1
|
Bie C, Bo S, Yadav NN, van Zijl PC, Wang T, Chen L, Xu J, Zou C, Zheng H, Zhou Y. Simultaneous monitoring of glycogen, creatine, and phosphocreatine in type II glycogen storage disease using saturation transfer MRI. Magn Reson Med 2025; 93:1782-1792. [PMID: 39529314 PMCID: PMC11785486 DOI: 10.1002/mrm.30371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE There is a need for non-invasive approaches to assess the progression of glycogen storage diseases (GSD). Here, we use saturation transfer (ST) MRI via relayed nuclear Overhauser effects (glycoNOE) to detect abnormal changes in muscle glycogen of a GSD II mouse model. In addition to glycogen, the energy metabolites phosphocreatine (PCr) and creatine (Cr) were studied to assess the muscle disease. METHODS Water saturation (Z-spectra) and 1H MRS were acquired at 9.4 T on the skeletal muscle of healthy control mice and homozygous acidα $$ \upalpha $$ -glucosidase (GAA) knock-out mice (ages of 2-48 weeks). The glycoNOE (-1 ppm), total creatine (tCr)* (+2 ppm, = a × [Cr] + b × [PCr]), and PCr (+2.5 ppm) from Z-spectra and the ratio between tCr and taurine signals (tCr/Tau) from 1H MRS spectra were quantified by using multi-pool Lorentzian fitting methods. The concentrations of the metabolites were also measured via tissue assays. RESULTS The postnatal GSD II mice (age <12 weeks) showed a continued accumulation of muscle glycoNOE signal. GlycoNOE in adult GSD II mice (age ≥12 weeks) reached a plateau, at a level above 400% of that in normal mice. PCr, tCr*, and tCr/Tau gradually decreased in GSD II mice during the postnatal stage, then stabilized at levels comparable to adult control, yet PCr in adult GSD II mice was lower than that in controls. CONCLUSION This study demonstrates that ST MRI of glycogen can provide in situ non-invasive biomarkers for GSD II disease progression, with the potential to study the progression and treatment response of GSDs.
Collapse
Affiliation(s)
- Chongxue Bie
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055 (China)
| | - Shaowei Bo
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, 466 Xingang Middle Ave, Guangzhou, Guangdong 510317 (China)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Tao Wang
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055 (China)
| | - Lin Chen
- School of Electronic Science and Engineering, Xiamen University, 422 South Siming Ave, Xiamen, Fujian 361005 (China)
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Chao Zou
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055 (China)
| | - Hairong Zheng
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055 (China)
| | - Yang Zhou
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055 (China)
| |
Collapse
|
2
|
Ju L, Wang K, Schär M, Xu S, Rogers J, Zhu D, Qin Q, Weiss RG, Xu J. Simultaneous creatine and phosphocreatine mapping of skeletal muscle by CEST MRI at 3T. Magn Reson Med 2024; 91:942-954. [PMID: 37899691 PMCID: PMC10842434 DOI: 10.1002/mrm.29907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE To confirm that CrCEST in muscle exhibits a slow-exchanging process, and to obtain high-resolution amide, creatine (Cr), and phosphocreatine (PCr) maps of skeletal muscle using a POlynomial and Lorentzian Line-shape Fitting (PLOF) CEST at 3T. METHODS We used dynamic changes in PCr/CrCEST of mouse hindlimb before and after euthanasia to assign the Cr and PCr CEST peaks in the Z-spectrum at 3T and to obtain the optimum saturation parameters. Segmented 3D EPI was employed to obtain multi-slice amide, PCr, and Cr CEST maps of human skeletal muscle. Subsequently, the PCrCEST maps were calibrated using the PCr concentrations determined by 31 P MRS. RESULTS A comparison of the Z-spectra in mouse hindlimb before and after euthanasia indicated that CrCEST is a slow-exchanging process in muscle (<150.7 s-1 ). This allowed us to simultaneously extract PCr/CrCEST signals at 3T using the PLOF method. We determined optimal B1 values ranging from 0.3 to 0.6 μT for CrCEST in muscle and 0.3-1.2 μT for PCrCEST. For the study on human calf muscle, we determined an optimum saturation time of 2 s for both PCr/CrCEST (B1 = 0.6 μT). The PCr/CrCEST using 3D EPI were found to be comparable to those obtained using turbo spin echo (TSE). (3D EPI/TSE PCr: (2.6 ± 0.3) %/(2.3 ± 0.1) %; Cr: (1.3 ± 0.1) %/(1.4 ± 0.07) %). CONCLUSIONS Our study showed that in vivo CrCEST is a slow-exchanging process. Hence, amide, Cr, and PCr CEST in the skeletal muscle can be mapped simultaneously at 3T by PLOF CEST.
Collapse
Affiliation(s)
- Licheng Ju
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Rogers
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dan Zhu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Xu J, Chung JJ, Jin T. Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues. NMR IN BIOMEDICINE 2023; 36:e4671. [PMID: 34978371 PMCID: PMC9250548 DOI: 10.1002/nbm.4671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 05/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has become a promising technique to assay target proteins and metabolites through their exchangeable protons, noninvasively. The ubiquity of creatine (Cr) and phosphocreatine (PCr) due to their pivotal roles in energy homeostasis through the creatine phosphate pathway has made them prime targets for CEST in the diagnosis and monitoring of disease pathologies, particularly in tissues heavily dependent on the maintenance of rich energy reserves. Guanidinium CEST from protein arginine residues (i.e. arginine CEST) can also provide information about the protein profile in tissue. However, numerous obfuscating factors stand as obstacles to the specificity of arginine, Cr, and PCr imaging through CEST, such as semisolid magnetization transfer, fast chemical exchanges such as primary amines, and the effects of nuclear Overhauser enhancement from aromatic and amide protons. In this review, the specific exchange properties of protein arginine residues, Cr, and PCr, along with their validation, are discussed, including the considerations necessary to target and tune their signal effects through CEST imaging. Additionally, strategies that have been employed to enhance the specificity of these exchanges in CEST imaging are described, along with how they have opened up possible applications of protein arginine residues, Cr and PCr CEST imaging in the study and diagnosis of pathology. A clear understanding of the capabilities and caveats of using CEST to image these vital metabolites and mitigation strategies is crucial to expanding the possibilities of this promising technology.
