1
|
Cheng DT, Tremblay L, Fjeld K, Krigolson OE, Binsted G. The neural correlates of target and hand vision during movement planning and execution. Exp Brain Res 2025; 243:93. [PMID: 40090992 DOI: 10.1007/s00221-025-07043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
In the current study, electroencephalographic (EEG) data was recorded to study the impact of hand and target visibility on neural processing during both the planning and execution of upper limb reaches. Prior to each movement, participants were informed if the hand and/or the target would be available in four conditions: (1) hand and target visible, (2) hand only, (3) target only, and (4) no hand, no target. Visual evoked potentials (VEPs) were assessed after target onset (i.e., prior to the reaching movement: P2), which revealed larger positive components when vision of the target was not going to be available during the reaching movement (i.e., hand only, no hand-no target) compared to when the target would be present (i.e., hand and target, target only). Further, the motor-related evoked potentials (MEPs) observed in relation to the reaching movement onset showed that a second negative peak generated during the execution of the reaching movement was significantly greater for reaches without vision of the hand, as compared to reaches with vision of the hand. Our results indicate a sequential importance of seeing the target and the hand, prior-to and during the movement, respectively. This work provides neurophysiological evidence to better understand the utilization of vision of the hand and target during goal-directed reaching.
Collapse
Affiliation(s)
- Darian T Cheng
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Krista Fjeld
- Evoked Potential Operant Conditioning Laboratory, Medical University of South Carolina, Charleston, USA
| | - Olave E Krigolson
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Gordon Binsted
- School of Kinesiology & Health Science, York University, North York, Canada.
- School of Kinesiology & Health Science, Calumet College, 320 75 Arboretum Lane, North York, ON, M3J 2S5, Canada.
| |
Collapse
|
2
|
Todd J, Yeark M, Auriac P, Paton B, Winkler I. Order effects in task-free learning: Tuning to information-carrying sound features. Cortex 2024; 172:114-124. [PMID: 38295554 DOI: 10.1016/j.cortex.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 02/02/2024]
Abstract
Event-related potentials (ERPs) acquired during task-free passive listening can be used to study how sensitivity to common pattern repetitions and rare deviations changes over time. These changes are purported to represent the formation and accumulation of precision in internal models that anticipate future states based on probabilistic and/or statistical learning. This study features an unexpected finding; a strong order-dependence in the speed with which deviant responses are elicited that anchors to first learning. Participants heard four repetitions of a sequence in which an equal number of short (30 msec) and long (60 msec) pure tones were arranged into four blocks in which one was common (the standard, p = .875) and the other rare (the deviant, p = .125) with probabilities alternating across blocks. Some participants always heard the sequences commencing with the 30 msec deviant block, and others always with the 60 msec deviant block first. A deviance-detection component known as mismatch negativity (MMN) was extracted from responses and the point in time at which MMN reached maximum amplitude was used as the dependent variable. The results show that if participants heard sequences commencing with the 60 msec deviant block first, the MMN to the 60 msec and 30 msec deviant peaked at an equivalent latency. However, if participants heard sequences commencing with the 30 msec deviant first, the MMN peaked earlier to the 60 msec deviant. Furthermore, while the 30 msec MMN latency did not differ as a function of sequence composition, the 60 msec MMN latency did and was earlier when the sequences began with a 30 msec deviant first. By examining MMN latency effects as a function of age and hearing level it was apparent that the differentiation in 30 msec and 60 msec MMN latency expands with older age and raised hearing threshold due to prolongation of the time taken for the 30 msec MMN to peak. The observations are discussed with reference to how the initial sound composition may tune the auditory system to be more sensitive to different cues (i.e., offset responses vs perceived loudness). The order-effect demonstrates a remarkably powerful anchoring to first learning that might reflect initial tuning to the most valuable discriminating feature within a given listening environment, an effect that defies explanation based on statistical information alone.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia.
| | - Mattsen Yeark
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia.
| | - Paul Auriac
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia.
| | - Bryan Paton
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia.
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Upshaw JD, Stevens CE, Ganis G, Zabelina DL. The hidden cost of a smartphone: The effects of smartphone notifications on cognitive control from a behavioral and electrophysiological perspective. PLoS One 2022; 17:e0277220. [PMID: 36395335 PMCID: PMC9671478 DOI: 10.1371/journal.pone.0277220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Since their release in 2007, smartphones and their use have seemingly become a fundamental aspect of life in western society. Prior literature has suggested a link between mobile technology use and lower levels of cognitive control when people engage in a cognitively demanding task. This effect is more evident for people who report higher levels of smartphone use. The current study examined the effects of smartphones notifications on cognitive control and attention. Participants completed the Navon Letter paradigm which paired visual (frequent and rare target letters) and auditory (smartphone and control sounds) stimuli. We found that overall, participants responded slower on trials paired with smartphone notification (vs. control) sounds. They also demonstrated larger overall N2 ERP and a larger N2 oddball effect on trials paired with smartphone (vs. control) sounds, suggesting that people generally exhibited greater levels of cognitive control on the smartphone trials. In addition, people with higher smartphone addiction proneness showed lower P2 ERP on trials with the smartphone (vs. control) sounds, suggesting lower attentional engagement. These results add to the debate on the effects of smartphones on cognition. Limitations and future directions are discussed.
Collapse
Affiliation(s)
- Joshua D. Upshaw
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas, United States
- * E-mail:
| | - Carl E. Stevens
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas, United States
| | - Giorgio Ganis
- School of Psychology and Brain Research and Imaging Centre (BRIC), Plymouth University, Plymouth, Devon, England
| | - Darya L. Zabelina
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
4
|
Cognitive impairment in the co-occurrence of alcohol dependence and major depression: neuropsychological assessment and event-related potentials analyses. Heliyon 2022; 8:e09899. [PMID: 35874061 PMCID: PMC9305349 DOI: 10.1016/j.heliyon.2022.e09899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/25/2021] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
To evaluate the putative detrimental effect of Major Depressive Disorder (MDD) on the cognitive impairment associated with Alcohol Dependence (AD), we contrasted the neuropsychological profile and behavioral responses of AD subjects, MDD individuals, and in those with a co-occurring AD-MDD diagnosis (DD). Patients and healthy subjects completed a comprehensive neuropsychological battery and were recorded for P200, P300, and N450 event-related potentials during memory and Stroop tasks. AD subjects exhibited a generalized detrimental neuropsychological performance; in contrast, in MDD individuals, impairment was limited to discrete domains. Notably, the deficits were distinctive in DD cases. A P200 increased amplitude in MDD, a decrease in P300 amplitude in AD, and increased latency of P300 in DD patients were the overt electrophysiological abnormalities identified. Dual patients also exhibited a distinct pattern of behavioral responses, particularly apparent during high-demand cognitive tasks. Specific ERP adjustments were associated with the short-term fluoxetine treatment in DD and MDD subjects; the SSRI also improved altered baseline performance in learning and cognitive flexibility in DD subjects. In conclusion, the neuropsychological and behavioral alterations detected in the co-occurrence of AD-MDD did not seem to be merely the sum of the negative contributions of the independent disorders. Dual diagnosis (DD) patients exhibited a distinctive pattern of cognitive impairments compared to single diagnosis subjects. The ERP alterations identified were not shared among affected groups. Dual patients exhibited idiosyncratic behavioral responses. Impaired executive functions in DD subjects improved with SSRI medication. Neuropsychological and behavioral alterations are not explained as the sum of negative contributions of individual diagnosis.
