, L-type calcium channels and calpain are required for this plasticity spreading. Overall, our data support a model whereby input-specific glutamatergic postsynaptic potentiation induces a spatially regulated rearrangement of inhibitory synaptic strength in the surrounding area through short-range heterosynaptic interactions. Such local coordination of excitatory and inhibitory synaptic plasticity is expected to influence dendritic information processing and integration. LTP of individual dendritic spines causes iLTD at neighboring GABAergic synapses Interaction between single-spine LTP and iLTD occurs in the spatial range of ±3 μm This iLTD depends on the local dendritic calcium increase and calpain activation iLTD is associated with reduced gephyrin clustering and increased GABAAR mobility
Collapse
Affiliation(s)
- Tiziana Ravasenga
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Massimo Ruben
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Vincenzo Regio
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alice Polenghi
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Enrica Maria Petrini
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Barberis
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
28
|
Ghasemian-Shirvan E, Mosayebi-Samani M, Farnad L, Kuo MF, Meesen RL, Nitsche MA. Age-dependent non-linear neuroplastic effects of cathodal tDCS in the elderly population; a titration study. Brain Stimul 2022; 15:296-305. [DOI: 10.1016/j.brs.2022.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
|
29
|
A Future of Current Flow Modelling for Transcranial Electrical Stimulation? Curr Behav Neurosci Rep 2021. [DOI: 10.1007/s40473-021-00238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Purpose of Review
Transcranial electrical stimulation (tES) is used to non-invasively modulate brain activity in health and disease. Current flow modeling (CFM) provides estimates of where and how much electrical current is delivered to the brain during tES. It therefore holds promise as a method to reduce commonplace variability in tES delivery and, in turn, the outcomes of stimulation. However, the adoption of CFM has not yet been widespread and its impact on tES outcome variability is unclear. Here, we discuss the potential barriers to effective, practical CFM-informed tES use.
Recent Findings
CFM has progressed from models based on concentric spheres to gyri-precise head models derived from individual MRI scans. Users can now estimate the intensity of electrical fields (E-fields), their spatial extent, and the direction of current flow in a target brain region during tES. Here. we consider the multi-dimensional challenge of implementing CFM to optimise stimulation dose: this requires informed decisions to prioritise E-field characteristics most likely to result in desired stimulation outcomes, though the physiological consequences of the modelled current flow are often unknown. Second, we address the issue of a disconnect between predictions of E-field characteristics provided by CFMs and predictions of the physiological consequences of stimulation which CFMs are not designed to address. Third, we discuss how ongoing development of CFM in conjunction with other modelling approaches could overcome these challenges while maintaining accessibility for widespread use.
Summary
The increasing complexity and sophistication of CFM is a mandatory step towards dose control and precise, individualised delivery of tES. However, it also risks counteracting the appeal of tES as a straightforward, cost-effective tool for neuromodulation, particularly in clinical settings.
Collapse
|
30
|
Shorafa Y, Halawa I, Hewitt M, Nitsche MA, Antal A, Paulus W. Isometric agonist and antagonist muscle activation interacts differently with 140-Hz transcranial alternating current stimulation aftereffects at different intensities. J Neurophysiol 2021; 126:340-348. [PMID: 34191638 DOI: 10.1152/jn.00065.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During transcranial electric stimulation, increasing intracellular Ca2+ levels beyond those needed for inducing long term potentiation (LTP) may collapse aftereffects. State-dependent plastic aftereffects are reduced when applied during muscle activation as compared with rest. Cortical surround inhibition by antagonistic muscle activation inhibits the center-innervated agonist. The objective of this study is to determine the interaction of state dependency of transcranial alternating current stimulation (tACS) aftereffects at rest and under activation of agonist and antagonist muscles during stimulation with different intensities. In 13 healthy participants, we measured motor-evoked potential (MEP) amplitudes before and after applying tACS at 140 Hz over the motor cortex in nine single-blinded sessions using sham, 1 mA, and 2 mA stimulation intensities during rest and activation of agonist and antagonist muscles. During rest, only 1 mA tACS produced a significant MEP increase, whereas the 2 mA stimulation produced no significant MEP size shift. During agonist activation 1 mA did not induce MEP changes; after 2 mA, first a decrease and later an increase of MEPs were observed. Antagonist activation under sham tACS led to an inhibition, which was restored to baseline by 1 and 2 mA tACS. Increasing stimulation intensity beyond 1 mA does not increase excitability, compatible with too strong intracellular Ca2+ increase. Antagonist innervation leads to MEP inhibition, supporting the concept of surround inhibition, which can be overcome by tACS at both intensities. During agonist innervation, a tACS dose-dependent relationship exists. Our results integrate concepts of "leaky membranes" under activation, surround inhibition, intracellular Ca2+ increase, and their role in the aftereffects of tACS.NEW & NOTEWORTHY Stimulation intensity and activation of center versus surround muscles affect cortical excitability alterations generated by 140-Hz tACS. At rest, excitatory aftereffects were induced by tACS with 1 mA, but not 2 mA stimulation intensity. With agonistic muscle activation, excitability first decreases, and then increases with 2 mA. For antagonist activation, the MEP amplitude reduction observed in the sham condition is counteracted upon by 1 and 2 mA tACS. This reflects the relation of LTP-like aftereffects to Ca2+ concentration alterations.