Collapse
Affiliation(s)
- Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Liu Z, Yang Q, Luo H, Luo D, Qian L, Liu X, Zheng H, Sun PZ, Wu Y. Demonstration of fast and equilibrium human muscle creatine CEST imaging at 3 T. Magn Reson Med 2022; 88:322-331. [PMID: 35324024 DOI: 10.1002/mrm.29223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/23/2022] [Accepted: 02/20/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Creatine chemical exchange saturation transfer (CrCEST) MRI is used increasingly in muscle imaging. However, the CrCEST measurement depends on the RF saturation duration (Ts) and relaxation delay (Td), and it is challenging to compare the results of different scan parameters. Therefore, this study aims to evaluate the quasi-steady-state (QUASS) CrCEST MRI on clinical 3T scanners. METHODS T1 and CEST MRI scans of Ts/Td of 1 s/1 s and 2 s/2 s were obtained from a multi-compartment creatine phantom and 5 healthy volunteers. The CrCEST effect was quantified with asymmetry analysis in the phantom, whereas 5-pool Lorentzian fitting was applied to isolate creatine from phosphocreatine, amide proton transfer, combined magnetization transfer and nuclear Overhauser enhancement effects, and direct water saturation in four major muscle groups of the lower leg. The routine and QUASS CrCEST measurements were compared under two different imaging conditions. Paired Student's t-test was performed with p-values less than 0.05 considered statistically significant. RESULTS The phantom study showed a substantial influence of Ts/Td on the routine CrCEST quantification (p = 0.02), and such impact was mitigated with the QUASS algorithm (p = 0.20). The volunteer experiment showed that the routine CrCEST, amide proton transfer, and combined magnetization transfer and nuclear Overhauser enhancement effects increased significantly with Ts and Td (p < 0.05) and were significantly smaller than the corresponding QUASS indices (p < 0.01). In comparison, the QUASS CrCEST MRI showed little dependence on Ts and Td, indicating its robustness and accuracy. CONCLUSION The QUASS CrCEST MRI is feasible to provide fast and accurate muscle creatine imaging.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Honghong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Wang Y, Chen JF, Li P, Gao JH. Quantifying the fractional concentrations and exchange rates of small-linewidth CEST agents using the QUCESOP method under multi-solute conditions in MRI signals. Magn Reson Med 2020; 85:268-280. [PMID: 32726502 DOI: 10.1002/mrm.28436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a novel method for quantifying the fractional concentration (fb ) and the exchange rate (kb ) of a specific small-linewidth chemical exchange saturation transfer (CEST) solute in the presence of other unknown CEST solutes. THEORY AND METHODS A simplified R1ρ model was proposed assuming a small linewidth of the specific solute and a linear approximation of the other solutes' contribution to R1ρ . Two modes of CEST data acquisition, using various saturation offsets and various saturation powers, were used. The fb and kb of the specific solute could be fitted using the proposed model. In MRI experiments, using either single-solute or multi-solute phantoms with various creatine concentrations and pHs, the fb and kb values of creatine were calculated for each phantom; the fb and kb values of phosphocreatine in rats' skeletal muscles were also evaluated. RESULTS The fitted fb value of creatine from the phantoms were in excellent agreement. The fitted kb value of creatine from the phantoms coincides with that from the literature, as do the fb and kb values of phosphocreatine in skeletal muscles. CONCLUSION The proposed approach enables us to quantify the fb and kb values of a specific small-linewidth solute in the presence of other unknown solutes.
Collapse
Affiliation(s)
- Yi Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin-Fang Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengyu Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| |
Collapse
|
6
|
Pavuluri K, Rosenberg JT, Helsper S, Bo S, McMahon MT. Amplified detection of phosphocreatine and creatine after supplementation using CEST MRI at high and ultrahigh magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106703. [PMID: 32179431 PMCID: PMC7197212 DOI: 10.1016/j.jmr.2020.106703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 05/02/2023]
Abstract
Creatine is an important metabolite involved in muscle contraction. Administration of exogenous creatine (Cr) or phosphocreatine (PCr) has been used for improving exercise performance and protecting the heart during surgery including during valve replacements, coronary artery bypass grafting and repair of congenital heart defects. In this work we investigate whether it is possible to use chemical exchange saturation transfer (CEST) MRI to monitor uptake and clearance of exogenous creatine and phosphocreatine following supplementation. We were furthermore interested in determining the limiting conditions for distinguishing between creatine (1.9 ppm) and phosphocreatine (2.6 ppm) signals at ultra-high fields (21 T) and determine their concentrations could be reliably obtained using Bloch equation fits of the experimental CEST spectra. We have tested these items by performing CEST MRI of hind limb muscle and kidneys at 11.7 T and 21.1 T both before and after intravenous administration of PCr. We observed up to 4% increase in contrast in the kidneys at 2.6 ppm which peaked ~30 min after administration and a relative ratio of 1.3 in PCr:Cr signal. Overall, these results demonstrate the feasibility of independent monitoring of PCr and Cr concentration changes using CEST MRI.
Collapse
Affiliation(s)
- KowsalyaDevi Pavuluri
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, MD 21205, USA
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, CIMAR, Florida State University, Tallahassee, FL, USA
| | - Shannon Helsper
- The National High Magnetic Field Laboratory, CIMAR, Florida State University, Tallahassee, FL, USA; Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Shaowei Bo
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, MD 21205, USA
| | - Michael T McMahon
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, MD 21205, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway Ave., Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Chen F, Zhu K, Chen L, Ouyang L, Chen C, Gu L, Jiang Y, Wang Z, Lin Z, Zhang Q, Shao X, Dai J, Zhao Y. Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase. J Ginseng Res 2019; 44:461-474. [PMID: 32372868 PMCID: PMC7195589 DOI: 10.1016/j.jgr.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Background Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.
Collapse
Affiliation(s)
- Feiyan Chen
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kexuan Zhu
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, China
| | - Lin Chen
- Department of Physiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liufeng Ouyang
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of Pathological Sciences, College of Medicine, Yan'an University, Yan'an, China
| | - Cuihua Chen
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Gu
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yucui Jiang
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongli Wang
- School of Nursing, Jiujiang University, Jiujiang, China
| | - Zixuan Lin
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiang Zhang
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Shao
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianguo Dai
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
8
|
Chung JJ, Jin T, Lee JH, Kim SG. Chemical exchange saturation transfer imaging of phosphocreatine in the muscle. Magn Reson Med 2019; 81:3476-3487. [PMID: 30687942 DOI: 10.1002/mrm.27655] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 01/12/2023]
Abstract
PURPOSE To determine the exchange parameters for the CEST of phosphocreatine (PCrCEST) in phantoms and to characterize PCrCEST in vivo in the muscle at different saturation powers and magnetic fields. METHODS Exchange parameters were measured in PCr solutions using varying saturation power at 15.2 T. Z-spectra were analyzed using multipool Lorentzian fitting in the hindlimb using various powers at 2 different fields: 9.4 T and 15.2 T. Modulation of PCr signal in PCrCEST and phosphorus MRS was observed in the mouse hindlimb before and after euthanasia. RESULTS The exchange rate of PCr at physiological pH in phantoms was confirmed to be in a much slower exchange regime compared with Cr: kex at pH 7.3 and below was less than 400 s-1 . There was insufficient signal for detection of PCrCEST in the brain, but PCrCEST in the hindlimb was measured to be 2.98% ± 0.43 at a B1 of 0.47 μT at 15.2 T, which is 29% higher than 9.4T values. The value of PCrCEST at a B1 of 0.71 μT was not significantly different than that measured at a B1 of 0.47 μT. After euthanasia, PCrCEST signal dropped by 82.3% compared with an 85% decrease in PCr in phosphorus MRS, whereas CrCEST signal increased by 90.6%. CONCLUSION The PCrCEST technique has viable sensitivity in the muscle at high fields and shows promise for the study of metabolic dysfunction and cardiac systems.