Collapse
|
5
|
Fan Y, Fang K, Sun R, Shen D, Yang J, Tang Y, Fang G. Hierarchical auditory perception for species discrimination and individual recognition in the music frog. Curr Zool 2021; 68:581-591. [DOI: 10.1093/cz/zoab085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
The ability to discriminate species and recognize individuals is crucial for reproductive success and/or survival in most animals. However, the temporal order and neural localization of these decision-making processes has remained unclear. In this study, event-related potentials (ERPs) were measured in the telencephalon, diencephalon, and mesencephalon of the music frog Nidirana daunchina. These ERPs were elicited by calls from 1 group of heterospecifics (recorded from a sympatric anuran species) and 2 groups of conspecifics that differed in their fundamental frequencies. In terms of the polarity and position within the ERP waveform, auditory ERPs generally consist of 4 main components that link to selective attention (N1), stimulus evaluation (P2), identification (N2), and classification (P3). These occur around 100, 200, 250, and 300 ms after stimulus onset, respectively. Our results show that the N1 amplitudes differed significantly between the heterospecific and conspecific calls, but not between the 2 groups of conspecific calls that differed in fundamental frequency. On the other hand, the N2 amplitudes were significantly different between the 2 groups of conspecific calls, suggesting that the music frogs discriminated the species first, followed by individual identification, since N1 and N2 relate to selective attention and stimuli identification, respectively. Moreover, the P2 amplitudes evoked in females were significantly greater than those in males, indicating the existence of sexual dimorphism in auditory discrimination. In addition, both the N1 amplitudes in the left diencephalon and the P2 amplitudes in the left telencephalon were greater than in other brain areas, suggesting left hemispheric dominance in auditory perception. Taken together, our results support the hypothesis that species discrimination and identification of individual characteristics are accomplished sequentially, and that auditory perception exhibits differences between sexes and in spatial dominance.
Collapse
Affiliation(s)
- Yanzhu Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- School of Life Science, Anhui University, Hefei 230601, China
| | - Ruolei Sun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- School of Life Science, Anhui University, Hefei 230601, China
| | - Di Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhan Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Francisco AA, Berruti AS, Kaskel FJ, Foxe JJ, Molholm S. Assessing the integrity of auditory processing and sensory memory in adults with cystinosis (CTNS gene mutations). Orphanet J Rare Dis 2021; 16:177. [PMID: 33849633 PMCID: PMC8045394 DOI: 10.1186/s13023-021-01818-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cystinosis, a rare lysosomal storage disease, is characterized by cystine crystallization and accumulation within tissues and organs, including the kidneys and brain. Its impact on neural function appears mild relative to its effects on other organs, but therapeutic advances have led to substantially increased life expectancy, necessitating deeper understanding of its impact on neurocognitive function in adulthood. We previously demonstrated intact auditory sensory processing, accompanied by mild sensory memory difficulties, in children and adolescents with cystinosis. Methods We investigated whether further progressive decrements in these processes would be observed in adults with cystinosis, comparing high-density auditory-evoked potential (AEP) recordings from adults with cystinosis (N = 15; ages: 19–38 years) to those of age-matched controls (N = 17). We employed a duration oddball paradigm with different stimulation rates, in which participants passively listened to regularly occurring standard tones interspersed with infrequently occurring deviant tones. Analyses focused on AEP components reflecting auditory sensory-perceptual processing (N1 and P2), sensory memory (mismatch negativity, MMN), and attentional orienting (P3a). Results Overall, adults with cystinosis produced highly similar sensory-perceptual AEP responses to those observed in controls suggesting intact early auditory cortical processing. However, significantly increased P2 and P3a amplitudes and reduced MMN at slower stimulation rates were observed, suggesting mild-to-moderate changes in auditory sensory memory and attentional processing. While cognitive testing revealed lower scores on verbal IQ and perceptual reasoning in cystinosis, these did not correlate with the AEP measures. Conclusions These neurophysiological data point to the emergence of subtle auditory processing deficits in early adulthood in cystinosis, warranting further investigation of memory and attentional processes in this population, and of their consequences for perceptual and cognitive function.
Collapse
Affiliation(s)
- Ana A Francisco
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Alaina S Berruti
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Frederick J Kaskel
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John J Foxe
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Sophie Molholm
- Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building, Suite 1C, 1225 Morris Park Avenue, Bronx, NY, 10461, USA. .,Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
7
|
Fleming JT, Noyce AL, Shinn-Cunningham BG. Audio-visual spatial alignment improves integration in the presence of a competing audio-visual stimulus. Neuropsychologia 2020; 146:107530. [PMID: 32574616 DOI: 10.1016/j.neuropsychologia.2020.107530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 11/26/2022]
Abstract
In order to parse the world around us, we must constantly determine which sensory inputs arise from the same physical source and should therefore be perceptually integrated. Temporal coherence between auditory and visual stimuli drives audio-visual (AV) integration, but the role played by AV spatial alignment is less well understood. Here, we manipulated AV spatial alignment and collected electroencephalography (EEG) data while human subjects performed a free-field variant of the "pip and pop" AV search task. In this paradigm, visual search is aided by a spatially uninformative auditory tone, the onsets of which are synchronized to changes in the visual target. In Experiment 1, tones were either spatially aligned or spatially misaligned with the visual display. Regardless of AV spatial alignment, we replicated the key pip and pop result of improved AV search times. Mirroring the behavioral results, we found an enhancement of early event-related potentials (ERPs), particularly the auditory N1 component, in both AV conditions. We demonstrate that both top-down and bottom-up attention contribute to these N1 enhancements. In Experiment 2, we tested whether spatial alignment influences AV integration in a more challenging context with competing multisensory stimuli. An AV foil was added that visually resembled the target and was synchronized to its own stream of synchronous tones. The visual components of the AV target and AV foil occurred in opposite hemifields; the two auditory components were also in opposite hemifields and were either spatially aligned or spatially misaligned with the visual components to which they were synchronized. Search was fastest when the auditory and visual components of the AV target (and the foil) were spatially aligned. Attention modulated ERPs in both spatial conditions, but importantly, the scalp topography of early evoked responses shifted only when stimulus components were spatially aligned, signaling the recruitment of different neural generators likely related to multisensory integration. These results suggest that AV integration depends on AV spatial alignment when stimuli in both modalities compete for selective integration, a common scenario in real-world perception.
Collapse
Affiliation(s)
- Justin T Fleming
- Speech and Hearing Bioscience and Technology Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Abigail L Noyce
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
8
|
The response relevance of visual stimuli modulates the P3 component and the underlying sensorimotor network. Sci Rep 2020; 10:3818. [PMID: 32123199 PMCID: PMC7052248 DOI: 10.1038/s41598-020-60268-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/05/2020] [Indexed: 11/29/2022] Open
Abstract
The functional meaning and neural basis of the P3b component of ERPs are still under debate. One of the main issues is whether P3b reflects only stimulus-related processes (stimulus evaluation hypothesis) or response-related processes as well (stimulus-response or S-R link activation hypothesis). Here, we conducted an EEG experiment examining whether P3b may indeed reflect an S-R link activation, followed by an fMRI experiment in which we explored the brain areas and functional connectivity possibly constituting the neural basis of these sensorimotor links. In both experiments, two successive visual stimuli, S1 and S2, were presented with a 1 sec interval, and responses were defined either by S1 or S2, while participants responded only after S2 onset. The obtained EEG results suggest that P3b may be interpreted in terms of the S-R link activation account, although further studies are needed to disentangle P3-related activity from overlapping anticipatory activity. The obtained fMRI results showed that processing of the relevant S1 involved activation of a distributed postero-anterior sensorimotor network, and increased strength of functional connectivity within this network. This network may underlie activation of the S-R links, thus possibly also the P3b component, forming a bridging step between sensory encoding and response execution.
Collapse
|
9
|
Ungan P, Yagcioglu S, Ayik E. Event-related potentials to single-cycle binaural beats of a pure tone, a click train, and a noise. Exp Brain Res 2019; 237:2811-2828. [PMID: 31451833 DOI: 10.1007/s00221-019-05638-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
There are only few electrophysiological studies on a phenomenon called "binaural beats" (BBs), which is experienced when two tones with frequencies close to each other are dichotically presented to the ears. And, there is no study in which the electrical responses of the brain to BBs of complex sounds are recorded and analyzed. Owing to a recent method based on single-cycle BB stimulation with sub-threshold temporary monaural frequency shifts, we could record the event-related potentials (ERPs) to BBs of a 250-Hz tone as well as those to the BBs of a 250/s click train and to the BBs of a recurrent 4-ms Gaussian noise. Although fundamental components of the click train and noise stimuli were lower in intensity than the tonal stimuli in our experiments, the N1 responses to the BBs of the former two wide-spectrum sounds were recorded with significantly larger amplitudes and shorter latencies than those to the BBs of a tone, suggesting an across-frequency integration of directional information. During a BB cycle of a complex sound, the interaural time differences (ITDs) of the spectral components are all equal to each other at any time; whereas their interaural phase differences (IPDs) are all different. The ITD rather than the IPD should, therefore, be the cue that is relied upon by the binaural mechanism coding the perceived lateral shifts of the sound caused by BBs. This is in line with across-frequency models of human auditory lateralization based on a common ITD, fulfilling a straightness criterion.