Collapse
Affiliation(s)
- Y Shorafa
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
| | - I Halawa
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany.,Medical Research Division, National Research Center, Cairo, Egypt
| | - M Hewitt
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - A Antal
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
| | - W Paulus
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Melo L, Mosayebi-Samani M, Ghanavati E, Nitsche MA, Kuo MF. Dosage-Dependent Impact of Acute Serotonin Enhancement on Transcranial Direct Current Stimulation Effects. Int J Neuropsychopharmacol 2021; 24:787-797. [PMID: 34106250 PMCID: PMC8538892 DOI: 10.1093/ijnp/pyab035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The serotonergic system has an important impact on basic physiological and higher brain functions. Acute and chronic enhancement of serotonin levels via selective serotonin reuptake inhibitor administration impacts neuroplasticity in humans, as shown by its effects on cortical excitability alterations induced by non-invasive brain stimulation, including transcranial direct current stimulation (tDCS). Nevertheless, the interaction between serotonin activation and neuroplasticity is not fully understood, particularly considering dose-dependent effects. Our goal was to explore dosage-dependent effects of acute serotonin enhancement on stimulation-induced plasticity in healthy individuals. METHODS Twelve healthy adults participated in 7 sessions conducted in a crossover, partially double-blinded, randomized, and sham-controlled study design. Anodal and cathodal tDCS was applied to the motor cortex under selective serotonin reuptake inhibitor (20 mg/40 mg citalopram) or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation. RESULTS Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for approximately 60-120 minutes after the intervention. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS regardless of the dosage while turning cathodal tDCS-induced excitability diminution into facilitation. For the latter, prolonged effects were observed when 40 mg was administrated. CONCLUSIONS Acute serotonin enhancement modulates tDCS after-effects and has largely similar modulatory effects on motor cortex neuroplasticity regardless of the specific dosage. A minor dosage-dependent effect was observed only for cathodal tDCS. The present findings support the concept of boosting the neuroplastic effects of anodal tDCS by serotonergic enhancement, a potential clinical approach for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lorena Melo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany,International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany,Correspondence: Min-Fang Kuo, MD, PhD, Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany ()
| |
Collapse
|
32
|
Inhibitory Effect of Apomorphine on Focal and Nonfocal Plasticity in the Human Motor Cortex. Pharmaceutics 2021; 13:pharmaceutics13050718. [PMID: 34068263 PMCID: PMC8153161 DOI: 10.3390/pharmaceutics13050718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Dopamine is crucial for neuroplasticity, which is considered to be the neurophysiological foundation of learning and memory. The specific effect of dopamine on plasticity such as long-term potentiation (LTP) and long-term depression (LTD) is determined by receptor subtype specificity, concentration level, and the kind of plasticity induction technique. In healthy human subjects, the dopamine precursor levodopa (L-DOPA) exerts a dosage-dependent non-linear effect on motor cortex plasticity. Low and high dosage L-DOPA impaired or abolished plasticity, while medium-dose preserved and reversed plasticity in previous studies. Similar dosage-dependent effects were also observed for selective D1-like and D2-like receptor activation that favor excitatory and inhibitory plasticity, respectively. However, such a dosage-dependent effect has not been explored for a nonselective dopamine agonist such as apomorphine in humans. To this aim, nonfocal and focal motor cortex plasticity induction using paired associative stimulation (PAS) and transcranial direct current stimulation (tDCS) were performed respectively in healthy participants under 0.1, 0.2, 0.3 mg apomorphine or placebo drug. Transcranial magnetic stimulation-elicited motor-evoked potentials were used to monitor motor cortical excitability alterations. We hypothesized that, similar to L-DOPA, apomorphine will affect motor cortex plasticity. The results showed that apomorphine with the applied dosages has an inhibitory effect for focal and nonfocal LTP-like and LTD-like plasticity, which was either abolished, diminished or reversed. The detrimental effect on plasticity induction under all dosages of apomorphine suggests a predominantly presynaptic mechanism of action of these dosages.