Collapse
Affiliation(s)
- Julius Juhyun Chung
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jung Hee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Seoul, Korea.,Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
9
|
Chen L, Barker PB, Weiss RG, van Zijl PCM, Xu J. Creatine and phosphocreatine mapping of mouse skeletal muscle by a polynomial and Lorentzian line-shape fitting CEST method. Magn Reson Med 2019; 81:69-78. [PMID: 30246265 PMCID: PMC6258268 DOI: 10.1002/mrm.27514] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE To obtain high-resolution Cr and PCr maps of mouse skeletal muscle using a polynomial and Lorentzian line-shape fitting (PLOF) CEST method. METHODS Wild-type mice and guanidinoacetate N-methyltransferase-deficient (GAMT-/-) mice that have low Cr and PCr concentrations in muscle were used to assign the Cr and PCr peaks in the Z-spectrum at 11.7 T. A PLOF method was proposed to simultaneously extract and quantify the Cr and PCr by assuming a polynomial function for the background and 2 Lorentzian functions for the CEST peaks at 1.95 ppm and 2.5 ppm. RESULTS The Z-spectra of phantoms revealed that PCr has 2 CEST peaks (2 ppm and 2.5 ppm), whereas Cr only showed 1 peak at 2 ppm. Comparison of the Z-spectra of wild-type and GAMT-/- mice indicated that, contrary to brain, there was no visible protein guanidinium peak in the skeletal-muscle Z-spectrum, which allowed us to extract clean PCr and Cr CEST signals. High-resolution PCr and Cr concentration maps of mouse skeletal muscle were obtained by the PLOF CEST method after calibration with in vivo MRS. CONCLUSIONS The PLOF method provides an efficient way to map Cr and PCr concentrations simultaneously in the skeletal muscle at high MRI field.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B. Barker
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Stockebrand M, Sasani A, Das D, Hornig S, Hermans-Borgmeyer I, Lake HA, Isbrandt D, Lygate CA, Heerschap A, Neu A, Choe CU. A Mouse Model of Creatine Transporter Deficiency Reveals Impaired Motor Function and Muscle Energy Metabolism. Front Physiol 2018; 9:773. [PMID: 30013483 PMCID: PMC6036259 DOI: 10.3389/fphys.2018.00773] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022] Open
Abstract
Creatine serves as fast energy buffer in organs of high-energy demand such as brain and skeletal muscle. L-Arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase are responsible for endogenous creatine synthesis. Subsequent uptake into target organs like skeletal muscle, heart and brain is mediated by the creatine transporter (CT1, SLC6A8). Creatine deficiency syndromes are caused by defects of endogenous creatine synthesis or transport and are mainly characterized by intellectual disability, behavioral abnormalities, poorly developed muscle mass, and in some cases also muscle weakness. CT1-deficiency is estimated to be among the most common causes of X-linked intellectual disability and therefore the brain phenotype was the main focus of recent research. Unfortunately, very limited data concerning muscle creatine levels and functions are available from patients with CT1 deficiency. Furthermore, different CT1-deficient mouse models yielded conflicting results and detailed analyses of their muscular phenotype are lacking. Here, we report the generation of a novel CT1-deficient mouse model and characterized the effects of creatine depletion in skeletal muscle. HPLC-analysis showed strongly reduced total creatine levels in skeletal muscle and heart. MR-spectroscopy revealed an almost complete absence of phosphocreatine in skeletal muscle. Increased AGAT expression in skeletal muscle was not sufficient to compensate for insufficient creatine transport. CT1-deficient mice displayed profound impairment of skeletal muscle function and morphology (i.e., reduced strength, reduced endurance, and muscle atrophy). Furthermore, severely altered energy homeostasis was evident on magnetic resonance spectroscopy. Strongly reduced phosphocreatine resulted in decreased ATP/Pi levels despite an increased inorganic phosphate to ATP flux. Concerning glucose metabolism, we show increased glucose transporter type 4 expression in muscle and improved glucose clearance in CT1-deficient mice. These metabolic changes were associated with activation of AMP-activated protein kinase – a central regulator of energy homeostasis. In summary, creatine transporter deficiency resulted in a severe muscle weakness and atrophy despite different compensatory mechanisms.
Collapse
Affiliation(s)
- Malte Stockebrand
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany
| | - Ali Sasani
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Devashish Das
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Sönke Hornig
- Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Mouse Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dirk Isbrandt
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Axel Neu
- Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Belanger M, Tan L, Wittnich C. Does young age really put the heart at risk? Can J Physiol Pharmacol 2017. [PMID: 28628748 DOI: 10.1139/cjpp-2017-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite significant advances in the management and treatment of heart disease in children, there continue to be patients who have worse outcomes than might be expected. A number of risk factors that could be responsible have been identified. Evidence-based findings will be reviewed, including whether young age and (or) reduced body weight exacerbate these responses. For example, newborn children undergoing congenital cardiac surgery are known to have worse outcomes than older children. Evidence exists that newborn hearts do not tolerate ischemia as well as adult hearts, developing irreversible injury sooner and exhibiting at-risk metabolic profiles. As well, in response to the administration of heparin, elevations in free fatty acids occur during congenital heart surgery in children, which can have detrimental effects on the heart. Furthermore, myocardial energetic state has also been suggested to impact outcomes. Unfavourable energetic profiles were correlated to lower body weights in the same age healthy newborn piglet model. Newborn children suffering from congenital heart disease, with lower body weights, also had lower myocardial energetic state and this correlated with longer postoperative ventilatory support as well as a trend to longer intensive care unit stay. These findings imply that unfavourable myocardial metabolic profiles could contribute to postoperative complications.
