1
|
Marmoy OR, Viswanathan S. Clinical electrophysiology of the optic nerve and retinal ganglion cells. Eye (Lond) 2021; 35:2386-2405. [PMID: 34117382 PMCID: PMC8377055 DOI: 10.1038/s41433-021-01614-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Clinical electrophysiological assessment of optic nerve and retinal ganglion cell function can be performed using the Pattern Electroretinogram (PERG), Visual Evoked Potential (VEP) and the Photopic Negative Response (PhNR) amongst other more specialised techniques. In this review, we describe these electrophysiological techniques and their application in diseases affecting the optic nerve and retinal ganglion cells with the exception of glaucoma. The disease groups discussed include hereditary, compressive, toxic/nutritional, traumatic, vascular, inflammatory and intracranial causes for optic nerve or retinal ganglion cell dysfunction. The benefits of objective, electrophysiological measurement of the retinal ganglion cells and optic nerve are discussed, as are their applications in clinical diagnosis of disease, determining prognosis, monitoring progression and response to novel therapies.
Collapse
Affiliation(s)
- Oliver R Marmoy
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK.
- UCL-GOS Institute for Child Health, University College London, London, UK.
- Manchester Metropolitan University, Manchester, UK.
| | | |
Collapse
|
2
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
3
|
Novel MFN2 Missense Mutation Induces Hereditary Axonal Motor and Sensory Neuropathy in a Saudi Arabian Family. J Clin Neuromuscul Dis 2019; 21:25-29. [PMID: 31453851 DOI: 10.1097/cnd.0000000000000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hereditary axonal motor and sensory neuropathy or Charcot-Marie-Tooth type 2 (CMT2) is a common inherited peripheral neuropathy. Major symptomatologic signs vary from minimal to significant weakness and loss of sensation, feet usually affected more than hands. It may also cause visual acuity impairment, hearing loss, and skeletal deformity. CMT2 classification is based on the clinical, electrophysiological, and genetic inheritance pattern. Dominant CMT2 is classified from CMT2A to CMT2N and recessive CMT2 into CMT2B1 and CMT2B2. CMT2A is the most frequent subtype of CMT2 and caused by mutations in the mitofusin 2 (MFN2) gene. We hereby report a Saudi Arabian CMT2A patient with a variant c.58C>T of the MFN2 gene mutation.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Genetic polyneuropathies are rare and clinically heterogeneous. This article provides an overview of the clinical features, neurologic and electrodiagnostic findings, and management strategies for Charcot-Marie-Tooth disease and other genetic polyneuropathies as well as an algorithm for genetic testing. RECENT FINDINGS In the past 10 years, many of the mutations causing genetic polyneuropathies have been identified. International collaborations have led to the development of consortiums that are undertaking careful genotype-phenotype correlations to facilitate the development of targeted therapies and validation of outcome measures for future clinical trials. Clinical trials are currently under way for some genetic polyneuropathies. SUMMARY Readers are provided a framework to recognize common presentations of various genetic polyneuropathies and a rationale for current diagnostic testing and management strategies in genetic polyneuropathies.
Collapse
|
5
|
Characterization of Charcot-Marie-Tooth optic neuropathy. J Neurol 2017; 264:2431-2435. [PMID: 29063243 DOI: 10.1007/s00415-017-8645-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Varying degrees of optic neuropathy can be seen in patients with Charcot-Marie-Tooth (CMT) disease. To define and characterize the extent of optic neuropathy in patients with CMT2A and CMT1A, two patients from both sub-classifications were evaluated. All patients underwent complete neuro-ophthalmic examinations, and optical coherence (OCT) measurements of the retinal nerve fiber layer (RNFL) and ganglion cell layer complex (GCC) were obtained, along with pattern visual evoked potential (VEP) and pattern electroretinogram (ERG) recordings. RNFL thickness measurements were decreased in both patients with CMT2A, and normal in both patients with CMT1A. GCC measurements were decreased in both patients with CMT2A, mildly decreased in one patient with CMT1A and normal in the second CMT1A patient. VEP latencies were delayed in one patient with CMT2A and one patient with CMT1A. VEP latencies were immeasurable in the other CMT2A patient and not obtained in the second CMT1A patient. Pattern ERG P50-N95 amplitudes were decreased in both patients with CMT2A and normal in one patient with CMT1A. The pattern ERG was immeasurable in the second patient with CMT1A. The pattern of RNFL and GCC thinning in CMT2A with optic neuropathy, a subset of HMSN VI, closely resembles that seen in other mitochondrial optic neuropathies.
