1
|
Garrett AS, Means SA, Roesler MW, Miller KJW, Cheng LK, Clark AR. Modeling and experimental approaches for elucidating multi-scale uterine smooth muscle electro- and mechano-physiology: A review. Front Physiol 2022; 13:1017649. [PMID: 36277190 PMCID: PMC9585314 DOI: 10.3389/fphys.2022.1017649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The uterus provides protection and nourishment (via its blood supply) to a developing fetus, and contracts to deliver the baby at an appropriate time, thereby having a critical contribution to the life of every human. However, despite this vital role, it is an under-investigated organ, and gaps remain in our understanding of how contractions are initiated or coordinated. The uterus is a smooth muscle organ that undergoes variations in its contractile function in response to hormonal fluctuations, the extreme instance of this being during pregnancy and labor. Researchers typically use various approaches to studying this organ, such as experiments on uterine muscle cells, tissue samples, or the intact organ, or the employment of mathematical models to simulate the electrical, mechanical and ionic activity. The complexity exhibited in the coordinated contractions of the uterus remains a challenge to understand, requiring coordinated solutions from different research fields. This review investigates differences in the underlying physiology between human and common animal models utilized in experiments, and the experimental interventions and computational models used to assess uterine function. We look to a future of hybrid experimental interventions and modeling techniques that could be employed to improve the understanding of the mechanisms enabling the healthy function of the uterus.
Collapse
Affiliation(s)
| | | | | | | | | | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Wu SY, Shen Y, Shkolnikov I, Campbell RE. Fluorescent Indicators For Biological Imaging of Monatomic Ions. Front Cell Dev Biol 2022; 10:885440. [PMID: 35573682 PMCID: PMC9093666 DOI: 10.3389/fcell.2022.885440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.
Collapse
Affiliation(s)
- Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Irene Shkolnikov
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Caspofungin induces the release of Ca 2+ ions from internal stores by activating ryanodine receptor-dependent pathways in human tracheal epithelial cells. Sci Rep 2020; 10:11723. [PMID: 32678179 PMCID: PMC7367263 DOI: 10.1038/s41598-020-68626-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/25/2020] [Indexed: 11/09/2022] Open
Abstract
The antimycotic drug caspofungin is known to alter the cell function of cardiomyocytes and the cilia-bearing cells of the tracheal epithelium. The objective of this study was to investigate the homeostasis of intracellular Ca2+ concentration ([Ca2+]i) after exposure to caspofungin in isolated human tracheal epithelial cells. The [Ca2+]i was measured using the ratiometric fluoroprobe FURA-2 AM. We recorded two groups of epithelial cells with distinct responses to caspofungin exposure, which demonstrated either a rapid transient rise in [Ca2+]i or a sustained elevation of [Ca2+]i. Both patterns of Ca2+ kinetics were still observed when an influx of transmembraneous Ca2+ ions was pharmacologically inhibited. Furthermore, in extracellular buffer solutions without Ca2+ ions, caspofungin exposure still evoked this characteristic rise in [Ca2+]i. To shed light on the origin of the Ca2+ ions responsible for the elevation in [Ca2+]i we investigated the possible intracellular storage of Ca2+ ions. The depletion of mitochondrial Ca2+ stores using 25 µM 2,4-dinitrophenol (DNP) did not prevent the caspofungin-induced rise in [Ca2+]i, which was rapid and transient. However, the application of caffeine (30 mM) to discharge Ca2+ ions that were presumably stored in the endoplasmic reticulum (ER) prior to caspofungin exposure completely inhibited the caspofungin-induced changes in [Ca2+]i levels. When the ER-bound IP3 receptors were blocked by 2-APB (40 µM), we observed a delayed transient rise in [Ca2+]i as a response to the caspofungin. Inhibition of the ryanodine receptors (RyR) using 40 µM ryanodine completely prevented the caspofungin-induced elevation of [Ca2+]i. In summary, caspofungin has been shown to trigger an increase in [Ca2+]i independent from extracellular Ca2+ ions by liberating the Ca2+ ions stored in the ER, mainly via a RyR pathway.
Collapse
|
4
|
Osaghae BE, Arrowsmith S, Wray S. Gestational and Hormonal Effects on Magnesium Sulfate's Ability to Inhibit Mouse Uterine Contractility. Reprod Sci 2020; 27:1570-1579. [PMID: 32430707 DOI: 10.1007/s43032-020-00185-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Magnesium sulfate is used as a tocolytic, but clinical efficacy has been seriously questioned. Our objective was to use controlled ex vivo conditions and known pregnancy stages, to investigate how 2 key factors, hormones and gestation, affect magnesium's tocolytic ability. We hypothesized that these factors could underlie the varying clinical findings around magnesium's efficacy. Myometrial strips were obtained from nonpregnant (n = 10), mid-pregnant (n = 12), and term-pregnant (n = 11) mouse uterus. The strips were mounted in organ baths superfused with oxygenated physiological saline at pH 7.4 and 37 °C. The effect of different concentrations of MgSO4 (2-20 mM) was examined on spontaneous and oxytocin-induced (0.5-1 nM) contractions. Contractile properties (amplitude, frequency, and area under the curve) were measured before and after application of magnesium. Magnesium sulfate had a dose-dependent inhibitory effect on both spontaneous and oxytocin-induced contractions but was less effective in the presence of oxytocin. In spontaneous contractions, magnesium was more potent as gestation progressed (P < .0001). In the presence of oxytocin, however, there were no significant gestational differences in its effects on contraction. The rapid onset and reversal of magnesium's effects suggest an extracellular action on calcium entry. Taken together, we conclude that magnesium's actions are influenced by both gestational state and hormones, such that, at least in mice, it is least effective in early gestation with oxytocin present and most effective at term in the absence of oxytocin. That magnesium is least effective preterm and oxytocin decreases its effectiveness throughout gestation, may explain its disappointing clinical effects as a tocolytic.
Collapse
Affiliation(s)
- Blessing E Osaghae
- Department of Molecular and Cellular Physiology, University Department, Harris-Wellbeing Preterm Birth Research Centre, Institute of Translational Medicine, University of Liverpool, First floor Liverpool Women's Hospital, Crown Street, Liverpool, L8 7SS, UK
| | - Sarah Arrowsmith
- Department of Molecular and Cellular Physiology, University Department, Harris-Wellbeing Preterm Birth Research Centre, Institute of Translational Medicine, University of Liverpool, First floor Liverpool Women's Hospital, Crown Street, Liverpool, L8 7SS, UK
| | - Susan Wray
- Department of Molecular and Cellular Physiology, University Department, Harris-Wellbeing Preterm Birth Research Centre, Institute of Translational Medicine, University of Liverpool, First floor Liverpool Women's Hospital, Crown Street, Liverpool, L8 7SS, UK.
| |
Collapse
|
5
|
Shmygol A. Calcium-induced calcium release in astroglia-a view "from the inside". Pflugers Arch 2020; 472:435-436. [PMID: 32219530 DOI: 10.1007/s00424-020-02366-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Anatoly Shmygol
- Department of Physiology, College of Medicine and Health Sciences, United Arab University, Al Ain, UAE.