Collapse
Affiliation(s)
- Pekcan Ungan
- Department of Biophysics, School of Medicine, Koc University, Istanbul, Turkey.
| | - Suha Yagcioglu
- Department of Biophysics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ece Ayik
- Graduate School of Science and Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
10
|
Event-related potentials to single-cycle binaural beats and diotic amplitude modulation of a tone. Exp Brain Res 2019; 237:1931-1945. [PMID: 31111175 DOI: 10.1007/s00221-019-05562-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
When two tones with slightly different frequencies are dichotically presented, binaural beats (BBs) are experienced. BBs resulting from the cycling change in interaural phase difference elicit electroencephalographic responses. Because they repeat at short periods, allowing poor recovery of the cortical responses, these steady-state responses have small amplitudes, and their various wave components intermingle and might mask each other. Using single-cycle BBs separated by relatively long inter-onset intervals would be a solution, but introducing a transient interaural frequency shift requires response subtraction which may not be acceptable for non-additive brain responses. The proposed stimulation method employs transient and monaurally subthreshold frequency shifts in opposite directions in the two ears to produce single-cycle BBs of a 250 Hz tone. These shifts are perceived as distinct BBs when presented dichotically, but remain subthreshold when presented monotically. Therefore, no frequency-shift response is elicited, and the specific BB response is obtained with no need for waveform subtraction. We recorded from 19 normal hearing participants the event-related potentials (ERPs) to single-cycle BBs and also to temporary diotic amplitude modulation (AM) with matched perceptual salience. The ERPs to single-cycle BBs presented at 2 s inter-onset intervals had N1-P2 responses with up to seven times larger amplitudes than the conventional steady-state BB responses in the literature. Significant differences were found between the scalp potential distributions of the N1 responses to BB and AM stimuli, suggesting that the cortical sites, where envelope-based level processing and temporal fine structure-based spatial processing of the stimulus take place, are not totally overlapped.
Collapse
|
11
|
Fan Y, Yue X, Xue F, Cui J, Brauth SE, Tang Y, Fang G. Auditory perception exhibits sexual dimorphism and left telencephalic dominance in Xenopus laevis. Biol Open 2018; 7:7/12/bio035956. [PMID: 30509903 PMCID: PMC6310876 DOI: 10.1242/bio.035956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sex differences in both vocalization and auditory processing have been commonly found in vocal animals, although the underlying neural mechanisms associated with sexual dimorphism of auditory processing are not well understood. In this study we investigated whether auditory perception exhibits sexual dimorphism in Xenopus laevis. To do this we measured event-related potentials (ERPs) evoked by white noise (WN) and conspecific calls in the telencephalon, diencephalon and mesencephalon respectively. Results showed that (1) the N1 amplitudes evoked in the right telencephalon and right diencephalon of males by WN are significantly different from those evoked in females; (2) in males the N1 amplitudes evoked by conspecific calls are significantly different from those evoked by WN; (3) in females the N1 amplitude for the left mesencephalon was significantly lower than for other brain areas, while the P2 and P3 amplitudes for the right mesencephalon were the smallest; in contrast these amplitudes for the left mesencephalon were the smallest in males. These results suggest auditory perception is sexually dimorphic. Moreover, the amplitude of each ERP component (N1, P2 and P3) for the left telencephalon was the largest in females and/or males, suggesting that left telencephalic dominance exists for auditory perception in Xenopus. Summary: Investigation of auditory neural mechanisms in the South African clawed frog (Xenopus laevis) indicates that auditory perception exhibits sexual dimorphism and left telencephalic advantage.
Collapse
Affiliation(s)
- Yanzhu Fan
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People's Republic of China
| | - Xizi Yue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 26 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, People's Republic of China
| | - Jianguo Cui
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Steven E Brauth
- Department of Psychology, University of Maryland, College Park, MD20742, USA
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Ahmed DG, Paquette S, Zeitouni A, Lehmann A. Neural Processing of Musical and Vocal Emotions Through Cochlear Implants Simulation. Clin EEG Neurosci 2018; 49:143-151. [PMID: 28958161 DOI: 10.1177/1550059417733386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cochlear implants (CIs) partially restore the sense of hearing in the deaf. However, the ability to recognize emotions in speech and music is reduced due to the implant's electrical signal limitations and the patient's altered neural pathways. Electrophysiological correlations of these limitations are not yet well established. Here we aimed to characterize the effect of CIs on auditory emotion processing and, for the first time, directly compare vocal and musical emotion processing through a CI-simulator. We recorded 16 normal hearing participants' electroencephalographic activity while listening to vocal and musical emotional bursts in their original form and in a degraded (CI-simulated) condition. We found prolonged P50 latency and reduced N100-P200 complex amplitude in the CI-simulated condition. This points to a limitation in encoding sound signals processed through CI simulation. When comparing the processing of vocal and musical bursts, we found a delay in latency with the musical bursts compared to the vocal bursts in both conditions (original and CI-simulated). This suggests that despite the cochlear implants' limitations, the auditory cortex can distinguish between vocal and musical stimuli. In addition, it adds to the literature supporting the complexity of musical emotion. Replicating this study with actual CI users might lead to characterizing emotional processing in CI users and could ultimately help develop optimal rehabilitation programs or device processing strategies to improve CI users' quality of life.
Collapse
Affiliation(s)
- Duha G Ahmed
- 1 International Laboratory for Brain Music and Sound Research, Center for Research on Brain, Language and Music, Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,2 Department of Otolaryngology, Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,3 Department of Otolaryngology, Head and Neck Surgery, King Abdulaziz University, Rabigh Medical College, Jeddah, Saudi Arabia
| | - Sebastian Paquette
- 1 International Laboratory for Brain Music and Sound Research, Center for Research on Brain, Language and Music, Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,4 Neurology Department, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anthony Zeitouni
- 2 Department of Otolaryngology, Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Alexandre Lehmann
- 1 International Laboratory for Brain Music and Sound Research, Center for Research on Brain, Language and Music, Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,2 Department of Otolaryngology, Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018; 191:25-34. [PMID: 28709770 PMCID: PMC5745291 DOI: 10.1016/j.schres.2017.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States.
| | - Shanghong Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Blair Vail
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Javier Lopez-Calderon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States; Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
14
|
Zou Z, Chau BKH, Ting KH, Chan CCH. Aging Effect on Audiovisual Integrative Processing in Spatial Discrimination Task. Front Aging Neurosci 2017; 9:374. [PMID: 29184494 PMCID: PMC5694625 DOI: 10.3389/fnagi.2017.00374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/01/2017] [Indexed: 11/13/2022] Open
Abstract
Multisensory integration is an essential process that people employ daily, from conversing in social gatherings to navigating the nearby environment. The aim of this study was to investigate the impact of aging on modulating multisensory integrative processes using event-related potential (ERP), and the validity of the study was improved by including “noise” in the contrast conditions. Older and younger participants were involved in perceiving visual and/or auditory stimuli that contained spatial information. The participants responded by indicating the spatial direction (far vs. near and left vs. right) conveyed in the stimuli using different wrist movements. electroencephalograms (EEGs) were captured in each task trial, along with the accuracy and reaction time of the participants’ motor responses. Older participants showed a greater extent of behavioral improvements in the multisensory (as opposed to unisensory) condition compared to their younger counterparts. Older participants were found to have fronto-centrally distributed super-additive P2, which was not the case for the younger participants. The P2 amplitude difference between the multisensory condition and the sum of the unisensory conditions was found to correlate significantly with performance on spatial discrimination. The results indicated that the age-related effect modulated the integrative process in the perceptual and feedback stages, particularly the evaluation of auditory stimuli. Audiovisual (AV) integration may also serve a functional role during spatial-discrimination processes to compensate for the compromised attention function caused by aging.
