1
|
Soliani L, Alcalá San Martín A, Balsells S, Hernando‐Davalillo C, Ortigoza‐Escobar JD. Chromosome Microarray Analysis for the Investigation of Deletions in Pediatric Movement Disorders: A Systematic Review of the Literature. Mov Disord Clin Pract 2023; 10:547-557. [PMID: 37070051 PMCID: PMC10105116 DOI: 10.1002/mdc3.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Background Chromosome microarray analysis (CMA) can detect copy number variants (CNV) beyond the resolution of standard G-banded karyotyping. De novo or inherited microdeletions may cause autosomal dominant movement disorders. Objectives The purpose of this study was to analyze the clinical characteristics, associated features, and genetic information of children with deletions in known genes that cause movement disorders and to make recommendations regarding the diagnostic application of CMA. Methods Clinical cases published in English were identified in scientific databases (PubMed, ClinVar, and DECIPHER) from January 1998 to July 2019 following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Cases with deletions or microdeletions greater than 300 kb were selected. Information collected included age, sex, movement disorders, associated features, and the size and location of the deletion. Duplications or microduplications were not included. Results A total of 18.097 records were reviewed, and 171 individuals were identified. Ataxia (30.4%), stereotypies (23.9%), and dystonia (21%) were the most common movement disorders. A total of 16% of the patients demonstrated more than one movement disorder. The most common associated features were intellectual disability or developmental delay (78.9%) and facial dysmorphism (57.8%). The majority (77.7%) of microdeletions were smaller than 5 Mb. We find no correlation between movement disorders, their associated features, and the size of microdeletions. Conclusions Our results support the use of CMA as an investigational test in children with movement disorders. As the majority of identified articles were case reports and small case series (low quality), future efforts should focus on larger prospective studies to examine the causation of microdeletions in pediatric movement disorders.
Collapse
Affiliation(s)
- Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna UOC Neuropsichiatria dell'età PediatricaBolognaItaly
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC) Università di BolognaBolognaItaly
| | - Adrián Alcalá San Martín
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Sol Balsells
- Department of StatisticsInstitut de Recerca Sant Joan de DéuBarcelonaSpain
| | - Cristina Hernando‐Davalillo
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Juan Darío Ortigoza‐Escobar
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIBarcelonaSpain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de RecercaHospital Sant Joan de Déu BarcelonaBarcelonaSpain
- European Reference Network for Rare Neurological Diseases (ERN‐RND)BarcelonaSpain
| |
Collapse
|
2
|
Ngoh A, McTague A, Wentzensen IM, Meyer E, Applegate C, Kossoff EH, Batista DA, Wang T, Kurian MA. Severe infantile epileptic encephalopathy due to mutations in PLCB1: expansion of the genotypic and phenotypic disease spectrum. Dev Med Child Neurol 2014; 56:1124-8. [PMID: 24684524 PMCID: PMC4230412 DOI: 10.1111/dmcn.12450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 11/28/2022]
Abstract
Homozygous deletions of chromosome 20p12.3, disrupting the promoter region and first three coding exons of the phospholipase C β1 gene (PLCB1), have previously been described in two reports of early infantile epileptic encephalopathy (EIEE). Both children were born to consanguineous parents, one presented with infantile spasms, the other with migrating partial seizures of infancy. We describe an infant presenting with severe intractable epilepsy (without a specific EIEE electroclinical syndrome diagnosis) and neurodevelopmental delay associated with compound heterozygous mutations in PLCB1. A case note review and molecular genetic investigations were performed for a child, approximately 10 months of age, admitted to Johns Hopkins University Hospital for developmental delay and new-onset seizures. The patient presented at 6 months of age with developmental delay, followed by the onset of intractable, focal, and generalized seizures associated with developmental regression from 10 months of age. Presently, at 2 years of age, the child has severe motor and cognitive delays. Diagnostic microarray revealed a heterozygous 476kb deletion of 20p12.3 (encompassing PLCB1), which was also detected in the mother. The genomic breakpoints for the heterozygous deletion were determined. In order to investigate the presence of a second PLCB1 mutation, direct Sanger sequencing of the coding region and flanking intronic regions was undertaken, revealing a novel heterozygous intron 1 splice site variant (c.99+1G>A) in both the index individual and the father. Advances in molecular genetic testing have greatly improved diagnostic rates in EIEE, and this report further confirms the important role of microarray investigation in this group of disorders. PLCB1-EIEE is now reported in a number of different EIEE phenotypes and our report provides further evidence for phenotypic pleiotropy encountered in early infantile epilepsy syndromes.