| |
Collapse
|
6
|
|
7
|
Parkington HC, Siriwardhana ER, Coleman HA. Intracellular organelles; key regulators of myometrial activity. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
High-Throughput Fluorescence Assays for Ion Channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:27-72. [DOI: 10.1007/978-3-030-12457-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:337-370. [DOI: 10.1007/978-3-030-12457-1_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Osaghae BE, Arrowsmith S, Wray S. Gestational and Hormonal Effects on Magnesium Sulfate's Ability to Inhibit Mouse Uterine Contractility. Reprod Sci 2019:1933719119828089. [PMID: 30773125 DOI: 10.1177/1933719119828089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnesium sulfate is used as a tocolytic, but clinical efficacy has been seriously questioned. Our objective was to use controlled ex vivo conditions and known pregnancy stages, to investigate how 2 key factors, hormones and gestation, affect magnesium's tocolytic ability. We hypothesized that these factors could underlie the varying clinical findings around magnesium's efficacy. Myometrial strips were obtained from nonpregnant (n = 10), mid-pregnant (n = 12), and term-pregnant (n = 11) mouse uterus. The strips were mounted in organ baths superfused with oxygenated physiological saline at pH 7.4 and 37°C. The effect of different concentrations of MgSO4 (2-20 mM) was examined on spontaneous and oxytocin-induced (0.5-1 nM) contractions. Contractile properties (amplitude, frequency, and area under the curve) were measured before and after application of magnesium. Magnesium sulfate had a dose-dependent inhibitory effect on both spontaneous and oxytocin-induced contractions but was less effective in the presence of oxytocin. In spontaneous contractions, magnesium was more potent as gestation progressed ( P < .0001). In the presence of oxytocin, however, there were no significant gestational differences in its effects on contraction. The rapid onset and reversal of magnesium's effects suggest an extracellular action on calcium entry. Taken together, we conclude that magnesium's actions are influenced by both gestational state and hormones, such that, at least in mice, it is least effective in early gestation with oxytocin present and most effective at term in the absence of oxytocin. That magnesium is least effective preterm and oxytocin decreases its effectiveness throughout gestation, may explain its disappointing clinical effects as a tocolytic.
Collapse
Affiliation(s)
- Blessing E Osaghae
- 1 Department of Cellular and Molecular Physiology, University Department, Harris-Wellbeing Preterm Birth Research Centre, The Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sarah Arrowsmith
- 1 Department of Cellular and Molecular Physiology, University Department, Harris-Wellbeing Preterm Birth Research Centre, The Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Susan Wray
- 1 Department of Cellular and Molecular Physiology, University Department, Harris-Wellbeing Preterm Birth Research Centre, The Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Simultaneous Recording of Subcellular Ca 2+ Signals from the Cytosol and Sarco/Endoplasmic Reticulum: Compartmentalized Dye Loading, Imaging, and Analysis. Methods Mol Biol 2019. [PMID: 30710267 DOI: 10.1007/978-1-4939-9030-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
An increase in the cytosolic Ca2+ concentration triggers the contraction in cardiomyocytes. In these cells sarcoplasmic reticulum (SR) is the major source of Ca2+, and the release from this store is mediated by the ryanodine receptors (RyRs). These receptors are regulated by cytosolic and intra-SR [Ca2+]. The cytosolic Ca2+ regulation is well established, but there are some limitations to determine indirectly the intra-SR Ca2+ concentration and understand its role in the RyRs regulation. Therefore, the interest to directly measure the free intra-SR Ca2+ concentration ([Ca2+]SR) has led to the application of a low-affinity Ca2+ indicator (Fluo-5N AM) to follow changes of [Ca2+]SR in cardiomyocytes. However the loading of this AM-ester dye into the SR has remained a challenge in freshly isolated mouse cardiomyocytes. Here, we describe an optimized protocol to measure changes of [Ca2+]SR in mouse cardiomyocytes using fluorescent Ca2+ indicators and confocal microscopy. The application of this protocol allows to evaluate directly intra-SR Ca2+ in real time in various mouse models of cardiac disease, including transgenic animals harboring mutants of RyRs or other Ca2+ signaling proteins.
Collapse
|
12
|
The Myometrium: From Excitation to Contractions and Labour. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:233-263. [PMID: 31183830 DOI: 10.1007/978-981-13-5895-1_10] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
We start by describing the functions of the uterus, its structure, both gross and fine, innervation and blood supply. It is interesting to note the diversity of the female's reproductive tract between species and to remember it when working with different animal models. Myocytes are the overwhelming cell type of the uterus (>95%) and our focus. Their function is to contract, and they have an intrinsic pacemaker and rhythmicity, which is modified by hormones, stretch, paracrine factors and the extracellular environment. We discuss evidence or not for pacemaker cells in the uterus. We also describe the sarcoplasmic reticulum (SR) in some detail, as it is relevant to calcium signalling and excitability. Ion channels, including store-operated ones, their contributions to excitability and action potentials, are covered. The main pathway to excitation is from depolarisation opening voltage-gated Ca2+ channels. Much of what happens downstream of excitability is common to other smooth muscles, with force depending upon the balance of myosin light kinase and phosphatase. Mechanisms of maintaining Ca2+ balance within the myocytes are discussed. Metabolism, and how it is intertwined with activity, blood flow and pH, is covered. Growth of the myometrium and changes in contractile proteins with pregnancy and parturition are also detailed. We finish with a description of uterine activity and why it is important, covering progression to labour as well as preterm and dysfunctional labours. We conclude by highlighting progress made and where further efforts are required.
Collapse
|
13
|
Sampieri A, Santoyo K, Asanov A, Vaca L. Association of the IP3R to STIM1 provides a reduced intraluminal calcium microenvironment, resulting in enhanced store-operated calcium entry. Sci Rep 2018; 8:13252. [PMID: 30185837 PMCID: PMC6125598 DOI: 10.1038/s41598-018-31621-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 11/21/2022] Open
Abstract
The involvement of inositol trisphosphate receptor (IP3R) in modulating store-operated calcium entry (SOCE) was established many years ago. Nevertheless, the molecular mechanism responsible for this observation has not been elucidated to this date. In the present study we show that IP3R associates to STIM1 upon depletion of the endoplasmic reticulum (ER) by activation of the inositol trisphosphate signaling cascade via G-protein coupled receptors. IP3R-STIM1 association results in enhanced STIM1 puncta formation and larger Orai-mediated whole-cell currents as well as increased calcium influx. Depleting the ER with a calcium ATPase inhibitor (thapsigargin, TG) does not induce IP3R-STIM1 association, indicating that this association requires an active IP3R. The IP3R-STIM1 association is only observed after IP3R activation, as evidenced by FRET experiments and co-immunoprecipitation assays. ER intraluminal calcium measurements using Mag-Fluo-4 showed enhanced calcium depletion when IP3R is overexpressed. A STIM1-GCaMP fusion protein indicates that STIM1 detects lower calcium concentrations near its EF-hand domain when IP3R is overexpressed when compared with the fluorescence reported by a GCaMP homogenously distributed in the ER lumen (ER-GCaMP). All these data together strongly suggest that activation of inositol trisphosphate signaling cascade induces the formation of the IP3R-STIM1 complex. The activated IP3R provides a reduced intraluminal calcium microenvironment near STIM1, resulting in enhanced activation of Orai currents and SOCE.
Collapse
Affiliation(s)
- Alicia Sampieri
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiología Celular. Universidad Nacional Autonoma de México, Ciudad de México, Mexico
| | - Karla Santoyo
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiología Celular. Universidad Nacional Autonoma de México, Ciudad de México, Mexico
| | | | - Luis Vaca
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiología Celular. Universidad Nacional Autonoma de México, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Testrow CP, Holden AV, Shmygol A, Zhang H. A computational model of excitation and contraction in uterine myocytes from the pregnant rat. Sci Rep 2018; 8:9159. [PMID: 29904075 PMCID: PMC6002389 DOI: 10.1038/s41598-018-27069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/24/2018] [Indexed: 12/17/2022] Open
Abstract
Aberrant uterine myometrial activities in humans are major health issues. However, the cellular and tissue mechanism(s) that maintain the uterine myometrium at rest during gestation, and that initiate and maintain long-lasting uterine contractions during delivery are incompletely understood. In this study we construct a computational model for describing the electrical activity (simple and complex action potentials), intracellular calcium dynamics and mechanical contractions of isolated uterine myocytes from the pregnant rat. The model reproduces variant types of action potentials - from spikes with a smooth plateau, to spikes with an oscillatory plateau, to bursts of spikes - that are seen during late gestation under different physiological conditions. The effects of the hormones oestradiol (via reductions in calcium and potassium selective channel conductance), oxytocin (via an increase in intracellular calcium release) and the tocolytic nifedipine (via a block of L-type calcium channels currents) on action potentials and contractions are also reproduced, which quantitatively match to experimental data. All of these results validated the cell model development. In conclusion, the developed model provides a computational platform for further investigations of the ionic mechanism underlying the genesis and control of electrical and mechanical activities in the rat uterine myocytes.