Collapse
|
33
|
Confounding effects of caffeine on neuroplasticity induced by transcranial alternating current stimulation and paired associative stimulation. Clin Neurophysiol 2021; 132:1367-1379. [PMID: 33762129 DOI: 10.1016/j.clinph.2021.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We examined the effects of caffeine, time of day, and alertness fluctuation on plasticity effects after transcranial alternating current stimulation (tACS) or 25 ms paired associative stimulation (PAS25) in caffeine-naïve and caffeine-adapted subjects. METHODS In two randomised, double-blinded, cross-over or placebo-controlled (caffeine) studies, we measured sixty subjects in eight sessions (n = 30, Male: Female = 1:1 in each study). RESULTS We found caffeine increased motor cortex excitability in caffeine naïve subjects. The aftereffects in caffeine naïve subjects were enhanced and prolonged when combined with PAS 25. Caffeine also increased alertness and the motor evoked potentials (MEPs) were reduced under light deprivation in caffeine consumers both with and without caffeine. In caffeine consumers, the time of day had no effect on tACS-induced plasticity. CONCLUSIONS We conclude that caffeine should be avoided or controlled as confounding factor for brain stimulation protocols. It is also important to keep the brightness constant in all sessions and study groups should not be mixed with caffeine-naïve and caffeine consuming participants. SIGNIFICANCE Caffeine is one of the confounding factors in the plasticity induction studies and it induces different excitability effects in caffeine-naïve and caffeine-adapted subjects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.
Collapse
|
34
|
Korai SA, Ranieri F, Di Lazzaro V, Papa M, Cirillo G. Neurobiological After-Effects of Low Intensity Transcranial Electric Stimulation of the Human Nervous System: From Basic Mechanisms to Metaplasticity. Front Neurol 2021; 12:587771. [PMID: 33658972 PMCID: PMC7917202 DOI: 10.3389/fneur.2021.587771] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Non-invasive low-intensity transcranial electrical stimulation (tES) of the brain is an evolving field that has brought remarkable attention in the past few decades for its ability to directly modulate specific brain functions. Neurobiological after-effects of tES seems to be related to changes in neuronal and synaptic excitability and plasticity, however mechanisms are still far from being elucidated. We aim to review recent results from in vitro and in vivo studies that highlight molecular and cellular mechanisms of transcranial direct (tDCS) and alternating (tACS) current stimulation. Changes in membrane potential and neural synchronization explain the ongoing and short-lasting effects of tES, while changes induced in existing proteins and new protein synthesis is required for long-lasting plastic changes (LTP/LTD). Glial cells, for decades supporting elements, are now considered constitutive part of the synapse and might contribute to the mechanisms of synaptic plasticity. This review brings into focus the neurobiological mechanisms and after-effects of tDCS and tACS from in vitro and in vivo studies, in both animals and humans, highlighting possible pathways for the development of targeted therapeutic applications.
Collapse
Affiliation(s)
- Sohaib Ali Korai
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federico Ranieri
- Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, University Campus Bio-Medico, Rome, Italy
| | - Michele Papa
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy.,ISBE Italy, SYSBIO Centre of Systems Biology, Milan, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy.,Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
35
|
Hwang H, Szucs MJ, Ding LJ, Allen A, Ren X, Haensgen H, Gao F, Rhim H, Andrade A, Pan JQ, Carr SA, Ahmad R, Xu W. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome. Biol Psychiatry 2021; 89:256-269. [PMID: 33032807 PMCID: PMC9258036 DOI: 10.1016/j.biopsych.2020.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neurogranin (Ng), encoded by the schizophrenia risk gene NRGN, is a calmodulin-binding protein enriched in the postsynaptic compartments, and its expression is reduced in the postmortem brains of patients with schizophrenia. Experience-dependent translation of Ng is critical for encoding contextual memory, and Ng regulates developmental plasticity in the primary visual cortex during the critical period. However, the overall impact of Ng on the neuronal signaling that regulates synaptic plasticity is unknown. METHODS Altered Ng expression was achieved via virus-mediated gene manipulation in mice. The effect on long-term potentiation (LTP) was accessed using spike timing-dependent plasticity protocols. Quantitative phosphoproteomics analyses led to discoveries in significant phosphorylated targets. An identified candidate was examined with high-throughput planar patch clamp and was validated with pharmacological manipulation. RESULTS Ng bidirectionally modulated LTP in the hippocampus. Decreasing Ng levels significantly affected the phosphorylation pattern of postsynaptic density proteins, including glutamate receptors, GTPases, kinases, RNA binding proteins, selective ion channels, and ionic transporters, some of which highlighted clusters of schizophrenia- and autism-related genes. Hypophosphorylation of NMDA receptor subunit Grin2A, one significant phosphorylated target, resulted in accelerated decay of NMDA receptor currents. Blocking protein phosphatase PP2B activity rescued the accelerated NMDA receptor current decay and the impairment of LTP mediated by Ng knockdown, implicating the requirement of synaptic PP2B activity for the deficits. CONCLUSIONS Altered Ng levels affect the phosphorylation landscape of neuronal proteins. PP2B activity is required for mediating the deficit in synaptic plasticity caused by decreasing Ng levels, revealing a novel mechanistic link of a schizophrenia risk gene to cognitive deficits.