Collapse
|
6
|
|
7
|
Ahmad KE, Fraser CL, Sue CM, Barton JJS. Beyond what the eye can see. Surv Ophthalmol 2016; 61:674-9. [PMID: 26921807 DOI: 10.1016/j.survophthal.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
A 45-year-old woman presented with acute sequential optic neuropathy resulting in bilateral complete blindness. No significant visual recovery occurred. Past medical history was relevant for severe preeclampsia with resultant renal failure, diabetes mellitus, and sudden bilateral hearing loss when she was 38 years old. There was a family history of diabetes mellitus in her mother. Testing for common causes of bilateral optic neuropathy did not reveal a diagnosis for her illness. The maternal and personal history of diabetes and deafness prompted testing for mitochondrial disease. The 3 primary mitochondrial DNA mutations responsible for Leber hereditary optic neuropathy were absent, but the patient was subsequently found to have a disease causing mitochondrial DNA mutation, m.13513G>A. The case illustrates the importance of early testing for mitochondrial disease and demonstrates that Leber hereditary optic neuropathy-like presentations may be missed if testing is limited to the 3 primary mutations.
Collapse
Affiliation(s)
- Kate E Ahmad
- Department of Neurology, Royal North Shore Hospital, Sydney, Australia.
| | - Clare L Fraser
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute for Medical Research, Sydney, Australia
| | - Jason J S Barton
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Joyce PI, Fratta P, Landman AS, Mcgoldrick P, Wackerhage H, Groves M, Busam BS, Galino J, Corrochano S, Beskina OA, Esapa C, Ryder E, Carter S, Stewart M, Codner G, Hilton H, Teboul L, Tucker J, Lionikas A, Estabel J, Ramirez-Solis R, White JK, Brandner S, Plagnol V, Bennet DLH, Abramov AY, Greensmith L, Fisher EMC, Acevedo-Arozena A. Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration. Hum Mol Genet 2015; 25:291-307. [PMID: 26604141 PMCID: PMC4706115 DOI: 10.1093/hmg/ddv471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid–protein and protein–protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106−/−), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106−/− mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106−/− mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106−/− mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106−/− motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Peter I Joyce
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Pietro Fratta
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - Philip Mcgoldrick
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - Michael Groves
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - Jorge Galino
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Olga A Beskina
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - Edward Ryder
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sarah Carter
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | | | - Gemma Codner
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Helen Hilton
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Lydia Teboul
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | - Jennifer Tucker
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK
| | | | - Jeanne Estabel
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and
| | - Ramiro Ramirez-Solis
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and
| | - Jacqueline K White
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and
| | - Sebastian Brandner
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | | | - David L H Bennet
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Andrey Y Abramov
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| | - Linda Greensmith
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK,
| | - Elizabeth M C Fisher
- UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK,
| | | |
Collapse
|
9
|
Lv H, Wang L, Zhang W, Wang Z, Zuo Y, Liu J, Yuan Y. A cohort study of Han Chinese MFN2-related Charcot-Marie-Tooth 2A. J Neurol Sci 2015; 358:153-7. [PMID: 26382835 DOI: 10.1016/j.jns.2015.08.1528] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/18/2015] [Accepted: 08/19/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth 2A (CMT2A) is caused by mutations in mitochondrial fusion protein mitofusin 2 (MFN2). CMT2A had a large variety of clinical symptoms and several cohort studies were published recently. This study is to summarized the clinical, electrophysiological, pathological and genetic features in Han Chinese CMT2A. METHODS 20 patients from 12 unrelated Chinese families with MFN2 related CMT2A were collected. Clinical symptom, nerve conduction velocity study, sural nerve pathology and MFN2 gene mutation were retrospectively analyzed. RESULTS We confirmed MFN2 gene mutation in 12 indexes. Nineteen of 20 (95%) patients were classified as early onset phenotypes of CMT2A, including four cases (20%) with infantile onset. Motor nerve conduction velocity (MNCV) of median nerve was above 38m/s in 50% of patients and not recordable in remaining patients. MNCV was not affected by onset age, disease course and mutation site in different patients and MNCV had no correlation with severity of symptoms. Sural nerve biopsy revealed mixed axonal and demyelination change. Loss of myelinated fibers and atypical onions was found in all cases. Electron microscopic (EM) examination of sural nerve confirmed mitochondrial vacuation and aggregation both in myelinated and unmyelinated axons. Eight mutations were detected in 12 indexes, including two novel mutations. The amino acid residue at position 94 of MFN2 protein was a hot spot in Han Chinese patients, followed by R104W. CONCLUSIONS Eraly onset, even infantile onset was more common in our Chinese population. MNCV of median nerve could be either above 38m/s or unrecordable in CMT2A. Pathologically, mixed axon and myelin change should be considered since onion change was frequently observed in most CMT2A.