Collapse
Affiliation(s)
- Craig P Testrow
- The University of Manchester, School of Physics and Astronomy, Manchester, M13 9PL, UK
| | - Arun V Holden
- The University of Leeds, School of Biomedical Sciences, Leeds, LS2 9JT, UK
| | - Anatoly Shmygol
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Physiology, Al-Ain, P.O. Box 17666, Emirates, UAE
| | - Henggui Zhang
- The University of Manchester, School of Physics and Astronomy, Manchester, M13 9PL, UK.
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150001, China.
- Space Institute of Southern China, Shenzhen, 518117, China.
- Key laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
15
|
Walter ERH, Williams JAG, Parker D. Tuning Mg(II) Selectivity: Comparative Analysis of the Photophysical Properties of Four Fluorescent Probes with an Alkynyl-Naphthalene Fluorophore. Chemistry 2018; 24:6432-6441. [DOI: 10.1002/chem.201800013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - David Parker
- Department of Chemistry; Durham University; South Road Durham DH1 3LE UK
| |
Collapse
|
16
|
Liu M, Yu X, Li M, Liao N, Bi A, Jiang Y, Liu S, Gong Z, Zeng W. Fluorescent probes for the detection of magnesium ions (Mg 2+): from design to application. RSC Adv 2018; 8:12573-12587. [PMID: 35541260 PMCID: PMC9079720 DOI: 10.1039/c8ra00946e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/21/2018] [Indexed: 11/24/2022] Open
Abstract
Magnesium ions (Mg2+) play essential roles in various physiological and pathological processes, its abnormal homeostasis in cells is related to many diseases, such as diabetes, neuromuscular disorders, hypertension and other cardiovascular disorders. Investigation on the regulation of magnesium in cellular processes has attracted considerable interest in the past several decades. Among those reported strategies, fluorescent imaging technology has become a powerful and cost-effective tool for the real-time monitoring of magnesium distribution, uptake and trafficking, due to its superior features of high sensitivity and non-invasiveness, as well as excellent spatial and temporal fidelity. Herein, we critically summarize the progresses in the intracellular magnesium detection with fluorescent imaging probes. Our discussion focuses on the recent contributions concerning fluorescent imaging probes for mapping magnesium in biological processes. All the candidates are organized according to their acceptor structures. The sensing mechanisms of fluorescent probes are also highly taken into account. Challenges, trends and prospects of fluorescent imaging technology in magnesium detection are also set forth.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Institute of Hospital Pharmacy, Xiangya Hospital, Central South University Changsha 410008 P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 P. R. China +86-731-82650459 +86-731-82650459
| | - Xia Yu
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 P. R. China +86-731-82650459 +86-731-82650459
| | - Ming Li
- Changsha Stomatological Hospital Changsha 410000 P. R. China
| | - Naixuan Liao
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 P. R. China +86-731-82650459 +86-731-82650459
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 P. R. China +86-731-82650459 +86-731-82650459
| | - Yueping Jiang
- Department of Pharmacy, Institute of Hospital Pharmacy, Xiangya Hospital, Central South University Changsha 410008 P. R. China
| | - Shao Liu
- Department of Pharmacy, Institute of Hospital Pharmacy, Xiangya Hospital, Central South University Changsha 410008 P. R. China
| | - Zhicheng Gong
- Department of Pharmacy, Institute of Hospital Pharmacy, Xiangya Hospital, Central South University Changsha 410008 P. R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 P. R. China +86-731-82650459 +86-731-82650459
| |
Collapse
|
17
|
Zafrah HA, Alotaibi MF. The effect of extracellular ATP on rat uterine contraction from different gestational stages and its possible mechanisms of action. J Basic Clin Physiol Pharmacol 2018; 28:209-217. [PMID: 28358713 DOI: 10.1515/jbcpp-2016-0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/09/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The mechanisms underlying the onset of labor are not fully understood. Extracellular adenosine 5'-triphosphate (ATP) is known to cause uterine contractions in different species but the exact underlying mechanisms are poorly investigated to date. The aims of this study were to investigate the effect of extracellular ATP on spontaneous uterine contractions from different gestational stages and to elucidate its possible underlying mechanisms. METHODS Longitudinal uterine strips were obtained from rats in different gestational stages (nonpregnant, late-pregnant, and term-pregnant). The effects of 1 mM ATP were examined on uterine contractions generated spontaneously, depolarized by high-KCl (60 mM), induced by oxytocin (5 nM), in the presence of high external Ca2+, or in the absence of external Ca2+. RESULTS Application of 1 mM extracellular ATP significantly increased the force of spontaneous contraction in uterine strips obtained from all gestational stages with prominent increase in term-pregnant rats compared to other gestations. ATP significantly increased the force induced by depolarization (122%, p=0.010, n=6), oxytocin (129%, p=0.001, n=7), high-Ca2+ (145%, p=0.005, n=6) and it was able to cause transient contraction in the absence of external Ca2+ (33%, p<0.01). CONCLUSIONS Extracellular ATP is able to increase the force and frequency of uterine contractions and its effect increases with the progression of pregnancy and it involves Ca2+ influx and release. These findings open a new window for clinicians to consider ATP as a therapeutic target to control the uterine activity during difficult labors.
Collapse
Affiliation(s)
- Hind A Zafrah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Kingdom of
| | - Mohammed F Alotaibi
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Kingdom of
| |
Collapse
|
18
|
Alotaibi M. Changes in expression of P2X7 receptors in rat myometrium at different gestational stages and the mechanism of ATP-induced uterine contraction. Life Sci 2018. [PMID: 29524518 DOI: 10.1016/j.lfs.2018.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS Given the importance of ATP in the control of uterine activity for successful labor and involution, this study was performed to measure the level of P2X7 receptors (P2X7Rs) in rat myometrium at different gestational stages and to investigate the mechanisms of ATP-induced uterine contraction. MATERIALS AND METHODS Myometrial tissues were obtained from rats at different gestational stages and the level of P2X7Rs was measured by ELISA. In other experiments, the effect of 1 mM ATP was tested on spontaneous contraction and the underlying mechanisms were investigated. KEY FINDINGS P2X7Rs were expressed in nonpregnant uterine tissues, progressively increased throughout pregnancy, and markedly peaked during postpartum involution. ATP significantly increased the force of spontaneous contraction in all uterine strips from different gestational stages with marked increase during labor and postpartum. ATP could not maintain the force when external Ca2+ was removed. In addition, ATP was able to cause tonic transient contraction in the absence of external Ca2+. SIGNIFICANCE P2X7Rs are functionally regulated and contributed to ATP-induced uterine contraction. The sensitivity of the myometrium to ATP increases as pregnancy progresses and it involves Ca2+ influx and Ca2+ release pathways. The clear effects of ATP on contractility suggest its physiological requirement for successful labor and postpartum involution.