Collapse
Affiliation(s)
- Hongik Hwang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | | | - Lei J. Ding
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Allen
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaobai Ren
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Henny Haensgen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Jen Q. Pan
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Weifeng Xu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
36
|
The impact of individual electrical fields and anatomical factors on the neurophysiological outcomes of tDCS: A TMS-MEP and MRI study. Brain Stimul 2021; 14:316-326. [PMID: 33516860 DOI: 10.1016/j.brs.2021.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS), a neuromodulatory non-invasive brain stimulation technique, has shown promising results in basic and clinical studies. The known interindividual variability of the effects, however, limits the efficacy of the technique. Recently we reported neurophysiological effects of tDCS applied over the primary motor cortex at the group level, based on data from twenty-nine participants who received 15min of either sham, 0.5, 1.0, 1.5 or 2.0 mA anodal, or cathodal tDCS. The neurophysiological effects were evaluated via changes in: 1) transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEP), and 2) cerebral blood flow (CBF) measured by functional magnetic resonance imaging (MRI) via arterial spin labeling (ASL). At the group level, dose-dependent effects of the intervention were obtained, which however displayed interindividual variability. METHOD In the present study, we investigated the cause of the observed inter-individual variability. To this end, for each participant, a MRI-based realistic head model was designed to 1) calculate anatomical factors and 2) simulate the tDCS- and TMS-induced electrical fields (EFs). We first investigated at the regional level which individual anatomical factors explained the simulated EFs (magnitude and normal component). Then, we explored which specific anatomical and/or EF factors predicted the neurophysiological outcomes of tDCS. RESULTS The results highlight a significant negative correlation between regional electrode-to-cortex distance (rECD) as well as regional CSF (rCSF) thickness, and the individual EF characteristics. In addition, while both rCSF thickness and rECD anticorrelated with tDCS-induced physiological changes, EFs positively correlated with the effects. CONCLUSION These results provide novel insights into the dependency of the neuromodulatory effects of tDCS on individual physical factors.
Collapse
|
37
|
Prager EM, Dorman DB, Hobel ZB, Malgady JM, Blackwell KT, Plotkin JL. Dopamine Oppositely Modulates State Transitions in Striosome and Matrix Direct Pathway Striatal Spiny Neurons. Neuron 2020; 108:1091-1102.e5. [PMID: 33080228 PMCID: PMC7769890 DOI: 10.1016/j.neuron.2020.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Corticostriatal synaptic integration is partitioned among striosome (patch) and matrix compartments of the dorsal striatum, allowing compartmentalized control of discrete aspects of behavior. Despite the significance of such organization, it's unclear how compartment-specific striatal output is dynamically achieved, particularly considering new evidence that overlap of afferents is substantial. We show that dopamine oppositely shapes responses to convergent excitatory inputs in mouse striosome and matrix striatal spiny projection neurons (SPNs). Activation of postsynaptic D1 dopamine receptors promoted the generation of long-lasting synaptically evoked "up-states" in matrix SPNs but opposed it in striosomes, which were more excitable under basal conditions. Differences in dopaminergic modulation were mediated, in part, by dendritic voltage-gated calcium channels (VGCCs): pharmacological manipulation of L-type VGCCs reversed compartment-specific responses to D1 receptor activation. These results support a novel mechanism for the selection of striatal circuit components, where fluctuating levels of dopamine shift the balance of compartment-specific striatal output.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Daniel B Dorman
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Zachary B Hobel
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jeffrey M Malgady
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA; Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030, USA
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
38
|
Dissanayaka T, Zoghi M, Farrell M, Egan G, Jaberzadeh S. The effects of a single-session cathodal transcranial pulsed current stimulation on corticospinal excitability: A randomized sham-controlled double-blinded study. Eur J Neurosci 2020; 52:4908-4922. [PMID: 33128480 DOI: 10.1111/ejn.14916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 06/16/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) of the human motor cortex has received much attention in recent years. Although the effect of anodal tPCS with different frequencies has been investigated, the effect of cathodal tPCS (c-tPCS) has not been explored yet. Therefore, the aim of the present study was to investigate the effect of c-tPCS at 4 and 75 Hz frequencies on corticospinal excitability (CSE) and motor performance. In a randomized sham-controlled crossover design, fifteen healthy participants attended three experimental sessions and received either c-tPCS at 75 Hz, 4 Hz or sham with 1.5 mA for 15 min. Transcranial magnetic stimulation and grooved pegboard test were performed before, immediately after and 30 min after the completion of stimulation at rest. The findings indicate that c-tPCS at both 4 and 75 Hz significantly increased CSE compared to sham. Both c-tPCS at 75 and 4 Hz showed a significant increase in intracortical facilitation compared to sham, whereas the effect on short-interval intracortical inhibition was not significant. The c-tPCS at 4 Hz but not 75 Hz induced modulation of intracortical facilitation correlated with the CSE. Motor performance did not show any significant changes. These results suggest that, compared with sham stimulation, c-tPCS at both 4 and 75 Hz induces an increase in CSE.