Collapse
Affiliation(s)
- Zhi Zou
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bolton K H Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kin-Hung Ting
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
15
|
Strömmer JM, Põldver N, Waselius T, Kirjavainen V, Järveläinen S, Björksten S, Tarkka IM, Astikainen P. Automatic auditory and somatosensory brain responses in relation to cognitive abilities and physical fitness in older adults. Sci Rep 2017; 7:13699. [PMID: 29057924 PMCID: PMC5651800 DOI: 10.1038/s41598-017-14139-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
In normal ageing, structural and functional changes in the brain lead to an altered processing of sensory stimuli and to changes in cognitive functions. The link between changes in sensory processing and cognition is not well understood, but physical fitness is suggested to be beneficial for both. We recorded event-related potentials to somatosensory and auditory stimuli in a passive change detection paradigm from 81 older and 38 young women and investigated their associations with cognitive performance. In older adults also associations to physical fitness were studied. The somatosensory mismatch response was attenuated in older adults and it associated with executive functions. Somatosensory P3a did not show group differences, but in older adults, it associated with physical fitness. Auditory N1 and P2 responses to repetitive stimuli were larger in amplitude in older than in young adults. There were no group differences in the auditory mismatch negativity, but it associated with working memory capacity in young but not in older adults. Our results indicate that in ageing, changes in stimulus encoding and deviance detection are observable in electrophysiological responses to task-irrelevant somatosensory and auditory stimuli, and the higher somatosensory response amplitudes are associated with better executive functions and physical fitness.
Collapse
Affiliation(s)
- Juho M Strömmer
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland.
| | - Nele Põldver
- Institute of Psychology, Doctoral School of Behavioural, Social and Health Sciences, University of Tartu, Tartu, Estonia
| | - Tomi Waselius
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Ville Kirjavainen
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Saara Järveläinen
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Sanni Björksten
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Ina M Tarkka
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyväskylä, Finland
| | - Piia Astikainen
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
16
|
Veltri T, Taroyan N, Overton PG. Nicotine enhances an auditory Event-Related Potential component which is inversely related to habituation. J Psychopharmacol 2017; 31:861-872. [PMID: 28675114 DOI: 10.1177/0269881117695860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotine is a psychoactive substance that is commonly consumed in the context of music. However, the reason why music and nicotine are co-consumed is uncertain. One possibility is that nicotine affects cognitive processes relevant to aspects of music appreciation in a beneficial way. Here we investigated this possibility using Event-Related Potentials. Participants underwent a simple decision-making task (to maintain attentional focus), responses to which were signalled by auditory stimuli. Unlike previous research looking at the effects of nicotine on auditory processing, we used complex tones that varied in pitch, a fundamental element of music. In addition, unlike most other studies, we tested non-smoking subjects to avoid withdrawal-related complications. We found that nicotine (4.0 mg, administered as gum) increased P2 amplitude in the frontal region. Since a decrease in P2 amplitude and latency is related to habituation processes, and an enhanced ability to disengage from irrelevant stimuli, our findings suggest that nicotine may cause a reduction in habituation, resulting in non-smokers being less able to adapt to repeated stimuli. A corollary of that decrease in adaptation may be that nicotine extends the temporal window during which a listener is able and willing to engage with a piece of music.
Collapse
Affiliation(s)
- Theresa Veltri
- 1 Department of Psychology, University of Sheffield, Sheffield, UK
| | - Naira Taroyan
- 2 Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield, UK
| | - Paul G Overton
- 1 Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Implicit variations of temporal predictability: Shaping the neural oscillatory and behavioural response. Neuropsychologia 2017; 101:141-152. [DOI: 10.1016/j.neuropsychologia.2017.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/21/2017] [Accepted: 05/14/2017] [Indexed: 11/20/2022]
|
18
|
Ford JM, Roach BJ, Palzes VA, Mathalon DH. Using concurrent EEG and fMRI to probe the state of the brain in schizophrenia. Neuroimage Clin 2016; 12:429-41. [PMID: 27622140 PMCID: PMC5008052 DOI: 10.1016/j.nicl.2016.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 01/27/2023]
Abstract
Perceptional abnormalities in schizophrenia are associated with hallucinations and delusions, but also with negative symptoms and poor functional outcome. Perception can be studied using EEG-derived event related potentials (ERPs). Because of their excellent temporal resolution, ERPs have been used to ask when perception is affected by schizophrenia. Because of its excellent spatial resolution, functional magnetic resonance imaging (fMRI) has been used to ask where in the brain these effects are seen. We acquired EEG and fMRI data simultaneously to explore when and where auditory perception is affected by schizophrenia. Thirty schizophrenia (SZ) patients and 23 healthy comparison subjects (HC) listened to 1000 Hz tones occurring about every second. We used joint independent components analysis (jICA) to combine EEG-based event-related potential (ERP) and fMRI responses to tones. Five ERP-fMRI joint independent components (JIC) were extracted. The "N100" JIC had temporal weights during N100 (peaking at 100 ms post-tone onset) and fMRI spatial weights in superior and middle temporal gyri (STG/MTG); however, it did not differ between groups. The "P200" JIC had temporal weights during P200 and positive fMRI spatial weights in STG/MTG and frontal areas, and negative spatial weights in the nodes of the default mode network (DMN) and visual cortex. Groups differed on the "P200" JIC: SZ had smaller "P200" JIC, especially those with more severe avolition/apathy. This is consistent with negative symptoms being related to perceptual deficits, and suggests patients with avolition/apathy may allocate too few resources to processing external auditory events and too many to processing internal events.
Collapse
Affiliation(s)
- Judith M. Ford
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA 94121, United States
- University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, United States
| | - Brian J. Roach
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA 94121, United States
| | - Vanessa A. Palzes
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA 94121, United States
| | - Daniel H. Mathalon
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA 94121, United States
- University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, United States
| |
Collapse
|
19
|
Attaheri A, Kikuchi Y, Milne AE, Wilson B, Alter K, Petkov CI. EEG potentials associated with artificial grammar learning in the primate brain. BRAIN AND LANGUAGE 2015; 148:74-80. [PMID: 25529405 PMCID: PMC4557543 DOI: 10.1016/j.bandl.2014.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/30/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Electroencephalography (EEG) has identified human brain potentials elicited by Artificial Grammar (AG) learning paradigms, which present participants with rule-based sequences of stimuli. Nonhuman animals are sensitive to certain AGs; therefore, evaluating which EEG Event Related Potentials (ERPs) are associated with AG learning in nonhuman animals could identify evolutionarily conserved processes. We recorded EEG potentials during an auditory AG learning experiment in two Rhesus macaques. The animals were first exposed to sequences of nonsense words generated by the AG. Then surface-based ERPs were recorded in response to sequences that were 'consistent' with the AG and 'violation' sequences containing illegal transitions. The AG violations strongly modulated an early component, potentially homologous to the Mismatch Negativity (mMMN), a P200 and a late frontal positivity (P500). The macaque P500 is similar in polarity and time of occurrence to a late EEG positivity reported in human AG learning studies but might differ in functional role.
Collapse
Affiliation(s)
- Adam Attaheri
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Centre for Behaviour and Evolution, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Yukiko Kikuchi
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Centre for Behaviour and Evolution, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Alice E Milne
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Centre for Behaviour and Evolution, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Benjamin Wilson
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Centre for Behaviour and Evolution, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Kai Alter
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Christopher I Petkov
- Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Centre for Behaviour and Evolution, Henry Wellcome Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
20
|
Mindfulness Trait Predicts Neurophysiological Reactivity Associated with Negativity Bias: An ERP Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:212368. [PMID: 26124852 PMCID: PMC4466385 DOI: 10.1155/2015/212368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/22/2015] [Accepted: 05/03/2015] [Indexed: 01/09/2023]
Abstract
This study explored the relationship of mindfulness trait with the early and late stages of affective processing, by examining the two corresponding ERP components, P2 and LPP, collected from twenty-two male Chinese participants with a wide range of meditation experiences. Multiple regression analyses was performed on the mindfulness scores, as measured by CAMS-R, with the subjective affective ratings and ERP data collected during an emotion processing task. The results showed that increased mindfulness scores predicted increased valence ratings of negative stimuli (less negative), as well as increased P2 amplitudes at the frontocentral location for positive compared to negative stimuli. Based on these findings, a plausible mechanism of mindfulness in reducing negativity bias was discussed. Moreover, our results replicated previous findings on the age-related increase of P2 amplitudes at the frontal sites for positive compared to neutral stimuli. Since the locations at which P2 amplitudes were found as associated with age and mindfulness differed, as did the emotional contents of the stimuli being compared, indicating that the effect of age did not confound our findings on mindfulness and the two factors might operate on early affective processing from distinct sources and mechanisms.