Collapse
Affiliation(s)
- Michael Belanger
- b Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Tan
- b Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Carin Wittnich
- a Department of Surgery, University of Toronto, Toronto, ON M5G 1L5, Canada.,b Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J. Creatine biosynthesis and transport in health and disease. Biochimie 2015; 119:146-65. [DOI: 10.1016/j.biochi.2015.10.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022]
|
13
|
Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder. Mol Psychiatry 2015; 20:1079-84. [PMID: 25754079 DOI: 10.1038/mp.2015.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
Converging evidence suggests bioenergetic abnormalities in bipolar disorder (BD). In the brain, phosphocreatine (PCr) acts a reservoir of high-energy phosphate (HEP) bonds, and creatine kinases (CK) catalyze the transfer of HEP from adenosine triphosphate (ATP) to PCr and from PCr back to ATP, at times of increased need. This study examined the activity of this mechanism in BD by measuring the levels of HEP molecules during a stimulus paradigm that increased local energy demand. Twenty-three patients diagnosed with BD-I and 22 healthy controls (HC) were included. Levels of phosphorus metabolites were measured at baseline and during visual stimulation in the occipital lobe using (31)P magnetic resonance spectroscopy at 4T. Changes in metabolite levels showed different patterns between the groups. During stimulation, HC had significant reductions in PCr but not in ATP, as expected. In contrast, BD patients had significant reductions in ATP but not in PCr. In addition, PCr/ATP ratio was lower at baseline in patients, and there was a higher change in this measure during stimulation. This pattern suggests a disease-related failure to replenish ATP from PCr through CK enzyme catalysis during tissue activation. Further studies measuring the CK flux in BD are required to confirm and extend this finding.
Collapse
|
14
|
Akki A, Gupta A, Weiss RG. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system. Am J Physiol Heart Circ Physiol 2013; 304:H633-48. [PMID: 23292717 DOI: 10.1152/ajpheart.00771.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.
Collapse
Affiliation(s)
- Ashwin Akki
- Division of Cardiology, Department of Medicine, and Division of Magnetic Resonance Research, Department of Radiology, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
15
|
Nabuurs CI, Choe CU, Veltien A, Kan HE, van Loon LJC, Rodenburg RJT, Matschke J, Wieringa B, Kemp GJ, Isbrandt D, Heerschap A. Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J Physiol 2012; 591:571-92. [PMID: 23129796 DOI: 10.1113/jphysiol.2012.241760] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Creatine (Cr) plays an important role in muscle energy homeostasis by its participation in the ATP-phosphocreatine phosphoryl exchange reaction mediated by creatine kinase. Given that the consequences of Cr depletion are incompletely understood, we assessed the morphological, metabolic and functional consequences of systemic depletion on skeletal muscle in a mouse model with deficiency of l-arginine:glycine amidinotransferase (AGAT(-/-)), which catalyses the first step of Cr biosynthesis. In vivo magnetic resonance spectroscopy showed a near-complete absence of Cr and phosphocreatine in resting hindlimb muscle of AGAT(-/-) mice. Compared with wild-type, the inorganic phosphate/β-ATP ratio was increased fourfold, while ATP levels were reduced by nearly half. Activities of proton-pumping respiratory chain enzymes were reduced, whereas F(1)F(0)-ATPase activity and overall mitochondrial content were increased. The Cr-deficient AGAT(-/-) mice had a reduced grip strength and suffered from severe muscle atrophy. Electron microscopy revealed increased amounts of intramyocellular lipid droplets and crystal formation within mitochondria of AGAT(-/-) muscle fibres. Ischaemia resulted in exacerbation of the decrease of pH and increased glycolytic ATP synthesis. Oral Cr administration led to rapid accumulation in skeletal muscle (faster than in brain) and reversed all the muscle abnormalities, revealing that the condition of the AGAT(-/-) mice can be switched between Cr deficient and normal simply by dietary manipulation. Systemic creatine depletion results in mitochondrial dysfunction and intracellular energy deficiency, as well as structural and physiological abnormalities. The consequences of AGAT deficiency are more pronounced than those of muscle-specific creatine kinase deficiency, which suggests a multifaceted involvement of creatine in muscle energy homeostasis in addition to its role in the phosphocreatine-creatine kinase system.
Collapse
Affiliation(s)
- C I Nabuurs
- Radiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nunes PM, van de Weijer T, Veltien A, Arnts H, Hesselink MKC, Glatz JFC, Schrauwen P, Tack CJ, Heerschap A. Increased intramyocellular lipids but unaltered in vivo mitochondrial oxidative phosphorylation in skeletal muscle of adipose triglyceride lipase-deficient mice. Am J Physiol Endocrinol Metab 2012; 303:E71-81. [PMID: 22496349 DOI: 10.1152/ajpendo.00597.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adipose triglyceride lipase (ATGL) is a lipolytic enzyme that is highly specific for triglyceride hydrolysis. The ATGL-knockout mouse (ATGL(-/-)) accumulates lipid droplets in various tissues, including skeletal muscle, and has poor maximal running velocity and endurance capacity. In this study, we tested whether abnormal lipid accumulation in skeletal muscle impairs mitochondrial oxidative phosphorylation, and hence, explains the poor muscle performance of ATGL(-/-) mice. In vivo ¹H magnetic resonance spectroscopy of the tibialis anterior of ATGL(-/-) mice revealed that its intramyocellular lipid pool is approximately sixfold higher than in WT controls (P = 0.0007). In skeletal muscle of ATGL(-/-) mice, glycogen content was decreased by 30% (P < 0.05). In vivo ³¹P magnetic resonance spectra of resting muscles showed that WT and ATGL(-/-) mice have a similar energy status: [PCr], [P(i)], PCr/ATP ratio, PCr/P(i) ratio, and intracellular pH. Electrostimulated muscles from WT and ATGL(-/-) mice showed the same PCr depletion and pH reduction. Moreover, the monoexponential fitting of the PCr recovery curve yielded similar PCr recovery times (τPCr; 54.1 ± 6.1 s for the ATGL(-/-) and 58.1 ± 5.8 s for the WT), which means that overall muscular mitochondrial oxidative capacity was comparable between the genotypes. Despite similar in vivo mitochondrial oxidative capacities, the electrostimulated muscles from ATGL(-/-) mice displayed significantly lower force production and increased muscle relaxation time than the WT. These findings suggest that mechanisms other than mitochondrial dysfunction cause the impaired muscle performance of ATGL(-/-) mice.