Collapse
Affiliation(s)
- Thusharika Dissanayaka
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied health, La Trobe University, Bundoora, Melbourne, Vic., Australia
| | - Michael Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Vic., Australia.,Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Vic., Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Vic., Australia
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
39
|
Fricker B, Heckman E, Cunningham PC, Wang H, Haas JS. Activity-dependent long-term potentiation of electrical synapses in the mammalian thalamus. J Neurophysiol 2020; 125:476-488. [PMID: 33146066 DOI: 10.1152/jn.00471.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activity-dependent changes of synapse strength have been extensively characterized at chemical synapses, but the relationship between physiological forms of activity and strength at electrical synapses remains poorly characterized and understood. For mammalian electrical synapses comprising hexamers of connexin36, physiological forms of neuronal activity in coupled pairs have thus far only been linked to long-term depression; activity that results in strengthening of electrical synapses has not yet been identified. Here, we performed dual whole-cell current-clamp recordings in acute slices of P11-P15 Sprague-Dawley rats of electrically coupled neurons of the thalamic reticular nucleus (TRN), a central brain area that regulates cortical input from and attention to the sensory surround. Using TTA-A2 to limit bursting, we show that tonic spiking in one neuron of a pair results in long-term potentiation of electrical synapses. We use experiments and computational modeling to show that the magnitude of plasticity expressed alters the functionality of the synapse. Potentiation is expressed asymmetrically, indicating that regulation of connectivity depends on the direction of use. Furthermore, calcium pharmacology and imaging indicate that potentiation depends on calcium flux. We thus propose a calcium-based activity rule for bidirectional plasticity of electrical synapse strength. Because electrical synapses dominate intra-TRN connectivity, these synapses and their activity-dependent modifications are key dynamic regulators of thalamic attention circuitry. More broadly, we speculate that bidirectional modifications of electrical synapses may be a widespread and powerful principle for ongoing, dynamic reorganization of neuronal circuitry across the brain.NEW & NOTEWORTHY This work reveals a physiologically relevant form of activity pairing in coupled neurons that results in long-term potentiation of mammalian electrical synapses. These findings, in combination with previous work, allow the authors to propose a bidirectional calcium-based rule for plasticity of electrical synapses, similar to those demonstrated for chemical synapses. These new insights inform the field on how electrical synapse plasticity may modify the neural circuits that incorporate them.
Collapse
Affiliation(s)
- Brandon Fricker
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Emily Heckman
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | | | - Huaixing Wang
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
40
|
Bannon NM, Chistiakova M, Volgushev M. Synaptic Plasticity in Cortical Inhibitory Neurons: What Mechanisms May Help to Balance Synaptic Weight Changes? Front Cell Neurosci 2020; 14:204. [PMID: 33100968 PMCID: PMC7500144 DOI: 10.3389/fncel.2020.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 01/29/2023] Open
Abstract
Inhibitory neurons play a fundamental role in the normal operation of neuronal networks. Diverse types of inhibitory neurons serve vital functions in cortical networks, such as balancing excitation and taming excessive activity, organizing neuronal activity in spatial and temporal patterns, and shaping response selectivity. Serving these, and a multitude of other functions effectively requires fine-tuning of inhibition, mediated by synaptic plasticity. Plasticity of inhibitory systems can be mediated by changes at inhibitory synapses and/or by changes at excitatory synapses at inhibitory neurons. In this review, we consider that latter locus: plasticity at excitatory synapses to inhibitory neurons. Despite the fact that plasticity of excitatory synaptic transmission to interneurons has been studied in much less detail than in pyramids and other excitatory cells, an abundance of forms and mechanisms of plasticity have been observed in interneurons. Specific requirements and rules for induction, while exhibiting a broad diversity, could correlate with distinct sources of excitatory inputs and distinct types of inhibitory neurons. One common requirement for the induction of plasticity is the rise of intracellular calcium, which could be mediated by a variety of ligand-gated, voltage-dependent, and intrinsic mechanisms. The majority of the investigated forms of plasticity can be classified as Hebbian-type associative plasticity. Hebbian-type learning rules mediate adaptive changes of synaptic transmission. However, these rules also introduce intrinsic positive feedback on synaptic weight changes, making plastic synapses and learning networks prone to runaway dynamics. Because real inhibitory neurons do not express runaway dynamics, additional plasticity mechanisms that counteract imbalances introduced by Hebbian-type rules must exist. We argue that weight-dependent heterosynaptic plasticity has a number of characteristics that make it an ideal candidate mechanism to achieve homeostatic regulation of synaptic weight changes at excitatory synapses to inhibitory neurons.