Collapse
Affiliation(s)
- Adeline Ngoh
- Neurosciences Unit, Developmental Neurosciences, University College London, Institute of Child HealthLondon, UK,Department of Neurology, Great Ormond Street HospitalLondon, UK
| | - Amy McTague
- Neurosciences Unit, Developmental Neurosciences, University College London, Institute of Child HealthLondon, UK,Department of Neurology, Great Ormond Street HospitalLondon, UK
| | - Ingrid M Wentzensen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Esther Meyer
- Neurosciences Unit, Developmental Neurosciences, University College London, Institute of Child HealthLondon, UK
| | - Carolyn Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Eric H Kossoff
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Denise A Batista
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA,Kennedy Krieger InstituteBaltimore, MD, USA
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Manju A Kurian
- Neurosciences Unit, Developmental Neurosciences, University College London, Institute of Child HealthLondon, UK,Department of Neurology, Great Ormond Street HospitalLondon, UK
| |
Collapse
|
3
|
Abstract
Hereditary neurological disorders (HNDs) are relatively common in children compared to those occurring in adulthood. Recognising clinical manifestations of HNDs is important for the selection of genetic testing, genetic testing results interpretation, and genetic consultation. Meanwhile, advances in next generation sequencing (NGS) technologies have significantly enabled the discovery of genetic causes of HNDs and also challenge paediatricians on applying genetic investigation. Combination of both clinical information and advanced technologies will enhance the genetic test yields in clinical setting. This review summarises the clinical presentations as well as genetic causes of paediatric neurological disorders in four major areas including movement disorders, neuropsychiatric disorders, neuron peripheral disorders and epilepsy. The aim of this review is to help paediatric neurologists not only to see the clinical features but also the complex genetic aspect of HNDs in order to utilise genetic investigation confidently in their clinical practice. A smooth transition from research based to clinical use of comprehensive genetic testing in HNDs in children could be foreseen in the near future while genetic testing, genetic counselling and genetic data interpretation are in place appropriately.
Collapse
Affiliation(s)
- Yue Huang
- 1 Neuroscience Research Australia & the University of New South Wales, NSW, 2031, Australia ; 2 Department of Genetic Medicine, SA Pathology at Women's and Children's Hospital, North Adelaide, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia ; 3 Cytogenetics Department, Western Sydney Genetics Program, Children's Hospital at Westmead, NSW, 2145, Australia ; 4 Department of Neurology, Xiangya Hospital, Central South University & National Laboratory of Medical Genetics of China, Changsha 410000, China
| | - Sui Yu
- 1 Neuroscience Research Australia & the University of New South Wales, NSW, 2031, Australia ; 2 Department of Genetic Medicine, SA Pathology at Women's and Children's Hospital, North Adelaide, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia ; 3 Cytogenetics Department, Western Sydney Genetics Program, Children's Hospital at Westmead, NSW, 2145, Australia ; 4 Department of Neurology, Xiangya Hospital, Central South University & National Laboratory of Medical Genetics of China, Changsha 410000, China
| | - Zhanhe Wu
- 1 Neuroscience Research Australia & the University of New South Wales, NSW, 2031, Australia ; 2 Department of Genetic Medicine, SA Pathology at Women's and Children's Hospital, North Adelaide, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia ; 3 Cytogenetics Department, Western Sydney Genetics Program, Children's Hospital at Westmead, NSW, 2145, Australia ; 4 Department of Neurology, Xiangya Hospital, Central South University & National Laboratory of Medical Genetics of China, Changsha 410000, China