Collapse
Affiliation(s)
- He Lv
- Department of Neurology, First Hospital, Peking University, Beijing 100034, PR China
| | - Lu Wang
- Department of Neurology, First Hospital, Peking University, Beijing 100034, PR China
| | - Wei Zhang
- Department of Neurology, First Hospital, Peking University, Beijing 100034, PR China
| | - Zhaoxia Wang
- Department of Neurology, First Hospital, Peking University, Beijing 100034, PR China
| | - Yuehuan Zuo
- Department of Neurology, First Hospital, Peking University, Beijing 100034, PR China
| | - Jing Liu
- Department of Neurology, First Hospital, Peking University, Beijing 100034, PR China
| | - Yun Yuan
- Department of Neurology, First Hospital, Peking University, Beijing 100034, PR China.
| |
Collapse
|
10
|
Abstract
Heritable diseases of the peripheral nerves (Charcot-Marie-Tooth disease [CMT]) affect the motor units and sensory nerves, and they are among the most prevalent genetic conditions in the pediatric patient population. The typical clinical presentation includes distal muscle weakness and atrophy, but the severity and progression are largely variable. Improvements in supportive treatment have led to better preservation of patients' motor functions. More than 80 genes have been associated with CMT. These genetic discoveries, along with the developments of cellular and transgenic disease models, have allowed clinicians to better understand the disease mechanisms, which should lead to more specific treatments.
Collapse
Affiliation(s)
- Agnes Jani-Acsadi
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Sylvia Ounpuu
- Department of Orthopedic Surgery, Connecticut Children's Medical Center, Farmington, CT, USA
| | - Kristan Pierz
- Department of Orthopedic Surgery, Center of Motion Analysis, Connecticut Children's Medical Center, Farmington, CT, USA
| | - Gyula Acsadi
- Division of Neurology, Department of Neurology, Connecticut Children's Medical Center, University of Connecticut School of Medicine, 505 Farmington Avenue, Farmington, CT 06032, USA.
| |
Collapse
|
11
|
|
12
|
Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 2013; 20:202-15. [PMID: 24331362 DOI: 10.1016/j.spen.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Joseph J Melvin
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
13
|
Nakhro K, Park JM, Choi BO, Chung KW. Missense mutations ofmitofusin 2in axonal Charcot–Marie–Tooth neuropathy: polymorphic or incomplete penetration? Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.814587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
14
|
Abstract
There has been considerable progress during the past 24 years in the molecular genetics of mitochondrial DNA and related nuclear DNA mutations, and more than 100 nerve biopsies from hereditary neuropathies related to mitochondrial cytopathy have been accurately examined. Neuropathies were first reported in diseases related to point mutations of mitochondrial DNA, but they proved to be a prominent feature of the phenotype in mitochondrial disorders caused by defects in nuclear DNA, particularly in 3 genes: polymerase gamma 1 (POLG1), mitofusin 2 (MFN2), and ganglioside-induced differentiation-associated protein 1 (GDAP1). Most patients have sensory-motor neuropathy, sometimes associated with ophthalmoplegia, ataxia, seizures, parkinsonism, myopathy, or visceral disorders. Some cases are caused by consanguinity, but most are sporadic with various phenotypes mimicking a wide range of other etiologies. Histochemistry on muscle biopsy, as well as identification of crystalloid inclusions at electron microscopy, may provide a diagnostic clue to mitochondriopathy, but nerve biopsy is often less informative. Nevertheless, enlarged mitochondria containing distorted or amputated cristae are highly suggestive, particularly when located in the Schwann cell cytoplasm. Also noticeable are clusters of regenerating myelinated fibers surrounded by concentric Schwann cell processes, and such onion bulb-like formations are frequently observed in neuropathies caused by GDAP1 mutations.