Collapse
Affiliation(s)
- Nicholas M Bannon
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Marina Chistiakova
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Maxim Volgushev
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
41
|
Mosayebi-Samani M, Melo L, Agboada D, Nitsche MA, Kuo MF. Ca2+ channel dynamics explain the nonlinear neuroplasticity induction by cathodal transcranial direct current stimulation over the primary motor cortex. Eur Neuropsychopharmacol 2020; 38:63-72. [PMID: 32768154 DOI: 10.1016/j.euroneuro.2020.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/13/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023]
Abstract
Transcranial direct current stimulation (tDCS) induces polarity-dependent neuroplasticity: with conventional protocols, anodal tDCS results in excitability enhancement while cathodal stimulation reduces excitability. However, partially non-linear responses are observed with increased stimulation intensity and/or duration. Cathodal tDCS with 2 mA for 20 min reverses the excitability-diminishing plasticity induced by stimulation with 1 mA into excitation, while cathodal tDCS with 3 mA again results in excitability diminution. Since tDCS generates NMDA receptor-dependent neuroplasticity, such non-linearity could be explained by different levels of calcium concentration changes, which have been demonstrated in animal models to control for the directionality of plasticity. In this study, we tested the calcium dependency of non-linear cortical plasticity induced by cathodal tDCS in human subjects in a placebo controlled, double-blind and randomized design. The calcium channel blocker flunarizine was applied in low (2.5 mg), medium (5 mg) or high (10 mg) dosages before 20 min cathodal motor cortex tDCS with 3 mA in 12 young healthy subjects. After-effects of stimulation were monitored with TMS-induced motor evoked potentials (MEPs) until 2 h after stimulation. The results show that motor cortical excitability-diminishing after-effects of stimulation were unchanged, diminished, or converted to excitability enhancement with low, medium and high dosages of flunarizine. These results suggest a calcium-dependency of the directionality of tDCS-induced neuroplasticity, which may have relevant implications for future basic and clinical research.
Collapse
Affiliation(s)
- Mohsen Mosayebi-Samani
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany; Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Lorena Melo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany; International Graduate School of Neuroscience, IGSN, Ruhr University Bochum, Bochum, Germany
| | - Desmond Agboada
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany; International Graduate School of Neuroscience, IGSN, Ruhr University Bochum, Bochum, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - Min-Fang Kuo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany.
| |
Collapse
|
42
|
Yu F, Tang X, Hu R, Liang S, Wang W, Tian S, Wu Y, Yuan TF, Zhu Y. The After-Effect of Accelerated Intermittent Theta Burst Stimulation at Different Session Intervals. Front Neurosci 2020; 14:576. [PMID: 32670006 PMCID: PMC7330092 DOI: 10.3389/fnins.2020.00576] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The study aims to investigate the after-effect of three sessions of intermittent theta-burst stimulation (iTBS) on motor cortical excitability. The iTBS was induced over the primary motor cortex (M1) at different time intervals. METHODS The study has a crossover design. Sixteen participants were assigned to three groups and received different accelerated iTBS (aiTBS) protocols during each visit: (1) three continuous sessions with no interval (iTBS18000); (2) three iTBS sessions with 10-min intervals (iTBS600 × 3∗10); and (3) three iTBS sessions with 30-min intervals (iTBS600 × 3∗30). As washout period, each visit is separated by at least 7 days. We measured the motor cortical excitability changes and intracortical inhibition. RESULTS A dose of 1,800 pulses of aiTBS per day is tolerable. The iTBS1800 led to a reduced cortical excitability; whereas iTBS600 × 3∗10 and iTBS600 × 3∗30 enhanced cortical excitability to a differential extent. After a total dose of 1,800 pulses, iTBS600 × 3∗30 exhibited the longer effect and highest percentage of individuals with enhanced cortical excitability. CONCLUSION The results suggest that aiTBS protocols at different time intervals result in different motor cortical excitability after-effects.
Collapse
Affiliation(s)
- Fengyun Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xinwei Tang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Sijie Liang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weining Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shan Tian
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Hanley CJ, Alderman SL, Clemence E. Optimising Cognitive Enhancement: Systematic Assessment of the Effects of tDCS Duration in Older Adults. Brain Sci 2020; 10:brainsci10050304. [PMID: 32429366 PMCID: PMC7287828 DOI: 10.3390/brainsci10050304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to support cognition and brain function in older adults. However, there is an absence of research specifically designed to determine optimal stimulation protocols, and much of what is known about subtle distinctions in tDCS parameters is based on young adult data. As the first systematic exploration targeting older adults, this study aimed to provide insight into the effects of variations in stimulation duration. Anodal stimulation of 10 and 20 min, as well as a sham-control variant, was administered to dorsolateral prefrontal cortex. Stimulation effects were assessed in relation to a novel attentional control task. Ten minutes of anodal stimulation significantly improved task-switching speed from baseline, contrary to the sham-control and 20 min variants. The findings represent a crucial step forwards for methods development, and the refinement of stimulation to enhance executive function in the ageing population.