| | - Beisha Tang
- 1 Neuroscience Research Australia & the University of New South Wales, NSW, 2031, Australia ; 2 Department of Genetic Medicine, SA Pathology at Women's and Children's Hospital, North Adelaide, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia ; 3 Cytogenetics Department, Western Sydney Genetics Program, Children's Hospital at Westmead, NSW, 2145, Australia ; 4 Department of Neurology, Xiangya Hospital, Central South University & National Laboratory of Medical Genetics of China, Changsha 410000, China
| |
Collapse
|
4
|
Capobianco S, Lava SA, Bianchetti MG, Martinet D, Belfiore M, Ramelli GP, Ferrarini A. Chromosomal microarray among children with intellectual disability: a useful diagnostic tool for the clinical geneticist. Dev Med Child Neurol 2014; 56:290. [PMID: 24266756 DOI: 10.1111/dmcn.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie Capobianco
- Integrated Department of Pediatrics, Ente Ospedaliero Cantonale Ticinese, Bellinzona, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Giant axonal neuropathy diagnosed on skin biopsy. J Clin Neurosci 2013; 21:865-7. [PMID: 24211141 DOI: 10.1016/j.jocn.2013.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 11/22/2022]
Abstract
Evaluation of hereditary axonal neuropathy in childhood is complex. Often, the child has to be subjected to general anaesthesia for a nerve biopsy to guide further genetic testing, which may or may not be readily available. We describe a toddler with clinical features suggesting giant axonal neuropathy (GAN), whose diagnosis was confirmed by minimally invasive skin biopsy and corroborated by the finding of compound heterozygous mutations involving the GAN gene, including a novel interstitial microdeletion at 16q23.2 detected by microarray and a point mutation detected by direct sequencing.
Collapse
|
6
|
Lee CG, Park SJ, Yun JN, Ko JM, Kim HJ, Yim SY, Sohn YB. Array-based comparative genomic hybridization in 190 Korean patients with developmental delay and/or intellectual disability: a single tertiary care university center study. Yonsei Med J 2013; 54:1463-70. [PMID: 24142652 PMCID: PMC3809862 DOI: 10.3349/ymj.2013.54.6.1463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study analyzed and evaluated the demographic, clinical, and cytogenetic data [G-banded karyotyping and array-based comparative genomic hybridization (array CGH)] of patients with unexplained developmental delay or intellectual disability at a single Korean institution. MATERIALS AND METHODS We collected clinical and cytogenetic data based on retrospective charts at Ajou University Medical Center, Suwon, Korea from April 2008 to March 2012. RESULTS A total of 190 patients were identified. Mean age was 5.1±1.87 years. Array CGH yielded abnormal results in 26 of 190 patients (13.7%). Copy number losses were about two-fold more frequent than gains. A total of 61.5% of all patients had copy number losses. The most common deletion disorders included 22q11.2 deletion syndrome, 15q11.2q12 deletion and 18q deletion syndrome. Copy number gains were identified in 34.6% of patients, and common diseases among these included Potocki-Lupski syndrome, 15q11-13 duplication syndrome and duplication 22q. Abnormal karyotype with normal array CGH results was exhibited in 2.6% of patients; theses included balanced translocation (n=2), inversion (n=2) and low-level mosaicism (n=1). Facial abnormalities (p<0.001) and failure to thrive were (p<0.001) also more frequent in the group of patients with abnormal CGH findings. CONCLUSION Array CGH is a useful diagnostic tool in clinical settings in patients with developmental delay or intellectual disability combined with facial abnormalities or failure to thrive.
Collapse
Affiliation(s)
- Cha Gon Lee
- Department of Medical Genetics, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | | | | | | | | | | | | |
Collapse
|