Collapse
Affiliation(s)
- P M Nunes
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
LaRosa DA, Cannata DJ, Arnould JPY, O'Sullivan LA, Snow RJ, West JM. Changes in muscle composition during the development of diving ability in the Australian fur seal. AUST J ZOOL 2012. [DOI: 10.1071/zo11072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During development the Australian fur seal transitions from a terrestrial, maternally dependent pup to an adult marine predator. Adult seals have adaptations that allow them to voluntarily dive at depth for long periods, including increased bradycardic control, increased myoglobin levels and haematocrit. To establish whether the profile of skeletal muscle also changes in line with the development of diving ability, biopsy samples were collected from the trapezius muscle of pups, juveniles and adults. The proportions of different fibre types and their oxidative capacity were determined. Only oxidative fibre types (Type I and IIa) were identified, with a significant change in proportions from pup to adult. There was no change in oxidative capacity of Type I and IIa fibres between pups and juveniles but there was a two-fold increase between juveniles and adults. Myoglobin expression increased between pups and juveniles, suggesting improved oxygen delivery, but with no increase in oxidative capacity, oxygen utilisation within the muscle may still be limited. Adult muscle had the highest oxidative capacity, suggesting that fibres are able to effectively utilise available oxygen during prolonged dives. Elevated levels of total creatine in the muscles of juveniles may act as an energy buffer when fibres are transitioning from a fast to slow fibre type.
Collapse
|
18
|
Kim DH, Joo JI, Choi JW, Yun JW. Differential expression of skeletal muscle proteins in high-fat diet-fed rats in response to capsaicin feeding. Proteomics 2010; 10:2870-81. [PMID: 20517883 DOI: 10.1002/pmic.200900815] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, the effects of capsaicin on expression of skeletal muscle proteins in Sprague-Dawley rats fed with a high-fat diet (HFD) were investigated. Rats were fed a HFD with or without capsaicin treatment for 8 wk. After HFD feeding, capsaicin-treated rats weighed an average of 8% less than those of the HFD control group. Gastrocnemius muscle tissue from lean and obese rats with or without capsaicin treatment was arrayed using 2-DE for detection of HFD-associated markers. Proteomic analysis using 2-DE demonstrated that 36 spots from a total of approximately 600 matched spots showed significantly different expression; 27 spots were identified as gastrocnemius muscle proteins that had been altered in response to capsaicin feeding, and 6 spots could not be identified by mass fingerprinting. Expression of various muscle proteins was determined by immunoblot analysis for the determination of molecular mechanisms, whereby capsaicin caused inhibition of adipogenesis. Immunoblot analysis revealed increased uncoupling protein 3 (UCP3) protein expression in HFD-fed rats, whereas contents were reduced with capsaicin treatment. Compared with the HFD control group, capsaicin treatment increased phosphorylation of AMP-activated protein kinase (AMPIC) CP3 and acetyl-CoA carboxylase (ACC). To support this result, we also analyzed in vitro differential protein expression in L6 skeletal muscle cells. These data suggest that the AMPK-ACC-malonyl-CoA metabolic signaling pathway is one of the targets of capsaicin action. To the best of our knowledge, this is the first proteomic study to report on analysis of diet-induced alterations of protein expression that are essential for energy expenditure in rat muscle.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Daegu University, Kynungsan, Kyungbuk, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Nabuurs C, Huijbregts B, Wieringa B, Hilbers CW, Heerschap A. 31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle. J Biol Chem 2010; 285:39588-96. [PMID: 20884612 DOI: 10.1074/jbc.m110.164665] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of phosphoryl exchange involving ATP and ADP have been investigated successfully by in vivo (31)P magnetic resonance spectroscopy using magnetization transfer. However, magnetization transfer effects seen on the signals of ATP also could arise from intramolecular cross-relaxation. This relaxation process carries information on the association state of ATP in the cell. To disentangle contributions of chemical exchange and cross-relaxation to magnetization transfer effects seen in (31)P magnetic resonance spectroscopy of skeletal muscle, we performed saturation transfer experiments on wild type and double-mutant mice lacking the cytosolic muscle creatine kinase and adenylate kinase isoforms. We find that cross-relaxation, observed as nuclear Overhauser effects (NOEs), is responsible for magnetization transfer between ATP phosphates both in wild type and in mutant mice. Analysis of (31)P relaxation properties identifies these effects as transferred NOEs, i.e. underlying this process is an exchange between free cellular ATP and ATP bound to slowly rotating macromolecules. This explains the β-ATP signal decrease upon saturation of the γ-ATP resonance. Although this usually is attributed to β-ADP ↔ β-ATP phosphoryl exchange, we did not detect an effect of this exchange on the β-ATP signal as expected for free [ADP], derived from the creatine kinase equilibrium reaction. This indicates that in resting muscle, conditions prevail that prevent saturation of β-ADP spins and puts into question the derivation of free [ADP] from the creatine kinase equilibrium. We present a model, matching the experimental result, for ADP ↔ ATP exchange, in which ADP is only transiently present in the cytosol.
Collapse
Affiliation(s)
- Christine Nabuurs
- Department of Radiology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
20
|
Kan HE, Klomp DWJ, Wohlgemuth M, van Loosbroek-Wagemans I, van Engelen BGM, Padberg GW, Heerschap A. Only fat infiltrated muscles in resting lower leg of FSHD patients show disturbed energy metabolism. NMR IN BIOMEDICINE 2010; 23:563-568. [PMID: 20175146 DOI: 10.1002/nbm.1494] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by asymmetric dysfunctioning of individual muscles. Currently, it is unknown why specific muscles are affected before others and more particularly what pathophysiology is causing this differential progression. The aim of our study was to use a combination of (31)P magnetic resonance spectroscopic imaging (MRSI) and T1-weighted MRI to uncover metabolic differences in fat infiltrated and not fat infiltrated muscles in patients with FSHD. T1-weighted images and 3D (31)P MRSI were obtained from the calf muscles of nine patients with diagnosed FSHD and nine healthy age and sex matched volunteers. Muscles of patients were classified as fat infiltrated (PFM) and non fat-infiltrated (PNM) based on visual assessment of the MR images. Ratios of phosphocreatine (PCr), phosphodiesters (PDE) and inorganic phosphate (Pi) over ATP and tissue pH were compared between PFM and PNM and the same muscles in healthy volunteers. Of all patients, seven showed moderate to severe fatty infiltration in one or more muscles. In these muscles, decreases in PCr/ATP and increases in tissue pH were observed compared to the same muscles in healthy volunteers. Interestingly, these differences were absent in the PNM group. Our data show that differences in metabolite ratios and tissue pH in skeletal muscle between healthy volunteers and patients with FSHD appear to be specific for fat infiltrated muscles. Normal appearing muscles on T1 weighted images of patients showed normal phosphoryl metabolism, which suggests that in FSHD disease progression is truly muscle specific.