Collapse
|
15
|
O'Mahony J, Bar-Or A, Arnold DL, Sadovnick AD, Marrie RA, Banwell B. Masquerades of acquired demyelination in children: experiences of a national demyelinating disease program. J Child Neurol 2013; 28:184-97. [PMID: 22573735 DOI: 10.1177/0883073812443006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The diagnosis of acquired demyelinating syndromes of the central nervous system in children requires exclusion of other acute central nervous system disorders. In a 23-site national demyelinating disease study, standardized clinical, laboratory, and magnetic resonance imaging (MRI) data were obtained prospectively from onset, and serially at 3, 6, and 12 months and annually. Twenty of 332 (6%) participants (mean [SD] age, 10.21 [4.32] years; 12 (60%) female) were ultimately diagnosed with vascular disorders (primary or secondary central nervous system vasculitis, vasculopathy, stroke, or migraine, n = 11 children), central nervous system malignancy (n = 3), mitochondrial disease (n = 2), or central nervous system symptoms in the accompaniment of confirmed infection (n = 4). Red flags that may serve to distinguish disorders in the differential of acquired demyelination are described.
Collapse
Affiliation(s)
- Julia O'Mahony
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Pareyson D, Marchesi C, Salsano E. Dominant Charcot-Marie-Tooth syndrome and cognate disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:817-845. [PMID: 23931817 DOI: 10.1016/b978-0-444-52902-2.00047-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a group of genetically heterogeneous disorders sharing a similar phenotype, characterized by wasting and weakness mainly involving the distal muscles of lower and upper limbs, variably associated with distal sensory loss and skeletal deformities. This chapter deals with dominantly transmitted CMT and related disorders, namely hereditary neuropathy with liability to pressure palsies (HNPP) and hereditary neuralgic amyotrophy (HNA). During the last 20 years, several genes have been uncovered associated with CMT and our understanding of the underlying molecular mechanisms has greatly improved. Consequently, a precise genetic diagnosis is now possible in the majority of cases, thus allowing proper genetic counseling. Although, unfortunately, treatment is still unavailable for all types of CMT, several cellular and animal models have been developed and some compounds have proved effective in these models. The first trials with ascorbic acid in CMT type 1A have been completed and, although negative, are providing relevant information on disease course and on how to prepare for future trials.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinics of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | | | | |
Collapse
|
17
|
Yiu EM, Ryan MM. Genetic axonal neuropathies and neuronopathies of pre-natal and infantile onset. J Peripher Nerv Syst 2012; 17:285-300. [DOI: 10.1111/j.1529-8027.2012.00412.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Ferree A, Shirihai O. Mitochondrial dynamics: the intersection of form and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:13-40. [PMID: 22729853 DOI: 10.1007/978-1-4614-3573-0_2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mitochondria within a cell exist as a population in a dynamic -morphological continuum. The balance of mitochondrial fusion and fission dictates a spectrum of shapes from interconnected networks to fragmented individual units. This plasticity bestows the adaptive flexibility needed to adjust to changing cellular stresses and metabolic demands. The mechanisms that regulate mitochondrial dynamics, their importance in normal cell biology, and the roles they play in disease conditions are only beginning to be understood. Dysfunction of mitochondrial dynamics has been identified as a possible disease mechanism in Parkinson's disease. This chapter will introduce the budding field of mitochondrial dynamics and explore unique characteristics of affected neurons in Parkinson's disease that increase susceptibility to disruptions in mitochondrial dynamics.