Collapse
|
21
|
Getzmann S, Falkenstein M, Wascher E. ERP correlates of auditory goal-directed behavior of younger and older adults in a dynamic speech perception task. Behav Brain Res 2015; 278:435-45. [DOI: 10.1016/j.bbr.2014.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 11/15/2022]
|
22
|
Choi I, Bharadwaj HM, Bressler S, Loui P, Lee K, Shinn-Cunningham BG. Automatic processing of abstract musical tonality. Front Hum Neurosci 2014; 8:988. [PMID: 25538607 PMCID: PMC4260496 DOI: 10.3389/fnhum.2014.00988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Music perception builds on expectancy in harmony, melody, and rhythm. Neural responses to the violations of such expectations are observed in event-related potentials (ERPs) measured using electroencephalography. Most previous ERP studies demonstrating sensitivity to musical violations used stimuli that were temporally regular and musically structured, with less-frequent deviant events that differed from a specific expectation in some feature such as pitch, harmony, or rhythm. Here, we asked whether expectancies about Western musical scale are strong enough to elicit ERP deviance components. Specifically, we explored whether pitches inconsistent with an established scale context elicit deviant components even though equally rare pitches that fit into the established context do not, and even when their timing is unpredictable. We used Markov chains to create temporally irregular pseudo-random sequences of notes chosen from one of two diatonic scales. The Markov pitch-transition probabilities resulted in sequences that favored notes within the scale, but that lacked clear melodic, harmonic, or rhythmic structure. At the random positions, the sequence contained probe tones that were either within the established scale or were out of key. Our subjects ignored the note sequences, watching a self-selected silent movie with subtitles. Compared to the in-key probes, the out-of-key probes elicited a significantly larger P2 ERP component. Results show that random note sequences establish expectations of the “first-order” statistical property of musical key, even in listeners not actively monitoring the sequences.
Collapse
Affiliation(s)
- Inyong Choi
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA
| | - Hari M Bharadwaj
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Scott Bressler
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA
| | - Psyche Loui
- Department of Psychology and Program in Neuroscience and Behavior, Wesleyan University Middletown, CT, USA
| | - Kyogu Lee
- Graduate School of Convergence Science and Technology, Seoul National University Suwon, South Korea
| | - Barbara G Shinn-Cunningham
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Department of Biomedical Engineering, Boston University Boston, MA, USA
| |
Collapse
|
23
|
Getzmann S, Falkenstein M, Gajewski PD. Neuro-Behavioral Correlates of Post-Deviance Distraction in Middle-Aged and Old Adults. J PSYCHOPHYSIOL 2014. [DOI: 10.1027/0269-8803/a000124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presentation of a task-irrelevant deviant (novel) stimulus among otherwise repeated standard stimuli usually reduces performance not only for the deviant stimulus, but also for the standard following that deviant. Here, the so-called post-deviance distraction was investigated in 58 middle-aged and 52 old adults, using an auditory duration discrimination task and event-related potential (ERP) measures. After a deviant stimulus, the participants showed a decrease in performance in the subsequent standard stimulus. This effect was more pronounced in the old, than middle-aged, group. Relative to the standard stimuli preceding the deviant, post-deviant standards triggered a chain of mismatch negativity (MMN), P3a, and reorienting negativity (RON). While MMN and P3a did not differ in old and middle-aged adults, older participants showed a delayed RON. Assuming the RON to reflect processes of general task or feature reconfiguration and updating, these results suggest a delay in orienting-reorienting mechanisms as possible source of increased post-deviance distraction in elderly.
Collapse
Affiliation(s)
- Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael Falkenstein
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Patrick D. Gajewski
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
24
|
Saupe K, Widmann A, Trujillo-Barreto NJ, Schröger E. Sensorial suppression of self-generated sounds and its dependence on attention. Int J Psychophysiol 2013; 90:300-10. [DOI: 10.1016/j.ijpsycho.2013.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
|
25
|
Sussman ES, Chen S, Sussman-Fort J, Dinces E. The five myths of MMN: redefining how to use MMN in basic and clinical research. Brain Topogr 2013; 27:553-64. [PMID: 24158725 DOI: 10.1007/s10548-013-0326-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/17/2013] [Indexed: 11/29/2022]
Abstract
The goal of this review article is to redefine what the mismatch negativity (MMN) component of event-related potentials reflects in auditory scene analysis, and to provide an overview of how the MMN serves as a valuable tool in Cognitive Neuroscience research. In doing so, some of the old beliefs (five common 'myths') about MMN will be dispelled, such as the notion that MMN is a simple feature discriminator and that attention itself modulates MMN elicitation. A revised description of what MMN truly reflects will be provided, which includes a principal focus onto the highly context-dependent nature of MMN elicitation and new terminology to discuss MMN and attention. This revised framework will help clarify what has been a long line of seemingly contradictory results from studies in which behavioral ability to hear differences between sounds and passive elicitation of MMN have been inconsistent. Understanding what MMN is will also benefit clinical research efforts by providing a new picture of how to design appropriate paradigms suited to various clinical populations.
Collapse
Affiliation(s)
- E S Sussman
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA,
| | | | | | | |
Collapse
|
26
|
Jiwani S, Papsin BC, Gordon KA. Central auditory development after long-term cochlear implant use. Clin Neurophysiol 2013; 124:1868-80. [DOI: 10.1016/j.clinph.2013.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/27/2013] [Accepted: 03/08/2013] [Indexed: 11/26/2022]
|
27
|
Does age increase auditory distraction? Electrophysiological correlates of high and low performance in seniors. Neurobiol Aging 2013; 34:1952-62. [PMID: 23522843 DOI: 10.1016/j.neurobiolaging.2013.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 11/21/2022]
Abstract
Aging usually affects the ability to focus attention on a given task and to ignore distractors. However, aging is also associated with increased between-subject variability, and it is unclear in which features of processing older high-performing and low-performing human beings may differ in goal-directed behavior. To study involuntary shifts in attention to task-irrelevant deviant stimuli and subsequent reorientation, we used an auditory distraction task and analyzed event-related potential measures (mismatch negativity), P3a and reorienting negativity) of 35 younger, 32 older high-performing, and 32 older low-performing participants. Although both high and low performing elderly individuals showed a delayed reorienting to the primary stimulus feature, relative to young participants, poor performance of the elderly participants in processing of deviant stimuli was associated with strong involuntary attention capture by task-irrelevant features. In contrast, high performance of the elderly group was associated with intensified attentional shifting toward the target features. Thus, it appears that performance deficits in aging are due to higher distractibility in combination with deficits in the orienting-reorienting mechanisms.
Collapse
|
28
|
Hessler D, Jonkers R, Stowe L, Bastiaanse R. The whole is more than the sum of its parts - audiovisual processing of phonemes investigated with ERPs. BRAIN AND LANGUAGE 2013; 124:213-24. [PMID: 23395711 DOI: 10.1016/j.bandl.2012.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 07/19/2012] [Accepted: 12/14/2012] [Indexed: 05/05/2023]
Abstract
In the current ERP study, an active oddball task was carried out, testing pure tones and auditory, visual and audiovisual syllables. For pure tones, an MMN, an N2b, and a P3 were found, confirming traditional findings. Auditory syllables evoked an N2 and a P3. We found that the amplitude of the P3 depended on the distance between standard and deviant. A smaller distance required more attention, which was reflected in a larger amplitude. An analysis of audiovisual material, after correction for visual activity, showed that McGurk type stimuli evoked brain responses that differed from both the standard and the congruent deviants. Finally, we found that congruent audiovisual stimuli elicited an N2 with a shorter latency and a P3 with a smaller amplitude than auditory stimuli. The current ERP study, thus, shows that for audiovisual processing the whole is more than the sum of its parts.