Collapse
Affiliation(s)
- H E Kan
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Fischer A, ten Hove M, Sebag-Montefiore L, Wagner H, Clarke K, Watkins H, Lygate CA, Neubauer S. Changes in creatine transporter function during cardiac maturation in the rat. BMC DEVELOPMENTAL BIOLOGY 2010; 10:70. [PMID: 20569423 PMCID: PMC2909979 DOI: 10.1186/1471-213x-10-70] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 06/22/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND It is well established that the immature myocardium preferentially utilises non-oxidative energy-generating pathways. It exhibits low energy-transfer capacity via the creatine kinase (CK) shuttle, reflected in phosphocreatine (PCr), total creatine and CK levels that are much lower than those of adult myocardium. The mechanisms leading to gradually increasing energy transfer capacity during maturation are poorly understood. Creatine is not synthesised in the heart, but taken up exclusively by the action of the creatine transporter protein (CrT). To determine whether this transporter is ontogenically regulated, the present study serially examined CrT gene expression pattern, together with creatine uptake kinetics and resulting myocardial creatine levels, in rats over the first 80 days of age. RESULTS Rats were studied during the late prenatal period (-2 days before birth) and 7, 13, 21, 33, 50 and 80 days after birth. Activity of cardiac citrate synthase, creatine kinase and its isoenzymes as well as lactate dehydrogenase (LDH) and its isoenzymes demonstrated the well-described shift from anaerobic towards aerobic metabolism. mRNA levels of CrT in the foetal rat hearts, as determined by real-time PCR, were about 30% of the mRNA levels in the adult rat heart and gradually increased during development. Creatine uptake in isolated perfused rat hearts increased significantly from 3.0 nmol/min/gww at 13 days old to 4.9 nmol/min/gww in 80 day old rats. Accordingly, total creatine content in hearts, measured by HPLC, increased steadily during maturation (30 nmol/mg protein (-2 days) vs 87 nmol/mg protein (80 days)), and correlated closely with CrT gene expression. CONCLUSIONS The maturation-dependant alterations of CK and LDH isoenzyme activities and of mitochondrial oxidative capacity were paralleled by a progressive increase of CrT expression, creatine uptake kinetics and creatine content in the heart.
Collapse
Affiliation(s)
- Alexandra Fischer
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Michiel ten Hove
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Liam Sebag-Montefiore
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Helga Wagner
- Department of Cardiology, Medizinische Universitätsklinik Würzburg, 97080 Würzburg, Germany
| | - Kieran Clarke
- Department of Physiology, University of Oxford, South Parks Road, Oxford, UK
| | - Hugh Watkins
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Craig A Lygate
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Stefan Neubauer
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| |
Collapse
|
22
|
Kan HE, Veltien A, Arnts H, Nabuurs CIHC, Luijten B, de Haan A, Wieringa B, Heerschap A. Gated dynamic 31P MRS shows reduced contractile phosphocreatine breakdown in mice deficient in cytosolic creatine kinase and adenylate kinase. NMR IN BIOMEDICINE 2009; 22:523-531. [PMID: 19156695 DOI: 10.1002/nbm.1364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We developed a new dedicated measurement protocol for dynamic (31)P MRS analysis in contracting calf muscles of the mouse, using minimally invasive assessment of the contractile force combined with the acquisition of spectroscopic data gated to muscle contraction and determination of phosphocreatine (PCr) recovery rate and ATP contractile cost. This protocol was applied in a comparative study of six wild type (WT) mice and six mice deficient in cytosolic creatine kinase and adenylate kinase isoform 1 (MAK(-/-) mice) using 70 repeated tetanic contractions at two contractions per minute. Force levels during single contractions, and metabolite levels and tissue pH during resting conditions were similar in muscles of MAK(-/-) and WT mice. Strikingly, muscle relaxation after contraction was significantly delayed in MAK(-/-) mice, but during repeated contractions, the decrease in the force was similar in both mouse types. Gated data acquisition showed a negligible PCr breakdown in MAK(-/-) immediately after contraction, without a concomitant decrease in ATP or tissue pH. This protocol enabled the determination of rapid PCr changes that would otherwise go unnoticed due to intrinsic low signal-to-noise ratio (SNR) in mouse skeletal muscles combined with an assessment of the PCr recovery rate. Our results suggest that MAK(-/-) mice use alternative energy sources to maintain force during repeated contractions when PCr breakdown is reduced. Furthermore, the absence of large increases in adenosine diphosphate (ADP) or differences in force compared to WT mice in our low-intensity protocol indicate that creatine kinase (CK) and adenylate kinase (AK) are especially important in facilitating energy metabolism during very high energy demands.
Collapse
Affiliation(s)
- Hermien E Kan
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Heerschap A, Kan HE, Nabuurs CIHC, Renema WK, Isbrandt D, Wieringa B. In vivo magnetic resonance spectroscopy of transgenic mice with altered expression of guanidinoacetate methyltransferase and creatine kinase isoenzymes. Subcell Biochem 2008; 46:119-48. [PMID: 18652075 DOI: 10.1007/978-1-4020-6486-9_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Mice with an under- or over-expression of enzymes catalyzing phosphoryl transfer in high-energy supplying reactions are particulary attractive for in vivo magnetic resonance spectroscopy (MRS) studies as substrates of these enzymes are visible in MR spectra. This chapter reviews results of in vivo MRS studies on transgenic mice with alterations in the expression of the enzymes creatine kinase and guanidinoacetate methyltransferase. The particular metabolic consequences of these enzyme deficiencies in skeletal muscle, brain, heart and liver are addressed. An overview is given of metabolite levels determined by in vivo MRS in skeletal muscle and brain of wild-type and transgenic mice. MRS studies on mice lacking guanidinoacetate methyltransferase have demonstrated metabolic changes comparable to those found in the deficiency of this enzyme in humans, which are (partly) reversible upon creatine feeding. Apart from being a model for a creatine deficiency syndrome, these mice are also of interest to study fundamental aspects of the biological role of creatine. MRS studies on transgenic mice lacking creatine kinase isoenzymes have contributed significantly to the view that the creatine kinase reaction together with other enzymatic steps involved in high-energy phosphate transfer builds a large metabolic energy network, which is highly versatile and can dynamically adapt to genotoxic or physiological challenges.
Collapse
Affiliation(s)
- Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Wyss M, Braissant O, Pischel I, Salomons GS, Schulze A, Stockler S, Wallimann T. Creatine and creatine kinase in health and disease--a bright future ahead? Subcell Biochem 2007; 46:309-34. [PMID: 18652084 DOI: 10.1007/978-1-4020-6486-9_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many links are reported or suspected between the functioning of creatine, phosphocreatine, the creatine kinase isoenzymes or the creatine biosynthesis enzymes on one hand, and health or disease on the other hand. The aim of the present book was to outline our current understanding on many of these links. In this chapter, we summarize the main messages and conclusions presented in this book. In addition, we refer to a number of recent publications that highlight the pleiotropy in physiological functions of creatine and creatine kinase, and which suggest that numerous discoveries on new functions of this system are still ahead of us. Finally, we present our views on the most promising future avenues of research to deepen our knowledge on creatine and creatine kinase. In particular, we elaborate on how state-of-the-art high-throughput analytical ("omics") technologies and systems biology approaches may be used successfully to unravel the complex network of interdependent physiological functions related to creatine and creatine kinase.