Collapse
Affiliation(s)
- Mohammed Alotaibi
- Department of Physiology, College of Medicine, King Saud University, P.O Box 2925, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
19
|
Orai3 channel is the 2-APB-induced endoplasmic reticulum calcium leak. Cell Calcium 2017; 65:91-101. [DOI: 10.1016/j.ceca.2017.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
|
20
|
Leon-Aparicio D, Chavez-Reyes J, Guerrero-Hernandez A. Activation of endoplasmic reticulum calcium leak by 2-APB depends on the luminal calcium concentration. Cell Calcium 2017; 65:80-90. [DOI: 10.1016/j.ceca.2017.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
|
21
|
Dougoud M, Vinckenbosch L, Mazza C, Schwaller B, Pecze L. The Effect of Gap Junctional Coupling on the Spatiotemporal Patterns of Ca2+ Signals and the Harmonization of Ca2+-Related Cellular Responses. PLoS Comput Biol 2016; 12:e1005295. [PMID: 28027293 PMCID: PMC5226819 DOI: 10.1371/journal.pcbi.1005295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/11/2017] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Calcium ions (Ca2+) are important mediators of a great variety of cellular activities e.g. in response to an agonist activation of a receptor. The magnitude of a cellular response is often encoded by frequency modulation of Ca2+ oscillations and correlated with the stimulation intensity. The stimulation intensity highly depends on the sensitivity of a cell to a certain agonist. In some cases, it is essential that neighboring cells produce a similar and synchronized response to an agonist despite their different sensitivity. In order to decipher the presumed function of Ca2+ waves spreading among connecting cells, a mathematical model was developed. This model allows to numerically modifying the connectivity probability between neighboring cells, the permeability of gap junctions and the individual sensitivity of cells to an agonist. Here, we show numerically that strong gap junctional coupling between neighbors ensures an equilibrated response to agonist stimulation via formation of Ca2+ phase waves, i.e. a less sensitive neighbor will produce the same or similar Ca2+ signal as its highly sensitive neighbor. The most sensitive cells within an ensemble are the wave initiator cells. The Ca2+ wave in the cytoplasm is driven by a sensitization wave front in the endoplasmic reticulum. The wave velocity is proportional to the cellular sensitivity and to the strength of the coupling. The waves can form different patterns including circular rings and spirals. The observed pattern depends on the strength of noise, gap junctional permeability and the connectivity probability between neighboring cells. Our simulations reveal that one highly sensitive region gradually takes the lead within the entire noisy system by generating directed circular phase waves originating from this region. The calcium ion (Ca2+), a universal signaling molecule, is widely recognized to play a fundamental role in the regulation of various biological processes. Agonist–evoked Ca2+ signals often manifest as rhythmic changes in the cytosolic free Ca2+ concentration (ccyt) called Ca2+ oscillations. Stimuli intensity was found to be proportional to the oscillation frequency and the evoked down-steam cellular response. Stochastic receptor expression in individual cells in a cell population inevitably leads to individually different oscillation frequencies and individually different Ca2+-related cellular responses. However, in many organs, the neighboring cells have to overcome their individually different sensitivity and produce a synchronized response. Gap junctions are integral membrane structures that enable the direct cytoplasmic exchange of Ca2+ ions and InsP3 molecules between neighboring cells. By simulations, we were able to demonstrate how the strength of intercellular gap junctional coupling in relation to stimulus intensity can modify the spatiotemporal patterns of Ca2+ signals and harmonize the Ca2+-related cellular responses via synchronization of oscillation frequency. We demonstrate that the most sensitive cells are the wave initiator cells and that a highly sensitive region plays an important role in the determination of the Ca2+ phase wave direction. This sensitive region will then also progressively determine the global behavior of the entire system.
Collapse
Affiliation(s)
- Michaël Dougoud
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Laura Vinckenbosch
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
- University of Applied Sciences and Arts Western Switzerland // HES-SO, HEIG-VD, Yverdon-les-Bains, Switzerland
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - László Pecze
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Diercks BP, Fliegert R, Guse AH. Mag-Fluo4 in T cells: Imaging of intra-organelle free Ca 2+ concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:977-986. [PMID: 27913206 DOI: 10.1016/j.bbamcr.2016.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/22/2023]
Abstract
Ca2+ signaling is a major signal transduction pathway involved in T cell activation, but also in apoptosis of T cells. Since T cells make use of several Ca2+-mobilizing second messengers, such as nicotinic acid adenine dinucleotide phosphate, d-myo-inositol 1,4,5-trisphosphate, and cyclic ADP-ribose, we intended to analyze luminal Ca2+ concentration upon cell activation. Mag-Fluo4/AM, a low-affinity Ca2+ dye known to localize to the endoplasmic reticular lumen in many cell types, showed superior brightness and bleaching stability, but, surprisingly, co-localized with mito-tracker, but not with ER-tracker in Jurkat T cells. Thus, we used Mag-Fluo4/AM to monitor the free luminal mitochondrial Ca2+ concentration ([Ca2+]mito) in these cells. Simultaneous analysis of the free cytosolic Ca2+ concentration ([Ca2+]i) and [Ca2+]mito upon cell stimulation revealed that Ca2+ signals in the majority of mitochondria were initiated at [Ca2+ ]i≥approx. 400 to 550nM. In primary murine CD4+ T cells, Mag-Fluo4 showed two different localization patterns: either co-localization with mito-tracker, as in Jurkat T cells, or with ER-tracker. Thus, in single primary murine CD4+ T cells, either decreases of [Ca2+ ]ER or increases of [Ca2+ ]mito were observed upon cell stimulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ralf Fliegert
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
23
|
Kasatkina LA. 4-Аminopyridine sequesters intracellular Ca 2+ which triggers exocytosis in excitable and non-excitable cells. Sci Rep 2016; 6:34749. [PMID: 27703262 PMCID: PMC5050491 DOI: 10.1038/srep34749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022] Open
Abstract
4-aminopyridine is commonly used to stimulate neurotransmitter release resulting from sustained plasma membrane depolarization and Ca2+-influx from the extracellular space. This paper elucidated unconventional mechanism of 4-aminopyridine-stimulated glutamate release from neurons and non-neuronal cells which proceeds in the absence of external Ca2+. In brain nerve terminals, primary neurons and platelets 4-aminopyridine induced the exocytotic release of glutamate that was independent of external Ca2+ and was triggered by the sequestration of Ca2+ from intracellular stores. The initial level of 4-aminopyridine-stimulated glutamate release from neurons in the absence or presence of external Ca2+ was subequal and the difference was predominantly associated with subsequent tonic release of glutamate in Ca2+-supplemented medium. The increase in [Ca2+]i and the secretion of glutamate stimulated by 4-aminopyridine in Ca2+-free conditions have resulted from Ca2+ efflux from endoplasmic reticulum and were abolished by intracellular free Ca2+ chelator BAPTA. This suggests that Ca2+ sequestration plays a profound role in the 4-aminopyridine-mediated stimulation of excitable and non-excitable cells. 4-Aminopyridine combines the properties of depolarizing agent with the ability to sequester intracellular Ca2+. The study unmasks additional mechanism of action of 4-aminopyridine, an active substance of drugs for treatment of multiple sclerosis and conditions related to reduced Ca2+ efflux from intracellular stores.
Collapse
Affiliation(s)
- Ludmila A Kasatkina
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine 9, Leontovicha Street, Kyiv, 01030, Ukraine
| |
Collapse
|
24
|
Fernandez-Tenorio M, Niggli E. Real-time intra-store confocal Ca 2+ imaging in isolated mouse cardiomyocytes. Cell Calcium 2016; 60:331-340. [PMID: 27431464 DOI: 10.1016/j.ceca.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 11/26/2022]
Abstract
To initiate the contraction of cardiomyocytes, Ca2+ is released from the SR to the cytosol via ryanodine receptors (RyRs), which are activated by the Ca2+-induced Ca2+ release mechanism (CICR). The activity of RyRs is regulated by both, cytosolic and SR luminal Ca2+. Deregulation of the CICR, by dysfunctional SR Ca2+ release or uptake, is frequently associated with cardiac pathologies (e.g. arrhythmias, CPVT, heart failure). Recently, the interest to directly measure changes of the free Ca2+ concentration within the SR ([Ca2+]SR) has led to the application of low affinity Ca2+ indicators (mag-fluo-4, Fluo-5N) to follow changes of [Ca2+]SR in cardiomyocytes from some species. However, direct measurement of Ca2+ signals from the SR have not been possible in freshly isolated mouse cardiomyocytes. Here, we show a new protocol optimized to measure changes of [Ca2+]SR in mouse cardiomyocytes using fluorescent Ca2+ indicators and confocal microscopy. The application of this protocol permits the design of experimental studies with direct evaluation of SR Ca2+ in real time in various mouse models of cardiac disease, including transgenic animals harboring mutants of RyRs or other Ca2+ signaling proteins. The technique, in combination with these models, will help to understand how these diseases and mutations affect Ca2+ signals within the SR and the Ca2+ sensitivity of the RyRs for cytosolic and SR luminal Ca2+, thereby contributing to arrhythmias or weak heart beat.