Collapse
Affiliation(s)
- Dörte Hessler
- Center for Language and Cognition Groningen, University of Groningen, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Law SP, Fung R, Kung C. An ERP study of good production vis-à-vis poor perception of tones in Cantonese: implications for top-down speech processing. PLoS One 2013; 8:e54396. [PMID: 23342146 PMCID: PMC3547009 DOI: 10.1371/journal.pone.0054396] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
This study investigated a theoretically challenging dissociation between good production and poor perception of tones among neurologically unimpaired native speakers of Cantonese. The dissociation is referred to as the near-merger phenomenon in sociolinguistic studies of sound change. In a passive oddball paradigm, lexical and nonlexical syllables of the T1/T6 and T4/T6 contrasts were presented to elicit the mismatch negativity (MMN) and P3a from two groups of participants, those who could produce and distinguish all tones in the language (Control) and those who could produce all tones but specifically failed to distinguish between T4 and T6 in perception (Dissociation). The presence of MMN to T1/T6 and null response to T4/T6 of lexical syllables in the dissociation group confirmed the near-merger phenomenon. The observation that the control participants exhibited a statistically reliable MMN to lexical syllables of T1/T6, weaker responses to nonlexical syllables of T1/T6 and lexical syllables of T4/T6, and finally null response to nonlexical syllables of T4/T6, suggests the involvement of top-down processing in speech perception. Furthermore, the stronger P3a response of the control group, compared with the dissociation group in the same experimental conditions, may be taken to indicate higher cognitive capability in attention switching, auditory attention or memory in the control participants. This cognitive difference, together with our speculation that constant top-down predictions without complete bottom-up analysis of acoustic signals in speech recognition may reduce one's sensitivity to small acoustic contrasts, account for the occurrence of dissociation in some individuals but not others.
Collapse
Affiliation(s)
- Sam-Po Law
- The University of Hong Kong, Hong Kong, SAR.
| | | | | |
Collapse
|
30
|
Friederici AD, Mueller JL, Sehm B, Ragert P. Language learning without control: the role of the PFC. J Cogn Neurosci 2013; 25:814-21. [PMID: 23281779 DOI: 10.1162/jocn_a_00350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Learning takes place throughout lifetime but differs in infants and adults because of the development of the PFC, a brain region responsible for cognitive control. To test this hypothesis, adults were investigated in a language learning paradigm under inhibitory, cathodal transcranial direct current stimulation over PFC. The experiment included a learning session interspersed with test phases and a test-only session. The stimulus material required the learning of grammatical dependencies between two elements in a novel language. In a parallel design, cathodal transcranial direct current stimulation over the left PFC, right PFC, or sham stimulation was applied during the learning session but not during the test-only session. Event-related brain potentials (ERPs) were recorded during both sessions. Whereas no ERP learning effects were observed during the learning session, different ERP learning effects as a function of prior stimulation type were found during the test-only session, although behavioral learning success was equal across conditions. With sham stimulation, the ERP learning effect was reflected in a centro-parietal N400-like negativity indicating lexical processes. Inhibitory stimulation over the left PFC, but not over the right PFC, led to a late positivity similar to that previously observed in prelinguistic infants indicating associative learning. The present data demonstrate that adults can learn with and without cognitive control using different learning mechanisms. In the presence of cognitive control, adult language learning is lexically guided, whereas it appears to be associative in nature when PFC control is downregulated.
Collapse
Affiliation(s)
- Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | | | |
Collapse
|
31
|
Mai X, Xu L, Li M, Shao J, Zhao Z, deRegnier RA, Nelson CA, Lozoff B. Auditory recognition memory in 2-month-old infants as assessed by event-related potentials. Dev Neuropsychol 2012; 37:400-14. [PMID: 22799760 DOI: 10.1080/87565641.2011.650807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Previous studies of auditory recognition memory in sleeping newborns reported 2 event-related potential (ERP) components, P2 and negative slow wave (NSW), reflecting voice discrimination and detection of novelty, respectively. In the present study, using high-density recording arrays, ERPs were acquired from 26 2-month-old awake infants as they were presented with a familiar and unfamiliar voice (i.e., mother and stranger) with equal probability. In addition to P2 and NSW, we observed a positive slow wave (PSW) over the right temporo-parietal scalp, indicating memory updating. Our study suggests that infants appear to have the capacity to encode novel stimuli as early as 2 months of age.
Collapse
Affiliation(s)
- Xiaoqin Mai
- Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Alho J, Sato M, Sams M, Schwartz JL, Tiitinen H, Jääskeläinen IP. Enhanced early-latency electromagnetic activity in the left premotor cortex is associated with successful phonetic categorization. Neuroimage 2012; 60:1937-46. [DOI: 10.1016/j.neuroimage.2012.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/12/2012] [Accepted: 02/04/2012] [Indexed: 11/30/2022] Open
|
33
|
Ferreira-Santos F, Silveira C, Almeida PR, Palha A, Barbosa F, Marques-Teixeira J. The auditory P200 is both increased and reduced in schizophrenia? A meta-analytic dissociation of the effect for standard and target stimuli in the oddball task. Clin Neurophysiol 2011; 123:1300-8. [PMID: 22197447 DOI: 10.1016/j.clinph.2011.11.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Conflicting reports of P200 amplitude and latency in schizophrenia have suggested that this component is increased, reduced or does not differ from healthy subjects. A systematic review and meta-analysis were undertaken to accurately describe P200 deficits in auditory oddball tasks in schizophrenia. METHODS A systematic search identified 20 studies which were meta-analyzed. Effect size (ES) estimates were obtained: P200 amplitude and latency for target and standard tones at midline electrodes. RESULTS The ES obtained for amplitude (Cz) for standard and target stimuli indicate significant effects in opposite directions: standard stimuli elicit smaller P200 in patients (d = -0.36; 95% CI [-0.26, -0.08]); target stimuli elicit larger P200 in patients (d = 0.48; 95% CI [0.16, 0.82]). A similar effect occurs for latency at Cz, which is shorter for standards (d = -0.32; 95% CI [-0.54, -0.10]) and longer for targets (d = 0.42; 95% CI [0.23, 0.62]). Meta-regression analyses revealed that samples with more males show larger ES for amplitude of target stimuli, while the amount of medication was negatively associated with the ES for the latency of standards. CONCLUSIONS The results obtained suggest that claims of reduced or augmented P200 in schizophrenia based on the sole examination of standard or target stimuli fail to consider the stimulus effect. SIGNIFICANCE Quantification of effects for standard and target stimuli is a required first step to understand the nature of P200 deficits in schizophrenia.
Collapse
Affiliation(s)
- F Ferreira-Santos
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Rua do Dr Manuel Pereira da Silva, 4200-392 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
34
|
Understanding of spoken language under challenging listening conditions in younger and older listeners: A combined behavioral and electrophysiological study. Brain Res 2011; 1415:8-22. [DOI: 10.1016/j.brainres.2011.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022]
|
35
|
Jakoby H, Goldstein A, Faust M. Electrophysiological correlates of speech perception mechanisms and individual differences in second language attainment. Psychophysiology 2011; 48:1517-1531. [PMID: 21762446 DOI: 10.1111/j.1469-8986.2011.01227.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hilla Jakoby
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, IsraelDepartment of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Abraham Goldstein
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, IsraelDepartment of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Miriam Faust
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, IsraelDepartment of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
36
|
Emotional Significance of the Stimulus and Features of the Personality as Factors Reflected in the Pattern of Evoked EEG Potentials. NEUROPHYSIOLOGY+ 2010. [DOI: 10.1007/s11062-010-9100-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Fridberg DJ, Hetrick WP, Brenner CA, Shekhar A, Steffen AN, Malloy FW, O’Donnell BF. Relationships between auditory event-related potentials and mood state, medication, and comorbid psychiatric illness in patients with bipolar disorder. Bipolar Disord 2009; 11:857-66. [PMID: 19922554 PMCID: PMC4655591 DOI: 10.1111/j.1399-5618.2009.00758.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Patients with bipolar disorder (BD) exhibit aberrations in auditory event-related potentials (ERPs), although the relationships between these measures and mood state at testing, comorbid psychiatric illness, presence of psychotic features, and medication usage are unclear. The purpose of this study was to investigate the relationships between these factors and auditory ERP measures in BD patients. METHODS An auditory 'oddball' discrimination task was used to elicit ERPs from 69 patients with type I BD and 52 healthy controls. Patients were placed into subgroups based upon their mood state at testing (euthymic or symptomatic), and ANOVA was used to compare amplitude and peak latency measures from the N100, P200, N200, and P300 ERP components across subgroups. Multiple regression was used to investigate relationships between ERP measures and comorbid psychiatric diagnosis, history of psychotic features, and medication status. RESULTS Relative to healthy control participants, euthymic and symptomatic BD patients exhibited reduced P300 and P200 amplitude, but ERP measures did not differ among BD patients on the basis of mood status. A history of a comorbid anxiety disorder was associated with reduced N200 peak latency, but prolonged P300 peak latency among BD patients. No other relationships between clinical variables and ERP measures were significant. CONCLUSIONS The results suggest that disrupted auditory attention may be observed in BD patients regardless of their mood state at testing, medication status, or history of psychosis. These results extend previous findings, and provide further evidence for aberrations in the P300 ERP as an endophenotype for BD.