Collapse
Affiliation(s)
- Markus Wyss
- DSM Nutritional Products Ltd., Biotechnology R&D, Bldg. 203/17B, P.O. Box 3255, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Renema WKJ, Kan HE, Wieringa B, Heerschap A. In vivo magnetic resonance spectroscopy of transgenic mouse models with altered high-energy phosphoryl transfer metabolism. NMR IN BIOMEDICINE 2007; 20:448-67. [PMID: 17274105 DOI: 10.1002/nbm.1117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies of transgenic mice provide powerful means to investigate the in vivo biological significance of gene products. Mice with an under- or overexpression of enzymes involved in high-energy phosphoryl transfer (approximately P) are particulary attractive for in vivo MR spectroscopy studies as the substrates of these enzymes are metabolites that are visible in MR spectra. This review provides a brief overview of the strategies used for generation and study of genetically altered mice and introduces the reader to some practical aspects of in vivo MRS studies on mice. The major part of the paper reviews results of in vivo MRS studies on transgenic mice with alterations in the expression of enzymes involved in approximately P metabolism, such as creatine kinase, adenylate kinase and guanidinoacetate methyl transferase. The particular metabolic consequences of these enzyme deficiencies in skeletal muscle, brain, heart and liver are addressed. Additionally, the use of approximately P systems as markers of gene expression by MRS, such as after viral transduction of genes, is described. Finally, a compilation of tissue levels of metabolites in skeletal muscle, heart and brain of wild-type and transgenic mice, as determined by in vivo MRS, is given. During the last decade, transgenic MRS studies have contributed significantly to our understanding of the physiological role of phosphotransfer enzymes, and to the view that these enzymes together build a much larger metabolic energy network that is highly versatile and can dynamically adapt to intrinsic genotoxic and extrinsic physiological challenges.
Collapse
Affiliation(s)
- W Klaas Jan Renema
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Abstract
Magnetic resonance spectroscopy (MRS) of skeletal muscle has been successfully applied by physiologists over several decades, particularly for studies of high-energy phosphates (by (31)P-MRS) and glycogen (by (13)C-MRS). Unfortunately, the observation of these heteronuclei requires equipment that is typically not available on clinical MR scanners, such as broadband capability and a second channel for decoupling and nuclear Overhauser enhancement (NOE). On the other hand, (1)H-MR spectra of skeletal muscle can be acquired on many routine MR systems and also provide a wealth of physiological information. In particular, studies of intramyocellular lipids (IMCL) attract physiologists and endocrinologists because IMCL levels are related to insulin resistance and thus can lead to a better understanding of major health problems in industrial countries. The combination of (1)H-, (13)C-, and (31)P-MRS gives access to the major long- and short-term energy sources of skeletal muscle. This review summarizes the technical aspects and unique MR-methodological features of the different nuclei. It reviews clinical studies that employed MRS of one or more nuclei, or combinations of MRS with other MR modalities. It also illustrates that MR spectra contain additional physiological information that is not yet used in routine clinical applications.
Collapse
Affiliation(s)
- Chris Boesch
- Department of Clinical Research, MR-Spectroscopy and Methodology, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Kan HE, Meeuwissen E, van Asten JJ, Veltien A, Isbrandt D, Heerschap A. Creatine uptake in brain and skeletal muscle of mice lacking guanidinoacetate methyltransferase assessed by magnetic resonance spectroscopy. J Appl Physiol (1985) 2007; 102:2121-7. [PMID: 17347380 DOI: 10.1152/japplphysiol.01327.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Creatine (Cr) levels in skeletal muscle and brain of a mouse model of Cr deficiency caused by guanidinoacetate methyltransferase absence (GAMT-/-) were studied after Cr supplementation with 2 g.kg body wt-1.day-1 Cr for 35 days. Localized 1H magnetic resonance spectroscopy (MRS) was performed in brain (cerebellum and thalamus/hippocampus) and in hind leg muscle of GAMT-/- mice before and after Cr supplementation and in control (Con) mice. As expected, a signal for Cr was hardly detectable in MR spectra of GAMT-/- mice before Cr supplementation. In the thalamus/hippocampus region of these mice, an increase in N-acetylasparate (NAA) was observed. During Cr administration, Cr levels increased faster in skeletal muscle compared with brain, but this occurred only during the first day of supplementation. Thereafter, Cr levels increased by 0.8 mM/day in all studied locations. After 35 days of Cr supplementation, Cr levels in all locations were higher compared with Con mice on a Cr-free diet and NAA levels normalized. Only because of the repeated MRS measurements performed in this longitudinal Cr supplementation study on GAMT-/- mice were we able to discover the initial faster uptake of Cr in skeletal muscle compared with brain, which may represent muscular Cr uptake independent of Cr transporter expression. Our results can provide the basis for additional experiments to optimize Cr supplementation in GAMT deficiency, as increases in brain Cr are slow in patients after Cr supplementation.
Collapse
Affiliation(s)
- Hermien E Kan
- Department of Radiology, Radboud University Nijmegen Medical Center, Geert Grooteplein 10, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Kan HE, van der Graaf M, Klomp DWJ, Vlak MHM, Padberg GW, Heerschap A. Intake of 13C-4 creatine enables simultaneous assessment of creatine and phosphocreatine pools in human skeletal muscle by 13C MR spectroscopy. Magn Reson Med 2007; 56:953-7. [PMID: 17036281 DOI: 10.1002/mrm.21068] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The feasibility of a novel method for the noninvasive and local assessment of creatine (Cr) and phosphocreatine (PCr) dynamics in human skeletal muscle based on (13)C magnetic resonance (MR) spectroscopy is presented. A high dose of Cr, labeled at the guanidino C-4 position with (13)C 11% enrichment, was administered orally to a human subject for 5 days. Using a surface coil, (13)C MR spectra of the lower leg were acquired on a 1.5T MR system at regular time intervals during and after Cr supplementation. An almost twofold increase in the intensities of the resolved PCr and Cr (13)C-4 signals was observed during this period. The slow decrease in these signals to normal values after supplementation reflects the slow daily turnover of Cr. The PCr/Cr ratio did not appear to change over the whole measurement period. During exercise of the leg, reversible changes in PCr and Cr signals were observed, reflecting conversion by the Cr kinase reaction.