Collapse
Affiliation(s)
- Andrew Ferree
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
19
|
Gowrisankaran S, Anastasakis A, Fishman GA, Alexander KR. Structural and functional measures of inner retinal integrity following visual acuity improvement in a patient with hereditary motor and sensory neuropathy type VI. Ophthalmic Genet 2011; 32:188-92. [PMID: 21707411 DOI: 10.3109/13816810.2011.587859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To report measures of inner retinal integrity following improvement in visual acuity and visual fields in a patient with hereditary motor and sensory neuropathy type VI (HMSN VI). CASE REPORT The patient is a Caucasian male with HMSN VI (type 2A Charcot-Marie-Tooth disease and associated optic atrophy) and a c.1090C→T (p.R364W) mutation in the mitofusin 2 (MFN2) gene. The patient's best-corrected visual acuity improved from 20/200 (OD) and 20/400 (OS) at the initial visit to 20/25 in each eye when tested 7 years later. The visual field defects in both eyes that were present at the initial visit were absent at the follow-up visit. The structural integrity of the inner retina was assessed by an evaluation of retinal nerve fiber layer thickness (RNFLT) using optical coherence tomography (OCT), and the functional integrity was assessed by the amplitude of the photopic negative response (PhNR) of the electroretinogram (ERG). At the follow-up visit, the patient's RNFLT was less than the 5th percentile for control subjects in the superior and inferior quadrants OD and in one sector of the temporal quadrant OS, but was within normal limits elsewhere. The PhNR amplitude of each eye was below the lower limit of the normal range. CONCLUSION The abnormally low PhNR amplitudes and abnormally thin RNFL in certain quadrants of the retina following improvement of visual acuity and visual fields to near-normal values illustrates the potential usefulness of assessing the structure and function of the inner retina in HMSN VI patients.
Collapse
Affiliation(s)
- Sowjanya Gowrisankaran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
20
|
Marchesi C, Ciano C, Salsano E, Nanetti L, Milani M, Gellera C, Taroni F, Fabrizi GM, Uncini A, Pareyson D. Co-occurrence of amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease type 2A in a patient with a novel mutation in the mitofusin-2 gene. Neuromuscul Disord 2011; 21:129-31. [DOI: 10.1016/j.nmd.2010.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/12/2010] [Accepted: 09/21/2010] [Indexed: 12/11/2022]
|
21
|
Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, Quattrini A, Feldman EL. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 2010; 120:477-89. [PMID: 20473509 DOI: 10.1007/s00401-010-0697-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 04/23/2010] [Accepted: 05/06/2010] [Indexed: 01/24/2023]
Abstract
Mitochondrial-mediated oxidative stress in response to high glucose is proposed as a primary cause of dorsal root ganglia (DRG) neuron injury in the pathogenesis of diabetic neuropathy. In the present study, we report a greater number of mitochondria in both myelinated and unmyelinated dorsal root axons in a well-established model of murine diabetic neuropathy. No similar changes were seen in younger diabetic animals without neuropathy or in the ventral motor roots of any diabetic animals. These findings led us to examine mitochondrial biogenesis and fission in response to hyperglycemia in the neurites of cultured DRG neurons. We demonstrate overall mitochondrial biogenesis via increases in mitochondrial transcription factors and increases in mitochondrial DNA in both DRG neurons and axons. However, this process occurs over a longer time period than a rapidly observed increase in the number of mitochondria in DRG neurites that appears to result, at least in part, from mitochondrial fission. We conclude that during acute hyperglycemia, mitochondrial fission is a prominent response, and excessive mitochondrial fission may result in dysregulation of energy production, activation of caspase 3, and subsequent DRG neuron injury. During more prolonged hyperglycemia, there is evidence of compensatory mitochondrial biogenesis in axons. Our data suggest that an imbalance between mitochondrial biogenesis and fission may play a role in the pathogenesis of diabetic neuropathy.
Collapse
|