Collapse
Affiliation(s)
- Daniel J. Fridberg
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - William P. Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN
| | - Colleen A. Brenner
- Department of Psychology, University of British Columbia,Larue D. Carter Memorial Hospital, Indianapolis, IN
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN
| | - Ashley N. Steffen
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN
| | | | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN
| |
Collapse
|
38
|
Ceponiene R, Cummings A, Wulfeck B, Ballantyne A, Townsend J. Spectral vs. temporal auditory processing in specific language impairment: a developmental ERP study. BRAIN AND LANGUAGE 2009; 110:107-120. [PMID: 19457549 PMCID: PMC2731814 DOI: 10.1016/j.bandl.2009.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 04/01/2009] [Accepted: 04/15/2009] [Indexed: 05/27/2023]
Abstract
Pre-linguistic sensory deficits, especially in "temporal" processing, have been implicated in developmental language impairment (LI). However, recent evidence has been equivocal with data suggesting problems in the spectral domain. The present study examined event-related potential (ERP) measures of auditory sensory temporal and spectral processing, and their interaction, in typical children and those with LI (7-17 years; n=25 per group). The stimuli were three CV syllables and three consonant-to-vowel transitions (spectral sweeps) isolated from the syllables. Each of these six stimuli appeared in three durations (transitions: 20, 50, and 80 ms; syllables: 120, 150, and 180 ms). Behaviorally, the group with LIs showed inferior syllable discrimination both with long and short stimuli. In ERPs, trends were observed in the group with LI for diminished long-latency negativities (the N2-N4 peaks) and a developmentally transient enhancement of the P2 peak. Some, but not all, ERP indices of spectral processing also showed trends to be diminished in the group with LI specifically in responses to syllables. Importantly, measures of the transition N2-N4 peaks correlated with expressive language abilities in the LI children. None of the group differences depended on stimulus duration. Therefore, sound brevity did not account for the diminished spectral resolution in these LI children. Rather, the results suggest a deficit in acoustic feature integration at higher levels of auditory sensory processing. The observed maturational trajectory suggests a non-linear developmental deviance rather than simple delay.
Collapse
Affiliation(s)
- R Ceponiene
- Project in Neural and Cognitive Development, University of California, San Diego, La Jolla, CA 92093-0113, United States.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Ceponiene R, Torki M, Alku P, Koyama A, Townsend J. Event-related potentials reflect spectral differences in speech and non-speech stimuli in children and adults. Clin Neurophysiol 2008; 119:1560-77. [PMID: 18456550 DOI: 10.1016/j.clinph.2008.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 02/19/2008] [Accepted: 03/05/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Event-related brain potentials (ERP) may provide tools for examining normal and abnormal language development. To clarify functional significance of auditory ERPs, we examined ERP indices of spectral differences in speech and non-speech sounds. METHODS Three Spectral Items (BA, DA, GA) were presented as three Stimulus Types: syllables, non-phonetics, and consonant-vowel transitions (CVT). Fourteen 7- to 10-year-old children and 14 adults were presented with equiprobable Spectral Item sequences blocked by Stimulus Type. RESULTS Spectral Item effect appeared as P1, P2, N2, and N4 amplitude variations. The P2 was sensitive to all Stimulus Types in both groups. In adults, the P1 was also sensitive to transitions while the N4 was sensitive to syllables. In children, only the 50-ms CVT stimuli elicited N2 and N4 spectral effects. In both groups, non-phonetic stimuli elicited larger N1-P2 amplitudes while speech stimuli elicited larger N2-N4 amplitudes. CONCLUSIONS Auditory feature processing is reflected by P1-P2 and N2-N4 peaks and matures earlier than supra-sensory integrative mechanisms, reflected by N1-P2 peaks. Auditory P2 appears to pertain to both processing types. SIGNIFICANCE These results delineate an orderly processing organization whereby direct feature mapping occurs earlier in processing and, in part, serves sound detection whereas relational mapping occurs later in processing and serves sound identification.
Collapse
Affiliation(s)
- R Ceponiene
- Center for Research in Language, Project in Neural and Cognitive Development, University of California, San Diego, La Jolla, CA 92093-0113, USA.
| | | | | | | | | |
Collapse
|
41
|
Lister JJ, Maxfield ND, Pitt GJ. Cortical evoked response to gaps in noise: within-channel and across-channel conditions. Ear Hear 2007; 28:862-78. [PMID: 17982372 PMCID: PMC4792277 DOI: 10.1097/aud.0b013e3181576cba] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The objective of this study was to describe the cortical evoked response to silent gaps in a group of young adults with normal hearing using stimulus conditions identical to those used in psychophysical studies of gap detection. Specifically, we sought to examine the P1-N1-P2 auditory evoked response to the onsets of stimuli (markers) defining a silent gap for within-channel (spectrally identical markers) and across-channel (spectrally different markers) conditions using four perceptually-equated gap durations. It was hypothesized that (1) P1, N1, and P2 would be present and consistent for 1st marker (before the gap) onsets; (2) for within-channel markers, P1, N1, and P2 would be present for 2nd marker (after the gap) onsets only when the gap was of a duration equal to or larger than the behaviorally measured gap detection threshold; and (3) for the across-channel conditions, P1, N1, and P2 would be present for 2nd marker onsets regardless of gap duration. This is expected due to the additional cue of frequency change following the gap. DESIGN Twelve young adults (mean age 26 years) with normal hearing participated. Within-channel and across-channel gap detection thresholds were determined using an adaptive psychophysical procedure. Next, cortical auditory evoked potentials (P1-N1-P2) were recorded with a 32-channel Neuroscan electroencephalogram system using within-channel and across-channel markers identical to those used for the psychophysical task and four perceptually weighted gap durations: (1) individual listener's gap detection threshold; (2) above gap detection threshold; (3) below gap detection threshold; and (4) a 1-ms gap identical to the gap in the standard interval of the psychophysical task. P1-N1-P2 peak latencies and amplitudes were analyzed using repeated-measures analyses of variance. A temporal-spatial principal component analysis was also conducted. RESULTS The latency of P2 and the amplitude of P1, N1, and P2 were significantly affected by the acoustic characteristics of the 2nd marker as well as the duration of the gap. Larger amplitudes and shorter latencies were generally found for the conditions in which the acoustic cues were most salient (e.g., across-channel markers, 1st markers, large gap durations). Interestingly, the temporal-spatial principal component analysis revealed activity elicited by gap durations equal to gap detection threshold in the latency regions of 167 and 183 ms for temporal-parietal and right-frontal spatial locations. CONCLUSIONS The cortical response to a silent gap is unique to specific marker characteristics and gap durations among young adults with normal hearing. Specifically, when the onset of the 2nd marker is perceptually salient, the amplitude of the P1-N1-P2 response is relatively larger and the P2 latency is relatively shorter than for nonsalient 2nd marker onsets, providing noninvasive, nonbehavioral indicators of the neural coding of this important temporal cue in the thalamic-cortical region of the central auditory system. Gap duration appears to be most clearly indicated by P1 and T-complex amplitude.
Collapse
Affiliation(s)
- Jennifer J Lister
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA.
| | | | | |
Collapse
|
42
|
Koester D, Prinz W. Capturing regularities in event sequences: Evidence for two mechanisms. Brain Res 2007; 1180:59-77. [DOI: 10.1016/j.brainres.2007.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 08/10/2007] [Accepted: 08/22/2007] [Indexed: 11/16/2022]
|
43
|
The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 2007; 118:2544-90. [PMID: 17931964 DOI: 10.1016/j.clinph.2007.04.026] [Citation(s) in RCA: 1746] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 04/18/2007] [Accepted: 04/28/2007] [Indexed: 11/22/2022]
Abstract
In the present article, the basic research using the mismatch negativity (MMN) and analogous results obtained by using the magnetoencephalography (MEG) and other brain-imaging technologies is reviewed. This response is elicited by any discriminable change in auditory stimulation but recent studies extended the notion of the MMN even to higher-order cognitive processes such as those involving grammar and semantic meaning. Moreover, MMN data also show the presence of automatic intelligent processes such as stimulus anticipation at the level of auditory cortex. In addition, the MMN enables one to establish the brain processes underlying the initiation of attention switch to, conscious perception of, sound change in an unattended stimulus stream.