Collapse
Affiliation(s)
- H E Kan
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Su J, Palen DI, Lucchesi PA, Matrougui K. Mice lacking the gene encoding for MMP-9 and resistance artery reactivity. Biochem Biophys Res Commun 2006; 349:1177-81. [PMID: 16979597 DOI: 10.1016/j.bbrc.2006.08.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 08/17/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To define the link between the deletion of gene encoding for metalloproteinase 9 and resistance artery reactivity, we studied in vitro smooth muscle and endothelial cell function in response to pressure, shear stress, and pharmacological agents. BACKGROUND Matrix metalloproteinases play a crucial role in the regulation of extracellular matrix turnover and structural artery wall remodeling. METHODS Resistance arteries were isolated from mice lacking gene encoding for MMP-9 (KO) and their control (WT). Hemodynamic, pharmacology approaches, and Western blot analysis were used in this study. RESULTS The measurement of blood pressure in vivo was similar in KO and WT mice. Pressure-induced myogenic tone, contractions to angiotensin-II and phenylephrine were similar in both groups. The inhibition of MMP2/9 ((2R)-2-[(4-biphenylylsulfonyl) amino]-3-phenylpropionic acid) significantly decreased myogenic tone in WT and had no effect in KO mice. Relaxation endothelium-dependent (flow-induced- dilation 41.3+/-0.6 vs. 21+/-1.6 at 10 microl/min in KO and WT mice, respectively, P<0.05) and eNOS expression were increased in KO compared to WT mice. The inhibition of eNOS with L-NAME significantly decreased endothelium response to shear stress, which was more pronounced in KO mice resistance arteries (-26.83+/-2.5 vs. -15.84+/-2.3 at 10 microl/min in KO and WT, respectively, P<0.05). However, the relaxation to exogenous nitric oxide-donor was similar in both groups. CONCLUSION Our study provides evidence of a selective effect of MMP-9 on endothelium function. Thus, MMP-9 gene deletion specifically increased resistance artery dilation endothelium-dependent and eNOS expression. Based on our results, MMP-9 could be a potential therapeutic target in cardiovascular disease associated with resistance arteries dysfunction.
Collapse
Affiliation(s)
- Jun Su
- Department of Pharmacology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
30
|
Prompers JJ, Jeneson JAL, Drost MR, Oomens CCW, Strijkers GJ, Nicolay K. Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR IN BIOMEDICINE 2006; 19:927-53. [PMID: 17075956 DOI: 10.1002/nbm.1095] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
MR is a powerful technique for studying the biomechanical and functional properties of skeletal muscle in vivo in health and disease. This review focuses on 31P, 1H and 13C MR spectroscopy for assessment of the dynamics of muscle metabolism and on dynamic 1H MRI methods for non-invasive measurement of the biomechanical and functional properties of skeletal muscle. The information thus obtained ranges from the microscopic level of the metabolism of the myocyte to the macroscopic level of the contractile function of muscle complexes. The MR technology presented plays a vital role in achieving a better understanding of many basic aspects of muscle function, including the regulation of mitochondrial activity and the intricate interplay between muscle fiber organization and contractile function. In addition, these tools are increasingly being employed to establish novel diagnostic procedures as well as to monitor the effects of therapeutic and lifestyle interventions for muscle disorders that have an increasing impact in modern society.
Collapse
Affiliation(s)
- Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Gambarota G, Philippens M, Cairns BE, Dong XD, Renema WKJ, Heerschap A. MRS assessment of glutamate clearance in a novel masticatory muscle pain model. NMR IN BIOMEDICINE 2005; 18:345-51. [PMID: 16007723 DOI: 10.1002/nbm.962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The injection of 1.0 M glutamate into the masseter (jaw-closer) muscle results in a short period of muscle pain (5-10 min) and a prolonged period of mechanical sensitization (> 30 min). It is unclear, however, whether there is a temporal relationship between intramuscular glutamate concentration and either muscle pain or mechanical sensitization. In the present study, (1)H MRS and electrophysiological recording of masticatory muscle nerve fibers were performed in order to monitor glutamate clearance and nerve fiber activity, respectively, after injection of glutamate into rat masticatory muscles. Glutamate signal amplitude was found to decay rapidly (half-life t 1/2 = 108 +/- 42 s), and became indistinguishable from the baseline 10 min after the injection. Glutamate-evoked nerve fiber activity was also found to decay rapidly (t 1/2 = 76 +/- 28 s). These results suggest that glutamate clearance correlates well with the time course of glutamate-evoked muscle pain fiber discharge.
Collapse
Affiliation(s)
- G Gambarota
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Kan HE, Renema WKJ, Isbrandt D, Heerschap A. Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase. J Physiol 2004; 560:219-29. [PMID: 15284341 PMCID: PMC1665207 DOI: 10.1113/jphysiol.2004.067926] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effects of creatine (Cr) absence in skeletal muscle caused by a deletion of guanidinoacetate methyltransferase (GAMT) were studied in a knockout mouse model by in vivo (31)P magnetic resonance (MR) spectroscopy. (31)P MR spectra of hindleg muscle of GAMT-deficient (GAMT-/-) mice showed no phosphocreatine (PCr) signal and instead showed the signal for phosphorylated guanidinoacetate (PGua), the immediate precursor of Cr, which is not normally present. Tissue pH did not differ between wild-type (WT) and GAMT-/- mice, while relative inorganic phosphate (P(i)) levels were increased in the latter. During ischaemia, PGua was metabolically active in GAMT-/- mice and decreased at a rate comparable to the decrease of PCr in WT mice. However, the recovery rate of PGua in GAMT-/- mice after ischaemia was reduced compared to PCr in WT mice. Saturation transfer measurements revealed no detectable flux from PGua to gamma-ATP, indicating severely reduced enzyme kinetics. Supplementation of Cr resulted in a rapid increase in PCr signal intensity until only this resonance was visible, along with a reduction in relative P(i) values. However, the PGua recovery rate after ischaemia did not change. Our results show that despite the absence of Cr, GAMT-/- mice can cope with mild ischaemic stress by using PGua for high energy phosphoryl transfer. The reduced affinity of creatine kinase (CK) for (P)Gua only becomes apparent during recovery from ischaemia. It is argued that absence of Cr causes the higher relative P(i) concentration also observed in animals lacking muscle CK, indicating an important role of the CK system in P(i) homeostasis.
Collapse
Affiliation(s)
- Hermien E Kan
- Department of Radiology, University Medical Centre Nijmegen, Geert Grooteplein 10, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Heerschap A, Sommers MG, in 't Zandt HJA, Renema WKJ, Veltien AA, Klomp DWJ. Nuclear Magnetic Resonance in Laboratory Animals. Methods Enzymol 2004; 385:41-63. [PMID: 15130732 DOI: 10.1016/s0076-6879(04)85003-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Affiliation(s)
- A Heerschap
- Department of Radiology, Medical Faculty of the University of Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|