Collapse
Affiliation(s)
| | - Ernst Niggli
- Department of Physiology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
25
|
Atia J, McCloskey C, Shmygol AS, Rand DA, van den Berg HA, Blanks AM. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells. PLoS Comput Biol 2016; 12:e1004828. [PMID: 27105427 PMCID: PMC4841602 DOI: 10.1371/journal.pcbi.1004828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022] Open
Abstract
Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. A well-known problem in electrophysiologal modeling is that the parameters of the gating kinetics of the ion channels cannot be uniquely determined from observed behavior at the cellular level. One solution is to employ simplified “macroscopic” currents that mimic the behavior of aggregates of distinct entities at the protein level. The gating parameters of each channel or pump can be determined by studying it in isolation, leaving the general problem of finding the densities at which the channels occur in the plasma membrane. We propose an approach, which we apply to uterine smooth muscle cells, whereby we constrain the list of possible entities by means of transcriptomics and chart the indeterminacy of the problem in terms of the kernel of the corresponding linear transformation. A graphical representation of this kernel visualises the functional redundancy of the system. We show that the role of certain conductances can be fulfilled, or compensated for, by suitable combinations of other conductances; this is not always the case, and such “non-substitutable” conductances can be regarded as functionally non-redundant. Electrogenic entities belonging to the latter category are suitable putative clinical targets.
Collapse
Affiliation(s)
- Jolene Atia
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Conor McCloskey
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Anatoly S. Shmygol
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | - Andrew M. Blanks
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Brown A, Danielsson J, Townsend EA, Zhang Y, Perez-Zoghbi JF, Emala CW, Gallos G. Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-Cβ. Am J Physiol Lung Cell Mol Physiol 2016; 310:L747-58. [PMID: 26773068 DOI: 10.1152/ajplung.00215.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/10/2016] [Indexed: 01/12/2023] Open
Abstract
Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond β-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6-8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCβ enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCβ and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction.
Collapse
Affiliation(s)
- Amy Brown
- Division of Pediatric Pulmonology, Department of Pediatrics College of Physicians and Surgeons of Columbia University, New York, New York
| | - Jennifer Danielsson
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Elizabeth A Townsend
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Yi Zhang
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Jose F Perez-Zoghbi
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Charles W Emala
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - George Gallos
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| |
Collapse
|
27
|
Antagonists of the TMEM16A calcium-activated chloride channel modulate airway smooth muscle tone and intracellular calcium. Anesthesiology 2015; 123:569-81. [PMID: 26181339 DOI: 10.1097/aln.0000000000000769] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Perioperative bronchospasm refractory to β agonists continues to challenge anesthesiologists and intensivists. The TMEM16A calcium-activated chloride channel modulates airway smooth muscle (ASM) contraction. The authors hypothesized that TMEM16A antagonists would relax ASM contraction by modulating membrane potential and calcium flux. METHODS Human ASM, guinea pig tracheal rings, or mouse peripheral airways were contracted with acetylcholine or leukotriene D4 and then treated with the TMEM16A antagonists: benzbromarone, T16Ainh-A01, N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid, or B25. In separate studies, guinea pig tracheal rings were contracted with acetylcholine and then exposed to increasing concentrations of isoproterenol (0.01 nM to 10 μM) ± benzbromarone. Plasma membrane potential and intracellular calcium concentrations were measured in human ASM cells. RESULTS Benzbromarone was the most potent TMEM16A antagonist tested for relaxing an acetylcholine -induced contraction in guinea pig tracheal rings (n = 6). Further studies were carried out to investigate the clinical utility of benzbromarone. In human ASM, benzbromarone relaxed either an acetylcholine- or a leukotriene D4-induced contraction (n = 8). Benzbromarone was also effective in relaxing peripheral airways (n = 9) and potentiating relaxation by β agonists (n = 5 to 10). In cellular mechanistic studies, benzbromarone hyperpolarized human ASM cells (n = 9 to 12) and attenuated intracellular calcium flux from both the plasma membrane and the sarcoplasmic reticulum (n = 6 to 12). CONCLUSION TMEM16A antagonists work synergistically with β agonists and through a novel pathway of interrupting ion flux at both the plasma membrane and sarcoplasmic reticulum to acutely relax human ASM.
Collapse
|
28
|
Wray S. Insights from physiology into myometrial function and dysfunction. Exp Physiol 2015; 100:1468-76. [PMID: 26289390 DOI: 10.1113/ep085131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? I focus on clinical aspects of uterine physiology, specifically, myometrial contractility. I bring together and contrast findings using physiological approaches and those using newer techniques, 'omics'. What advances does it highlight? Physiological studies have recently shed light on the myometrium in twin pregnancies, but there have been no 'omic' approaches. In contrast, studies of preterm delivery using newer approaches are generating new research avenues, whereas traditional approaches have not flourished. Finally, I describe significant advances in understanding of 'slow-to-progress' labours, achieved using physiological and clinical approaches. Advances in molecular, genetic and 'omic' technologies are fuelling the thirst for better understanding of the uterus and application of this information to problems in pregnancy and labour. Progress has, however, been limited while we still have an incomplete understanding of some of the basic physiology of uterine smooth muscle (myometrium). In this review and opinion piece, I explore some of the fascinating findings from selected recent studies and see how these may provide new avenues for physiological and clinical research. It is also the case, however, that there is still limited mechanistic understanding about physiological and pathophysiological processes in the myometrium. This lack of understanding limits the usefulness of some findings from genomic and allied studies. By focusing on some key recent findings and relating these to two important clinical problems in childbirth that involve myometrial activity, namely preterm delivery and difficult labours, the interplay between our physiological knowledge and the information provided by newer technologies is explored. My opinion is that physiology has provided much more new mechanistic insight into difficult births and that the newer technologies may lead to breakthroughs in preterm birth research, but that this has not yet happened.
Collapse
Affiliation(s)
- Susan Wray
- Harris/Wellbeing Centre for Preterm Birth Research, Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
Suzuki Y, Yokoyama K. Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances. BIOSENSORS 2015; 5:337-63. [PMID: 26095660 PMCID: PMC4493553 DOI: 10.3390/bios5020337] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023]
Abstract
This review is confined to sensors that use fluorescence to transmit biochemical information. Fluorescence is, by far, the most frequently exploited phenomenon for chemical sensors and biosensors. Parameters that define the application of such sensors include intensity, decay time, anisotropy, quenching efficiency, and luminescence energy transfer. To achieve selective (bio)molecular recognition based on these fluorescence phenomena, various fluorescent elements such as small organic molecules, enzymes, antibodies, and oligonucleotides have been designed and synthesized over the past decades. This review describes the immense variety of fluorescent probes that have been designed for the recognitions of ions, small and large molecules, and their biological applications in terms of intracellular fluorescent imaging techniques.