Collapse
|
44
|
Horváth J, Czigler I, Jacobsen T, Maess B, Schröger E, Winkler I. MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. Psychophysiology 2007; 45:60-9. [PMID: 17868262 DOI: 10.1111/j.1469-8986.2007.00599.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on results showing that the "deviant-minus-standard" estimate of the mismatch negativity (MMN) amplitude increases with increasing amounts of deviance, it has been suggested that the MMN amplitude reflects the amount of difference between the neural representations of the standard and the deviant sound. However, the deviant-minus-standard waveform also includes an N1 difference. We tested the effects of the magnitude of deviance on MMN while minimizing this N1 confound. We found no significant magnitude of deviance effect on the genuine MMN amplitude. Thus we suggest that the average MMN amplitude does not reflect the difference between neural stimulus representations; rather it may index the percentage of detected deviants, each of which elicits an MMN response of uniform amplitude. These results are compatible with an explanation suggesting that MMN is involved in maintaining a neural representation of the auditory environment.
Collapse
Affiliation(s)
- János Horváth
- Institute of Psychology I, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Lenz D, Schadow J, Thaerig S, Busch NA, Herrmann CS. What's that sound? Matches with auditory long-term memory induce gamma activity in human EEG. Int J Psychophysiol 2007; 64:31-8. [PMID: 16959348 DOI: 10.1016/j.ijpsycho.2006.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 06/24/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
In recent years the cognitive functions of human gamma-band activity (30-100 Hz) advanced continuously into scientific focus. Not only bottom-up driven influences on 40 Hz activity have been observed, but also top-down processes seem to modulate responses in this frequency band. Among the various functions that have been related to gamma activity a pivotal role has been assigned to memory processes. Visual experiments suggested that gamma activity is involved in matching visual input to memory representations. Based on these findings we hypothesized that such memory related modulations of gamma activity exist in the auditory modality, as well. Thus, we chose environmental sounds for which subjects already had a long-term memory (LTM) representation and compared them to unknown, but physically similar sounds. 21 subjects had to classify sounds as 'recognized' or 'unrecognized', while EEG was recorded. Our data show significantly stronger activity in the induced gamma-band for recognized sounds in the time window between 300 and 500 ms after stimulus onset with a central topography. The results suggest that induced gamma-band activity reflects the matches between sounds and their representations in auditory LTM.
Collapse
Affiliation(s)
- Daniel Lenz
- Department of Biological Psychology, Otto-von-Guericke University of Magdeburg, P.O. Box 4120, 39016 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Doppelmayr M, Sauseng P, Doppelmayr H. Modifications in the human EEG during extralong physical activity. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0011-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Abstract
Abstract. Evaluative aesthetic judgments and descriptive symmetry judgments were compared. Electrophysiological activity was recorded while participants judged the aesthetic value or the symmetry status of novel graphic black and white patterns. In order to experimentally separate judgment categorization processes and judgment report processes, participants were instructed to misreport their true actual judgment in half of the trials. Three effects found in a previous study were examined: (1) an early frontocentral effect for the evaluation of not-beautiful patterns reflecting an early impression formation, (2) a more pronounced ERP lateralization to the right for the aesthetic judgment task in comparison to the symmetry judgment task reflecting evaluative categorization, and (3) a sustained posterior effect for the visual analysis of symmetric patterns. In this study, (1) and (3) were replicated independent of the validity of the response, but (2) was affected by the validity, i.e., the effect was abolished in the false condition. Thus, results allowed further specification of cognitive processes involved in judgments of symmetry or aesthetics. Given present data, the ERP effects predominantly reflect judgment categorization and not judgment report.
Collapse
Affiliation(s)
- Lea Höfel
- Institute for Psychology I, University of Leipzig, Germany
| | | |
Collapse
|
48
|
Wetzel N, Widmann A, Berti S, Schröger E. The development of involuntary and voluntary attention from childhood to adulthood: A combined behavioral and event-related potential study. Clin Neurophysiol 2006; 117:2191-203. [PMID: 16926109 DOI: 10.1016/j.clinph.2006.06.717] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/12/2006] [Accepted: 06/28/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study investigated auditory involuntary and voluntary attention in children aged 6-8, 10-12 and young adults. The strength of distracting stimuli (20% and 5% pitch changes) and the amount of allocation of attention were varied. METHODS In an auditory distraction paradigm event-related potentials (ERPs) and behavioral data were measured from subjects either performing a sound duration discrimination task or watching a silent video. RESULTS Pitch changed sounds caused prolonged reaction times and decreased hit rates in all age groups. Larger distractors (20%) caused stronger distraction in children, but not in adults. The amplitudes of mismatch negativity (MMN), P3a, and reorienting negativity (RON) were modulated by age and by voluntary attention. P3a was additionally affected by distractor strength. Maturational changes were also observed in the amplitudes of P1 (decreasing with age) and N1 (increasing with age). P2-modulation by voluntary attention was opposite in young children and adults. CONCLUSIONS Results suggest quantitative and qualitative changes in auditory voluntary and involuntary attention and distraction during development. The processing steps involved in distraction (pre-attentive change detection, attention switch, reorienting) are functional in children aged 6-8 but reveal characteristic differences to those of young adults. In general, distractibility as indicated by behavioral and ERP measures decreases from childhood to adulthood. SIGNIFICANCE Behavioral and ERP markers for different processing stages involved in voluntary and involuntary attention reveal characteristic developmental changes from childhood to young adulthood.
Collapse
Affiliation(s)
- Nicole Wetzel
- Institute of Psychology I, University of Leipzig, Germany.
| | | | | | | |
Collapse
|
49
|
Saint-Amour D, De Sanctis P, Molholm S, Ritter W, Foxe JJ. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion. Neuropsychologia 2006; 45:587-97. [PMID: 16757004 PMCID: PMC1705816 DOI: 10.1016/j.neuropsychologia.2006.03.036] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 11/17/2022]
Abstract
Seeing a speaker's facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the "McGurk illusion", where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at approximately 290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350-400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process.
Collapse
Affiliation(s)
- Dave Saint-Amour
- Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience and Schizophrenia, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Pierfilippo De Sanctis
- Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience and Schizophrenia, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Sophie Molholm
- Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience and Schizophrenia, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
- Program in Cognitive Neuroscience, Department of Psychology, The City College of the City University of New York, 138th Street & Convent Avenue, New York, NY 10031, USA
| | - Walter Ritter
- Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience and Schizophrenia, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
- Program in Cognitive Neuroscience, Department of Psychology, The City College of the City University of New York, 138th Street & Convent Avenue, New York, NY 10031, USA
| | - John J. Foxe
- Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience and Schizophrenia, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
- Program in Cognitive Neuroscience, Department of Psychology, The City College of the City University of New York, 138th Street & Convent Avenue, New York, NY 10031, USA
- * Corresponding author. Tel.: +1 845 398 6547; fax: +1 845 398 654. E-mail address: (J.J. Foxe)
| |
Collapse
|
50
|
Okazaki S, Kanoh S, Takaura K, Tsukada M, Oka K. Change detection and difference detection of tone duration discrimination. Neuroreport 2006; 17:395-9. [PMID: 16514365 DOI: 10.1097/01.wnr.0000204979.91253.7a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An event-related potential called mismatch negativity is known to exhibit physiological evidence of sensory memory. Mismatch negativity is believed to represent complicated neuronal mechanisms in a variety of animals and in humans. We employed the auditory oddball paradigm varying sound durations and observed two types of duration mismatch negativity in anesthetized guinea pigs. One was a duration mismatch negativity whose increase in peak amplitude occurred immediately after onset of the stimulus difference in a decrement oddball paradigm. The other exhibited a peak amplitude increase closer to the offset of the longer stimulus in an increment oddball paradigm. These results demonstrated a mechanism to percept the difference of duration change and revealed the importance of the end of a stimulus for this perception.
Collapse
Affiliation(s)
- Shuntaro Okazaki
- School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|