Collapse
|
44
|
Jamil A, Batsikadze G, Kuo HI, Meesen RLJ, Dechent P, Paulus W, Nitsche MA. Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study. Hum Brain Mapp 2019; 41:1644-1666. [PMID: 31860160 PMCID: PMC7267945 DOI: 10.1002/hbm.24901] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) induces polarity‐ and dose‐dependent neuroplastic aftereffects on cortical excitability and cortical activity, as demonstrated by transcranial magnetic stimulation (TMS) and functional imaging (fMRI) studies. However, lacking systematic comparative studies between stimulation‐induced changes in cortical excitability obtained from TMS, and cortical neurovascular activity obtained from fMRI, prevent the extrapolation of respective physiological and mechanistic bases. We investigated polarity‐ and intensity‐dependent effects of tDCS on cerebral blood flow (CBF) using resting‐state arterial spin labeling (ASL‐MRI), and compared the respective changes to TMS‐induced cortical excitability (amplitudes of motor evoked potentials, MEP) in separate sessions within the same subjects (n = 29). Fifteen minutes of sham, 0.5, 1.0, 1.5, and 2.0‐mA anodal or cathodal tDCS was applied over the left primary motor cortex (M1) in a randomized repeated‐measure design. Time‐course changes were measured before, during and intermittently up to 120‐min after stimulation. ROI analyses indicated linear intensity‐ and polarity‐dependent tDCS after‐effects: all anodal‐M1 intensities increased CBF under the M1 electrode, with 2.0‐mA increasing CBF the greatest (15.3%) compared to sham, while all cathodal‐M1 intensities decreased left M1 CBF from baseline, with 2.0‐mA decreasing the greatest (−9.3%) from sham after 120‐min. The spatial distribution of perfusion changes correlated with the predicted electric field, as simulated with finite element modeling. Moreover, tDCS‐induced excitability changes correlated more strongly with perfusion changes in the left sensorimotor region compared to the targeted hand‐knob region. Our findings reveal lasting tDCS‐induced alterations in cerebral perfusion, which are dose‐dependent with tDCS parameters, but only partially account for excitability changes.
Collapse
Affiliation(s)
- Asif Jamil
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,REVAL Research Institute, University of Hasselt, Hasselt, Belgium
| | - Giorgi Batsikadze
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Hsiao-I Kuo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Raf L J Meesen
- REVAL Research Institute, University of Hasselt, Hasselt, Belgium
| | - Peter Dechent
- Department of Cognitive Neurology, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
45
|
Mosayebi Samani M, Agboada D, Kuo MF, Nitsche MA. Probing the relevance of repeated cathodal transcranial direct current stimulation over the primary motor cortex for prolongation of after-effects. J Physiol 2019; 598:805-816. [PMID: 31714998 DOI: 10.1113/jp278857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS To explore the capability of cathodal transcranial direct current stimulation (tDCS) to induce late-phase long-term depression (LTD) via repeated stimulation. Conventional (1 mA for 15 min) and intensified (3 mA for 20 min) protocols with short (20 min) and long (24 h) intervals were tested. Late-phase plasticity was not induced by a single repetition of stimulation. Repetition reduced the efficacy of stimulation protocols with higher intensities. ABSTRACT Transcranial direct current stimulation (tDCS) has shown promising results in pilot studies as a therapeutic intervention in disorders of the central nervous system, but more sustained effects are required for clinical application. To address this issue, one possible solution is the use of repeated stimulation protocols. Previous studies indicated the possibility of extending the after-effects of single intervention cathodal tDCS by repeating the tDCS, with relatively short intervals between repetitions being most effective. In this study, we thus investigated the effects of repeated stimulation protocols at short and long intervals, for a conventional tDCS protocol (1 mA for 15 min) and a newly developed optimized protocol (3 mA for 20 min). In 16 healthy participants, we compared single interventions of conventional and optimized protocols, repeated application of these protocols at intervals of 20 min and 24 h, and a sham tDCS session. tDCS-induced neuroplastic after-effects were then monitored with transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) until the following evening after stimulation. The results revealed that the duration of the after-effects of repeated conventional and optimized protocols with short intervals remained nearly unchanged compared to the respective single intervention protocols. For the long-interval (24 h) protocol, stimulation with the conventional protocol did not significantly alter respective after-effects, while it reduced the efficacy of the optimized protocol, compared with respective single interventions. Thus late-phase plasticity could not be induced by a single repetition of stimulation in this study, but repetition reduced the efficacy of stimulation protocols with higher intensities. This study provides further insights into the dependency of tDCS-induced neuroplasticity on stimulation parameters, and therefore delivers crucial information for future tDCS applications.