Collapse
Affiliation(s)
- Yoshio Suzuki
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Kenji Yokoyama
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
30
|
Pecze L, Schwaller B. Characterization and modeling of Ca2+ oscillations in mouse primary mesothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:632-45. [DOI: 10.1016/j.bbamcr.2014.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
31
|
Li L, Trifunovic A, Köhler M, Wang Y, Petrovic Berglund J, Illies C, Juntti-Berggren L, Larsson NG, Berggren PO. Defects in β-cell Ca2+ dynamics in age-induced diabetes. Diabetes 2014; 63:4100-14. [PMID: 24985350 DOI: 10.2337/db13-1855] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Little is known about the molecular mechanisms underlying age-dependent deterioration in β-cell function. We now demonstrate that age-dependent impairment in insulin release, and thereby glucose homeostasis, is associated with subtle changes in Ca(2+) dynamics in mouse β-cells. We show that these changes are likely to be accounted for by impaired mitochondrial function and to involve phospholipase C/inositol 1,4,5-trisphosphate-mediated Ca(2+) mobilization from intracellular stores as well as decreased β-cell Ca(2+) influx over the plasma membrane. We use three mouse models, namely, a premature aging phenotype, a mature aging phenotype, and an aging-resistant phenotype. Premature aging is studied in a genetically modified mouse model with an age-dependent accumulation of mitochondrial DNA mutations. Mature aging is studied in the C57BL/6 mouse, whereas the 129 mouse represents a model that is more resistant to age-induced deterioration. Our data suggest that aging is associated with a progressive decline in β-cell mitochondrial function that negatively impacts on the fine tuning of Ca(2+) dynamics. This is conceptually important since it emphasizes that even relatively modest changes in β-cell signal transduction over time lead to compromised insulin release and a diabetic phenotype.
Collapse
Affiliation(s)
- Luosheng Li
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Trifunovic
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yixin Wang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jelena Petrovic Berglund
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Illies
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nils-Göran Larsson
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden Lee Kong Chian School of Medicine, Nanyang Technological University/Imperial College London, Novena Campus, Singapore
| |
Collapse
|
32
|
Store-operated Ca²⁺ entry and depolarization explain the anomalous behaviour of myometrial SR: effects of SERCA inhibition on electrical activity, Ca²⁺ and force. Cell Calcium 2014; 56:188-94. [PMID: 25084623 PMCID: PMC4169181 DOI: 10.1016/j.ceca.2014.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 11/23/2022]
Abstract
SERCA pump inhibition by CPA caused membrane depolarization, activation of action potentials, Ca2+ spikes and force. Depletion of Ca2+ store by agonists leads to membrane depolarization and activation of electrical and mechanical activity. Ca2+ release/Ca2+ entry coupling is playing a key role in control of spontaneous electrical and mechanical activity in rat pregnant myometrium.
In the myometrium SR Ca2+ depletion promotes an increase in force but unlike several other smooth muscles, there is no Ca2+ sparks-STOCs coupling mechanism to explain this. Given the importance of the control of contractility for successful parturition, we have examined, in pregnant rat myometrium, the effects of SR Ca2+-ATPase (SERCA) inhibition on the temporal relationship between action potentials, Ca2+ transients and force. Simultaneous recording of electrical activity, calcium and force showed that SERCA inhibition, by cyclopiazonic acid (CPA 20 μM), caused time-dependent changes in excitability, most noticeably depolarization and elevations of baseline [Ca2+]i and force. At the onset of these changes there was a prolongation of the bursts of action potentials and a corresponding series of Ca2+ spikes, which increased the amplitude and duration of contractions. As the rise of baseline Ca2+ and depolarization continued a point was reached when electrical and Ca2+ spikes and phasic contractions ceased, and a maintained, tonic force and Ca2+ was produced. Lanthanum, a non-selective blocker of store-operated Ca2+ entry, but not the L-type Ca2+ channel blocker nifedipine (1–10 μM), could abolish the maintained force and calcium. Application of the agonist, carbachol, produced similar effects to CPA, i.e. depolarization, elevation of force and calcium. A brief, high concentration of carbachol, to cause SR Ca2+ depletion without eliciting receptor-operated channel opening, also produced these results. The data obtained suggest that in pregnant rats SR Ca2+ release is coupled to marked Ca2+ entry, via store operated Ca2+ channels, leading to depolarization and enhanced electrical and mechanical activity.
Collapse
|
33
|
Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J Neuroendocrinol 2014; 26:356-69. [PMID: 24888645 DOI: 10.1111/jne.12154] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/14/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
Oxytocin is a nonapeptide hormone that has a central role in the regulation of parturition and lactation. In this review, we address oxytocin receptor (OTR) signalling and its role in the myometrium during pregnancy and in labour. The OTR belongs to the rhodopsin-type (Class 1) of the G-protein coupled receptor superfamily and is regulated by changes in receptor expression, receptor desensitisation and local changes in oxytocin concentration. Receptor activation triggers a number of signalling events to stimulate contraction, primarily by elevating intracellular calcium (Ca(2+) ). This includes inositol-tris-phosphate-mediated store calcium release, store-operated Ca(2+) entry and voltage-operated Ca(2+) entry. We discuss each mechanism in turn and also discuss Ca(2+) -independent mechanisms such as Ca(2+) sensitisation. Because oxytocin induces contraction in the myometrium, both the activation and the inhibition of its receptor have long been targets in the management of dysfunctional and preterm labours, respectively. We discuss current and novel OTR agonists and antagonists and their use and potential benefit in obstetric practice. In this regard, we highlight three clinical scenarios: dysfunctional labour, postpartum haemorrhage and preterm birth.
Collapse
Affiliation(s)
- S Arrowsmith
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
34
|
Jia L, Delmotte P, Aravamudan B, Pabelick CM, Prakash YS, Sieck GC. Effects of the inflammatory cytokines TNF-α and IL-13 on stromal interaction molecule-1 aggregation in human airway smooth muscle intracellular Ca(2+) regulation. Am J Respir Cell Mol Biol 2014; 49:601-8. [PMID: 23713409 DOI: 10.1165/rcmb.2013-0040oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inflammation elevates intracellular Ca(2+) ([Ca(2+)]i) concentrations in airway smooth muscle (ASM). Store-operated Ca(2+) entry (SOCE) is an important source of [Ca(2+)]i mediated by stromal interaction molecule-1 (STIM1), a sarcoplasmic reticulum (SR) protein. In transducing SR Ca(2+) depletion, STIM1 aggregates to form puncta, thereby activating SOCE via interactions with a Ca(2+) release-activated Ca(2+) channel protein (Orai1) in the plasma membrane. We hypothesized that STIM1 aggregation is enhanced by inflammatory cytokines, thereby augmenting SOCE in human ASM cells. We used real-time fluorescence microscopic imaging to assess the dynamics of STIM1 aggregation and SOCE after exposure to TNF-α or IL-13 in ASM cells overexpressing yellow fluorescent protein-tagged wild-type STIM1 (WT-STIM1) and STIM1 mutants lacking the Ca(2+)-sensing EF-hand (STIM1-D76A), or lacking the cytoplasmic membrane binding site (STIM1ΔK). STIM1 aggregation was analyzed by monitoring puncta size during the SR Ca(2+) depletion induced by cyclopiazonic acid (CPA). We found that puncta size was increased in cells expressing WT-STIM1 after CPA. However, STIM1-D76A constitutively formed puncta, whereas STIM1ΔK failed to form puncta. Furthermore, cytokines increased basal WT-STIM1 puncta size, and the SOCE triggered by SR Ca(2+) depletion was increased in cells expressing WT-STIM1 or STIM1-D76A. Meanwhile, SOCE in cells expressing STIM1ΔK and STIM1 short, interfering RNA (siRNA) was decreased. Similarly, in cells overexpressing STIM1, the siRNA knockdown of Orai1 blunted SOCE. However, exposure to cytokines increased SOCE in all cells, increased basal [Ca(2+)]i, and decreased SR Ca(2+) content. These data suggest that cytokines induce a constitutive increase in STIM1 aggregation that contributes to enhanced SOCE in human ASM after inflammation. Such effects of inflammation on STIM1 aggregations may contribute to airway hyperresponsiveness.
