2
|
Souquet L, Chevret P, Ganem G, Auffray JC, Ledevin R, Agret S, Hautier L, Renaud S. Back to the wild: does feralization affect the mandible of non-commensal house mice (Mus musculus domesticus)? Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Louise Souquet
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université Claude Bernard Lyon, CNRS, Villeurbanne cedex, France
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université Claude Bernard Lyon, CNRS, Villeurbanne cedex, France
| | - Guila Ganem
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier cedex, France
| | - Jean-Christophe Auffray
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier cedex, France
| | - Ronan Ledevin
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université Claude Bernard Lyon, CNRS, Villeurbanne cedex, France
| | - Sylvie Agret
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier cedex, France
| | - Lionel Hautier
- Institut des Sciences de l’Evolution, Université de Montpellier, UMR 5554 CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier cedex, France
| | - Sabrina Renaud
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université Claude Bernard Lyon, CNRS, Villeurbanne cedex, France
| |
Collapse
|
3
|
Ávila SP, Melo C, Berning B, Sá N, Quartau R, Rijsdijk KF, Ramalho RS, Cordeiro R, De Sá NC, Pimentel A, Baptista L, Medeiros A, Gil A, Johnson ME. Towards a 'Sea-Level Sensitive' dynamic model: impact of island ontogeny and glacio-eustasy on global patterns of marine island biogeography. Biol Rev Camb Philos Soc 2019; 94:1116-1142. [PMID: 30609249 DOI: 10.1111/brv.12492] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Abstract
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed 'Sea-Level Sensitive' dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio-eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50-m isobath) in response to sea-level oscillations driven by glacial-interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio-eustatic sea-level oscillations, particularly those of the Pleistocene glacial-interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea-level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea-surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea-level changes and their impact on the littoral marine biota; island marine species-area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in-situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.
Collapse
Affiliation(s)
- Sérgio P Ávila
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - Carlos Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal.,Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Björn Berning
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Oberösterreichisches Landesmuseum, Geowissenschaftliche Sammlungen, Leonding 4060, Austria
| | - Nuno Sá
- Departamento de Ciências Tecnológicas e do Desenvolvimento, Faculdade de Ciências da Universidade dos Açores, Ponta Delgada 9501-801, Portugal
| | - Rui Quartau
- Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Divisão de Geologia Marinha, Instituto Hidrográfico, Lisboa, Portugal
| | - Kenneth F Rijsdijk
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem, University of Amsterdam, Amsterdam 1098, The Netherlands
| | - Ricardo S Ramalho
- Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal.,Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K
| | - Ricardo Cordeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - Nuno C De Sá
- Institute of Environmental Sciences, Leiden University, Leiden, 2300, The Netherlands
| | - Adriano Pimentel
- Centro de Informação e Vigilância Sismovulcânica dos Açores, Rua Mãe de Deus, Ponta Delgada, 9501-801, Portugal.,Instituto de Investigação em Vulcanologia e Avaliação de Riscos, University of the Azores, Ponta Delgada, 9501-801, Portugal
| | - Lara Baptista
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.,MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mãe de Deus, Ponta Delgada 9501-801, Portugal
| | - António Medeiros
- Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal
| | - Artur Gil
- Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.,Ce3C - Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, University of the Azores, Ponta Delgada, 9501-801, Portugal
| | - Markes E Johnson
- Department of Geosciences, Williams College, Williamstown, MA 01267, U.S.A
| |
Collapse
|
4
|
Tryfonopoulos G, Chondropoulos B, Fraguedakis-Tsolis S. Allozymic polymorphism among 14 populations of the house mouse, Mus musculus domesticus, from Greece. Biochem Genet 2005; 43:11-24. [PMID: 15859516 DOI: 10.1007/s10528-005-1063-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nineteen loci from 239 individuals of the house mouse Mus musculus domesticus (Rodentia, Muridae) were analyzed by means of thin layer electrophoresis. The mice were collected from 14 localities of Greece mainly confined to the area of NW Peloponnese, where a Robertsonian (Rb) system is observed. The individuals were chromosomally characterized by nine diploid numbers, the 2n = 24, 26, 27, 28, 29, 30, 31, 32, and 40. The statistic elaboration revealed that all 14 populations studied were not characterized by cohesive demic structure and high inbreed levels while the gene flow among them has resulted in low levels of genetic differentiation. The resulting values for Nei's genetic distance corresponded to distances known for the level of geographical populations of M. musculus. Wagner's cladogram for the phylogenetic relations between the populations studied implied that it is the diploid number, rather than the geographical factor, that characterizes or dominates each population, which mainly influences the phylogenetic relationships.
Collapse
Affiliation(s)
- Georgios Tryfonopoulos
- Laboratory of Zoology, Section of Animal Biology, Department of Biology, University of Patra, GR-26001 Patra, Greece.
| | | | | |
Collapse
|
6
|
Dallas JF, Bonhomme F, Boursot P, Britton-Davidian J, Bauchau V. Population genetic structure in a Robertsonian race of house mice: evidence from microsatellite polymorphism. Heredity (Edinb) 1998; 80 ( Pt 1):70-7. [PMID: 9474776 DOI: 10.1046/j.1365-2540.1998.00258.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genetic evidence was assessed for inbreeding and population subdivision in a Robertsonian fusion (Rb) race of the western European form of house mouse, Mus musculus domesticus, in central Belgium. Inbreeding, and the factors responsible for subdivision (genetic drift and extinction-recolonization) can theoretically influence the fixation of underdominant Rb variants. The data consisted of allele frequencies of eight microsatellite loci and of the Rb(4.12) and Rb(5.10) chromosomes. Six populations were sampled once, and a seventh was sampled successively over 3 years. No evidence for inbreeding within populations was found. Levels of between-population subdivision were high (theta = 0.15-0.39), and showed no association with either karyotype or geographical distance over 8-60 km. In addition, low values of effective size were found in the successively sampled population (Ne = 5-20). Cases of significant two-locus disequilibria were associated with the most closely linked pair of microsatellite loci (r = 0.15): also consistent with small effective sizes. These results suggest that both the lack of inbreeding, and the combined effects of genetic drift and extinction-recolonization, may promote Rb polymorphism in M. m. domesticus.
Collapse
Affiliation(s)
- J F Dallas
- Laboratoire Génome et Populations, CNRS UPR 9060, Montpellier, France.
| | | | | | | | | |
Collapse
|
7
|
Abstract
The reason for the distinctiveness of small mammals on islands has traditionally attracted some imaginative story-telling, usually invoking isolation (as a relict) followed by adaptation and/or random genetic changes. Studies of voles on Orkney, long-tailed field mice on the Hebrides and Shetland, and house mice on the Faroe archipelago show that the main factor in differentiating island races from their mainland ancestors is the chance genetic composition of the founding animals. Subsequent change has necessarily to be based on the genes and frequencies carried by this colonizing group. Probably most post-colonization change is adaptive, although possibly limited in extent both by the initial paucity of variation and by the conservative effect of intragenomic interactions. It is probably helpful to recognize that the 'founder effect' or principle commonly invoked in discussions about evolution on islands involves a founder 'event', followed by founder 'selection'. Island differentiation is not necessarily a precursor to speciation, although the wide occurrence of island endemics suggests that founder effects should not be rejected as a driving force initiating speciation. Notwithstanding, island forms provide a valuable 'laboratory' for testing new genetic combinations, a small proportion of which may prove evolutionarily exciting. Only more empirical studies will uncover their evolutionary importance.
Collapse
Affiliation(s)
- R J Berry
- Department of Biology, University College London, U.K
| |
Collapse
|