Collapse
Affiliation(s)
- Mohsen Mosayebi Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Desmond Agboada
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,International Graduate School of Neuroscience, IGSN, Ruhr University Bochum, Bochum, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
46
|
Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep 2019; 9:18185. [PMID: 31796827 PMCID: PMC6890804 DOI: 10.1038/s41598-019-54621-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Size and duration of the neuroplastic effects of tDCS depend on stimulation parameters, including stimulation duration and intensity of current. The impact of stimulation parameters on physiological effects is partially non-linear. To improve the utility of this intervention, it is critical to gather information about the impact of stimulation duration and intensity on neuroplasticity, while expanding the parameter space to improve efficacy. Anodal tDCS of 1–3 mA current intensity was applied for 15–30 minutes to study motor cortex plasticity. Sixteen healthy right-handed non-smoking volunteers participated in 10 sessions (intensity-duration pairs) of stimulation in a randomized cross-over design. Transcranial magnetic stimulation (TMS)-induced motor-evoked potentials (MEP) were recorded as outcome measures of tDCS effects until next evening after tDCS. All active stimulation conditions enhanced motor cortex excitability within the first 2 hours after stimulation. We observed no significant differences between the three stimulation intensities and durations on cortical excitability. A trend for larger cortical excitability enhancements was however observed for higher current intensities (1 vs 3 mA). These results add information about intensified tDCS protocols and suggest that the impact of anodal tDCS on neuroplasticity is relatively robust with respect to gradual alterations of stimulation intensity, and duration.
Collapse
|
47
|
Mosayebi Samani M, Agboada D, Jamil A, Kuo MF, Nitsche MA. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex 2019; 119:350-361. [DOI: 10.1016/j.cortex.2019.04.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/05/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022]
|
48
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
49
|
Barberis A. Postsynaptic plasticity of GABAergic synapses. Neuropharmacology 2019; 169:107643. [PMID: 31108109 DOI: 10.1016/j.neuropharm.2019.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
The flexibility of neuronal networks is believed to rely mainly on the plasticity of excitatory synapses. However, like their excitatory counterparts, inhibitory synapses also undergo several forms of synaptic plasticity. This review examines recent advances in the understanding of the molecular mechanisms leading to postsynaptic GABAergic plasticity. Specifically, modulation of GABAA receptor (GABAAR) number at postsynaptic sites plays a key role, with the interaction of GABAARs with the scaffold protein gephyrin and other postsynaptic scaffold/regulatory proteins having particular importance. Our understanding of these molecular interactions are progressing, based on recent insights into the processes of GABAAR lateral diffusion, gephyrin dynamics, and gephyrin nanoscale organization. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Andrea Barberis
- Plasticity of Inhibitory Networks, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy.
| |
Collapse
|
50
|
Hanley CJ, Tales A. Anodal tDCS improves attentional control in older adults. Exp Gerontol 2018; 115:88-95. [PMID: 30500351 DOI: 10.1016/j.exger.2018.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/12/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023]
Abstract
Transcranial direct current stimulation (tDCS) facilitates cognitive enhancement by directly increasing neuroplasticity, and has shown promising results as an external intervention to attenuate age-related cognitive decline. However, stimulation protocols have failed to account for age-associated changes in brain structure and the present literature omits investigation of attentional control, despite the occurrence of substantial inhibitory processing deficits with age. To provide new insight into the benefits of tDCS, the objective of this study was to develop an age-optimised stimulation protocol in which key parameters (amplitude, duration, and electrode configuration) were selected in accordance with knowledge of stimulation effects, specific to the ageing brain. Participants (mean age 66.5 years) completed three sessions of double-blind, anodal or sham stimulation, in conjunction with a novel task switching paradigm, which was designed to reflect the complexities of simultaneously monitoring and updating stimulus representations. The results show that those who had anodal tDCS exhibited an acute, post-stimulation increase in task switching speed (p < .01, d = 1.36). Although the sham group was subject to the same task exposure, only the anodal stimulation group experienced a performance gain, thus emphasising the efficacy of active brain stimulation. For the first time, this study demonstrates the utility of stimulation protocols tailored specifically for use with older adults, targeted towards the modulation of attentional control. This finding has critical implications for cognitive health and encourages the use of age-optimised tDCS as a viable method for enhancing executive function in later life.
Collapse
Affiliation(s)
- Claire J Hanley
- Department of Psychology, College of Human and Health Sciences, Swansea University, UK.
| | - Andrea Tales
- The Centre for Innovative Ageing, College of Human and Health Sciences, Swansea University, UK
| |
Collapse
|