Collapse
Affiliation(s)
- Li Jia
- 1 Department of Physiology and Biomedical Engineering, and
| | | | | | | | | | | |
Collapse
|
35
|
Robinson H, Wray S. A new slow releasing, H₂S generating compound, GYY4137 relaxes spontaneous and oxytocin-stimulated contractions of human and rat pregnant myometrium. PLoS One 2012; 7:e46278. [PMID: 23029460 PMCID: PMC3459845 DOI: 10.1371/journal.pone.0046278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022] Open
Abstract
Better tocolytics are required to help prevent preterm labour. The gaseotransmitter Hydrogen sulphide (H2S) has been shown to reduce myometrial contractility and thus is of potential interest. However previous studies used NaHS, which is toxic and releases H2S as a non-physiological bolus and thus alternative H2S donors are sought. GYY4137 has been developed to slowly release H2S and hence better reflect endogenous physiological release. We have examined its effects on spontaneous and oxytocin-stimulated contractility and compared them to NaHS, in human and rat myometrium, throughout gestation. The effects on contractility in response to GYY4137 (1 nM–1 mM) and NaHS (1 mM) were examined on myometrial strips from, biopsies of women undergoing elective caesarean section or hysterectomy, and from non-pregnant, 14, 18, 22 day (term) gestation or labouring rats. In pregnant rat and human myometrium dose-dependent and significant decreases in spontaneous contractions were seen with increasing concentrations of GYY4137, which also reduced underlying Ca transients. GYY4137 and NaHS significantly reduced oxytocin-stimulated and high-K depolarised contractions as well as spontaneous activity. Their inhibitory effects increased as gestation advanced, but were abruptly reversed in labour. Glibenclamide, an inhibitor of ATP-sensitive potassium (KATP) channels, abolished the inhibitory effect of GYY4137. These data suggest (i) H2S contributes to uterine quiescence from mid-gestation until labor, (ii) that H2S affects L-type calcium channels and KATP channels reducing Ca entry and thereby myometrial contractions, (iii) add to the evidence that H2S plays a physiological role in relaxing myometrium, and thus (iv) H2S is an attractive target for therapeutic manipulation of human myometrial contractility.
Collapse
Affiliation(s)
- Hayley Robinson
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Susan Wray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Vetter I. Development and optimization of FLIPR high throughput calcium assays for ion channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:45-82. [PMID: 22453938 DOI: 10.1007/978-94-007-2888-2_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ca(2+) permeable ion channels and GPCRs linked to Ca(2+) release are important drug targets, with modulation of Ca(2+) signaling increasingly recognized as a valid therapeutic strategy in a range of diseases. The FLIPR is a high throughput imaging plate reader that has contributed substantially to drug discovery efforts and pharmacological characterization of receptors and ion channels coupled to Ca(2+). Now in its fourth generation, the FLIPR(TETRA) is an industry standard for high throughput Ca(2+) assays. With an increasing number of excitation LED banks and emission filter sets available; FLIPR Ca(2+) assays are becoming more versatile. This chapter describes general methods for establishing robust FLIPR Ca(2+) assays, incorporating practical aspects as well as suggestions for assay optimization, to guide the reader in the development and optimization of high throughput FLIPR assays for ion channels and GPCRs.
Collapse
Affiliation(s)
- Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
37
|
A Modified Hai–Murphy Model of Uterine Smooth Muscle Contraction. Bull Math Biol 2011; 74:143-58. [DOI: 10.1007/s11538-011-9681-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
|
38
|
Lecarpentier ER, Claes VA, Timbely O, Arsalane A, Wipff JA, Hébert JLM, Michel FY, Lecarpentier YC. Mechanics and energetics of myosin molecular motors from nonpregnant human myometrium. J Appl Physiol (1985) 2011; 111:1096-105. [PMID: 21778420 DOI: 10.1152/japplphysiol.00414.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical properties of spontaneously contracting isolated nonpregnant human myometrium (NPHM) were investigated throughout the whole continuum of load from zero load up to isometry. This made it possible to assess the three-dimensional tension-velocity-length (T-V-L) relationship characterizing the level of contractility and to determine crossbridge (CB) kinetics of myosin molecular motors. Seventy-seven muscle strips were obtained from hysterectomy in 42 nonpregnant patients. Contraction and relaxation parameters were measured during spontaneous mechanical activity. The isotonic tension-peak velocity (T-V) relationship was hyperbolic in 30 cases and nonhyperbolic in 47 cases. When the T-V relationship was hyperbolic, the Huxley formalism could be used to calculate CB kinetics and CB unitary force. At the whole muscle level and for a given isotonic load level, part of the V-L phase plane showed a common pathway, so that a given instantaneous length corresponded to only one possible instantaneous velocity, independent of time and initial length. At the molecular level, rate constants for CB attachment and detachment were dramatically low, ∼100 times lower than those of striated muscles, and ∼5 to 10 times lower than those of other smooth muscles. The CB unitary force was ∼1.4 ± 0.1 pN. NPHM shared similar basic contractile properties with striated muscles, reflected in the three-dimensional T-V-L relationship characterizing the contractile level. Low CB attachment and detachment rate constants made it possible to generate normal CB unitary force and normal muscle tension in NPHM, even though it contracted extremely slowly compared with other muscles.
Collapse
|
39
|
Murtazina DA, Chung D, Ulloa A, Bryan E, Galan HL, Sanborn BM. TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells. Biol Reprod 2011; 85:315-26. [PMID: 21565997 DOI: 10.1095/biolreprod.111.091082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.
Collapse
Affiliation(s)
- Dilyara A Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | |
Collapse
|
40
|
Guerrero-Hernandez A, Dagnino-Acosta A, Verkhratsky A. An intelligent sarco-endoplasmic reticulum Ca2+ store: release and leak channels have differential access to a concealed Ca2+ pool. Cell Calcium 2010; 48:143-9. [PMID: 20817294 DOI: 10.1016/j.ceca.2010.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
Simultaneous recording of cytosolic and sarco-endoplasmic reticulum (SR/ER) luminal free calcium concentrations ([Ca(2+)](i) and [Ca(2+)](L), respectively) supports the notion that release channels (RyRs and IP(3)Rs) use a concealed Ca(2+) source, likely to be associated with intra-SR/ER Ca(2+) binding proteins, whereas SR/ER Ca(2+) leak channels can only access free luminal Ca(2+). We hypothesize that Ca(2+) is trapped by oligomers of luminal Ca(2+)-binding proteins and that the opening of release channels induces the rapid liberation of this "concealed" Ca(2+) source associated with intra-ER Ca(2+) buffers. Our hypothesis may also clarify why SERCA pumps potentiate Ca(2+) release and explain quantal characteristics and refractory states of Ca(2+) release process.
Collapse
|
41
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
42
|
Gómez-Viquez NL, Guerrero-Serna G, Arvizu F, García U, Guerrero-Hernández A. Inhibition of SERCA pumps induces desynchronized RyR activation in overloaded internal Ca2+ stores in smooth muscle cells. Am J Physiol Cell Physiol 2010; 298:C1038-46. [DOI: 10.1152/ajpcell.00222.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that rapid inhibition of sarcoplasmic reticulum (SR) ATPase (SERCA pumps) decreases the amplitude and rate of rise (synchronization) of caffeine induced-Ca2+ release without producing a reduction of free luminal SR Ca2+ level in smooth muscle cells (Gómez-Viquez L, Guerrero-Serna G, García U, Guerrero-Hernández A. Biophys J 85: 370–380, 2003). Our aim was to investigate the role of luminal SR Ca2+ content in the communication between ryanodine receptors (RyRs) and SERCA pumps. To this end, we studied the effect of SERCA pump inhibition on RyR-mediated Ca2+ release in smooth muscle cells with overloaded SR Ca2+ stores. Under this condition, the amplitude of RyR-mediated Ca2+ release was not affected but the rate of rise was still decreased. In addition, the caffeine-induced Ca2+-dependent K+ outward currents revealed individual events, suggesting that SERCA pump inhibition reduces the coordinated activation of RyRs. Collectively, our results indicate that SERCA pumps facilitate the activation of RyRs by a mechanism that does not involve the regulation of SR Ca2+ content. Importantly, SERCA pumps and RyRs colocalize in smooth muscle cells, suggesting a possible local communication between these two proteins.
Collapse
Affiliation(s)
| | | | | | - Ubaldo García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados–Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
43
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
44
|
Solovyova N, Verkhratsky A. Measurement of free Ca2+ concentration in the lumen of neuronal endoplasmic reticulum. Cold Spring Harb Protoc 2010; 2010:pdb.prot4783. [PMID: 20150106 DOI: 10.1101/pdb.prot4783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTIONThis protocol describes a technique for the simultaneous monitoring of free calcium concentrations in the cytosol ([Ca2+]i) and within the lumen of the endoplasmic reticulum (ER) ([Ca2+]L) of cultured/freshly isolated dorsal root ganglia (DRG) neurons. The method uses two synthetic fluorescent Ca2+ probes (fluo-3 and mag-fura-2) in combination with fluorescence microscopy and a whole-cell patch-clamp technique. This approach has been used successfully in acutely isolated/cultured DRG neurons, in Purkinje neurons, acutely isolated from cerebellar slices, and in cultured astrocytes. In this protocol, isolated neurons are first loaded with the membrane-permeant, low-affinity Ca2+ indicator, mag-fura-2, which preferentially, though not exclusively, accumulates in the ER. Cells are then loaded with the membrane-impermeant, high-affinity calcium indicator fluo-3 using the whole-cell patch-clamp configuration. This second loading removes the majority of cytosolic mag-fura-2, replacing it with fluo-3. Mag-fura-2 and fluo-3 signals can be separated by virtue of their distinct excitation properties (340 nm and 380 nm for mag-fura-2, and 488 nm for fluo-3). An equation is provided to determine [Ca2+]L values using the 340/380 nm ratio.
Collapse
|
45
|
Dagnino-Acosta A, Guerrero-Hernández A. Variable luminal sarcoplasmic reticulum Ca2+ buffer capacity in smooth muscle cells. Cell Calcium 2009; 46:188-96. [DOI: 10.1016/j.ceca.2009.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
|
46
|
Noble K, Matthew A, Burdyga T, Wray S. A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle. Eur J Obstet Gynecol Reprod Biol 2009; 144 Suppl 1:S11-9. [PMID: 19285773 DOI: 10.1016/j.ejogrb.2009.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The uterine sacroplasmic reticulum (SR) takes up and stores calcium [Ca], using an ATPase (SERCA) and the Ca-buffering proteins, calsequestrin and calreticulin. This stored Ca can be released via IP(3)-gated Ca channels. Decreases in luminal Ca concentration [Ca] have been directly measured following agonist stimulation. During spontaneous contractions however, there appears to be no involvement of the SR, as Ca entry and efflux across the plasma membrane account for these phasic contractions. After over-viewing current knowledge concerning SR structure and function, we highlight three areas of research which suggest new ways of looking at the role of the SR in the uterus, although they may be controversial or speculative at the moment. Firstly, we review the evidence for the function, if any, of Ca-induced SR Ca release channels, the ryanodine receptor (RyR) and the lack of Ca sparks (the elemental release events from RyRs), in the uterus. Secondly, we ask does regulation of SERCA by the accessory protein, phospholamban, occur in the uterus and what is the effect of knocking out phospholamban on uterine activity? Thirdly, we address the question of when and how store-operated Ca entry occurs in the myometrium. By analogy with other, usually less excitable tissues, is there a mechanism that links store Ca depletion to plasma membrane Ca entry in smooth muscle cells within intact uterus and is it physiologically relevant and regulated? Are the recently described proteins ORAI and STIM-1 involved in uterine store-operated Ca entry? We end the review by integrating these new insights with previous data to present a new working model of the SR in the uterus.
Collapse
Affiliation(s)
- Karen Noble
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L693BX, UK
| | | | | | | |
Collapse
|
47
|
Wray S, Noble K. Sex hormones and excitation-contraction coupling in the uterus: the effects of oestrous and hormones. J Neuroendocrinol 2008; 20:451-61. [PMID: 18266942 DOI: 10.1111/j.1365-2826.2008.01665.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this review, we examine how far the increased understanding that we have of the events in excitation contraction can explain the effects of the oestrous cycle and sex hormones on uterine function. Observational studies of electrical and mechanical activity in the rat myometrium have shown a relative quiescence during pro-oestrous, with little propagation of any electrical events. Thus, uterine activity can be said to approximately inversely reflect plasma 17beta-oestradiol concentrations. We show that Ca(2+) signalling and mechanical activity are greatest in metoestrous and dioestrous compared to pro-oestrous and oestrous. These data are discussed in terms of hormonal effects on Ca(2+) and K(+) channels. Finally, the influence of sex hormones on lipid rafts and caveolae are considered and discussed in relation to recent findings on their role in uterine signalling and contractility, and cholesterol levels and obesity.
Collapse
Affiliation(s)
- S Wray
- The Physiological Department, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
48
|
Zou J, Hofer AM, Lurtz MM, Gadda G, Ellis AL, Chen N, Huang Y, Holder A, Ye Y, Louis CF, Welshhans K, Rehder V, Yang JJ. Developing Sensors for Real-Time Measurement of High Ca2+ Concentrations. Biochemistry 2007; 46:12275-88. [PMID: 17924653 DOI: 10.1021/bi7007307] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Zou
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Aldebaran M. Hofer
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Monica M. Lurtz
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - April L. Ellis
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Ning Chen
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Yun Huang
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Angela Holder
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Yiming Ye
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Charles F. Louis
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Kristy Welshhans
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Vincent Rehder
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Jenny J. Yang
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| |
Collapse
|
49
|
Dabertrand F, Fritz N, Mironneau J, Macrez N, Morel JL. Role of RYR3 splice variants in calcium signaling in mouse nonpregnant and pregnant myometrium. Am J Physiol Cell Physiol 2007; 293:C848-54. [PMID: 17596299 DOI: 10.1152/ajpcell.00069.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alternative splicing of ryanodine receptor subtype 3 (RYR3) may generate a short isoform (RYR3S) without channel function and a functional full-length isoform (RYR3L). The RYR3S isoform has been shown to negatively regulate the native RYR2 subtype in smooth muscle cells as well as the RYR3L isoform when both isoforms were coexpressed in HEK-293 cells. Mouse myometrium expresses only the RYR3 subtype, but the role of RYR3 isoforms obtained by alternative splicing and their activation by cADP-ribose during pregnancy have never been investigated. Here, we show that both RYR3S and RYR3L isoforms are differentially expressed in nonpregnant and pregnant mouse myometrium. The use of antisense oligonucleotides directed against each isoform indicated that only RYR3L was activated by caffeine and cADP-ribose in nonpregnant myometrium. These RYR3L-mediated Ca(2+) releases were negatively regulated by RYR3S expression. At the end of pregnancy, the relative expression of RYR3L versus RYR3S and its ability to respond to cADP-ribose were increased. Therefore, our results suggest that physiological regulation of RYR3 alternative splicing may play an essential role at the end of pregnancy.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Centre de Neurosciences Intégratives et Cognitives, UMR5228 CNRS, Université Bordeaux 1 and Université Bordeaux 2, Ave. des Facultés, Talence 33405, France.
| | | | | | | | | |
Collapse
|
50
|
Wray S, Shmygol A. Role of the calcium store in uterine contractility. Semin Cell Dev Biol 2007; 18:315-20. [PMID: 17601757 DOI: 10.1016/j.semcdb.2007.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/03/2007] [Indexed: 11/19/2022]
Abstract
This article assesses the nature of the sarcoplasmic reticulum (SR) in uterine smooth muscle. Modern imagining techniques have revealed new information about the location and density of Ca storage and release. Release mechanisms, including IP(3) and Ca itself, via ryanodine receptors (RyR), as well as possible roles for cyclic ADP ribose, and the contribution of the SR to relaxation are detailed. The role of the SR Ca-ATPase in both decay of the Ca transient and maintaining Ca homeostasis is reviewed. Recent data on the role of local Ca signals from the SR in contributing to membrane excitability and contractility are discussed, along with interactions with ion channels in lipid microdomains.
Collapse
Affiliation(s)
- Susan Wray
- University of Liverpool, Department of Physiology, Crown Street, Liverpool L69 3BX, United Kingdom.
| | | |
Collapse
|