1
|
Whitford V, O'Driscoll GA, Titone D. Reading deficits in schizophrenia and their relationship to developmental dyslexia: A review. Schizophr Res 2018; 193:11-22. [PMID: 28688740 DOI: 10.1016/j.schres.2017.06.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022]
Abstract
Although schizophrenia and developmental dyslexia are considered distinct disorders in terms of clinical presentation and functional outcome, they both involve disruption in the processes that support skilled reading, including language, auditory perception, visual perception, oculomotor control, and executive function. Further, recent work has proposed a common neurodevelopmental basis for the two disorders, as suggested by genetic and pathophysiological overlap. Thus, these lines of research suggest that reading may be similarly impacted in schizophrenia and dyslexia. In this review, we survey research on reading abilities in individuals with schizophrenia, and review the potential mechanisms underlying reading deficits in schizophrenia that may be shared with those implicated in dyslexia. Elucidating the relationship between reading impairment in schizophrenia and dyslexia could allow for a better understanding of the pathophysiological underpinnings of schizophrenia, and could facilitate remediation of cognitive deficits that impact day-to-day functioning.
Collapse
Affiliation(s)
- Veronica Whitford
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, United States; Graduate School of Education, Harvard University, 13 Appian Way, Cambridge, MA 02138, United States.
| | - Gillian A O'Driscoll
- Department of Psychology, McGill University, 1205 Doctor Penfield Avenue, Montreal, QC H3A 1B1, Canada; Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada; Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Verdun, QC H4H 1R3, Canada; Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada.
| | - Debra Titone
- Department of Psychology, McGill University, 1205 Doctor Penfield Avenue, Montreal, QC H3A 1B1, Canada; Centre for Research on Brain, Language and Music, McGill University, 3640 de la Montagne Street, Montreal, QC H3G 2A8, Canada.
| |
Collapse
|
2
|
Buhusi M, Obray D, Guercio B, Bartlett MJ, Buhusi CV. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia. Behav Brain Res 2017. [PMID: 28647594 DOI: 10.1016/j.bbr.2017.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States.
| | - Daniel Obray
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Bret Guercio
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Mitchell J Bartlett
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| |
Collapse
|
3
|
Orsini CA, Moorman DE, Young JW, Setlow B, Floresco SB. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neurosci Biobehav Rev 2015; 58:147-67. [PMID: 26072028 DOI: 10.1016/j.neubiorev.2015.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/13/2015] [Accepted: 04/24/2015] [Indexed: 11/18/2022]
Abstract
Over the past 20 years there has been a growing interest in the neural underpinnings of cost/benefit decision-making. Recent studies with animal models have made considerable advances in our understanding of how different prefrontal, striatal, limbic and monoaminergic circuits interact to promote efficient risk/reward decision-making, and how dysfunction in these circuits underlies aberrant decision-making observed in numerous psychiatric disorders. This review will highlight recent findings from studies exploring these questions using a variety of behavioral assays, as well as molecular, pharmacological, neurophysiological, and translational approaches. We begin with a discussion of how neural systems related to decision subcomponents may interact to generate more complex decisions involving risk and uncertainty. This is followed by an overview of interactions between prefrontal-amygdala-dopamine and habenular circuits in regulating choice between certain and uncertain rewards and how different modes of dopamine transmission may contribute to these processes. These data will be compared with results from other studies investigating the contribution of some of these systems to guiding decision-making related to rewards vs. punishment. Lastly, we provide a brief summary of impairments in risk-related decision-making associated with psychiatric disorders, highlighting recent translational studies in laboratory animals.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry and Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, United States
| | - David E Moorman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, United States; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| | - Barry Setlow
- Department of Psychiatry and Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, United States
| | - Stan B Floresco
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Keedy SK, Reilly JL, Bishop JR, Weiden PJ, Sweeney JA. Impact of antipsychotic treatment on attention and motor learning systems in first-episode schizophrenia. Schizophr Bull 2015; 41:355-65. [PMID: 24894883 PMCID: PMC4332935 DOI: 10.1093/schbul/sbu071] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Antipsychotic medications have established clinical benefit, but there are few neuroimaging studies before and after initiating antipsychotic medication to assess drug influence on brain circuitry. Attention and motor learning tasks are promising approaches for examining treatment-related changes in frontostriatal systems. METHODS Twenty-one unmedicated first-episode schizophrenia patients (14 antipsychotic-naïve) participated in functional imaging studies while performing visual attention (prosaccades) and motor learning tasks (predictive saccades). Posttreatment testing was completed in 14 patients after 4-6 weeks of antipsychotic treatment. Matched healthy controls were studied in parallel. RESULTS Pretreatment, patients had reduced activation in the dorsal neocortical visual attention network. Activation deficits were significantly reduced posttreatment. Higher medication dose was associated with greater caudate activation at follow-up. For the motor learning task, patients' dorsolateral prefrontal cortex (DLPFC) was unimpaired prior to treatment but showed significantly reduced activation after treatment. CONCLUSION Impairments in dorsal cortical attention networks are present in untreated first-episode schizophrenia patients. These impairments are reduced after antipsychotic treatment, suggesting a beneficial effect on neural systems for attention. Treatment-emergent decreases in DLPFC activation observed for the motor learning task are consistent with other clinical and preclinical evidence suggesting that antipsychotics can have adverse effects on prefrontal function.
Collapse
Affiliation(s)
- Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL;
| | - James L Reilly
- Department of Psychiatry, Northwestern University, Chicago, IL
| | - Jeffrey R Bishop
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL
| | - Peter J Weiden
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - John A Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Keedy SK, Bishop JR, Weiden PJ, Sweeney JA, Rosen C, Marvin R, Reilly JL. Disease and drug effects on internally-generated and externally-elicited responses in first episode schizophrenia and psychotic bipolar disorder. Schizophr Res 2014; 159:101-6. [PMID: 25112158 PMCID: PMC4177289 DOI: 10.1016/j.schres.2014.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Neurocognitive deficits are associated with most psychotic disorders, but may differ across diagnosis and by treatment status. This ambiguity is partly addressed in longitudinal pre/post treatment studies with first episode patients. Antipsychotic-naïve first-episode schizophrenia patients have shown intact performance on a predictive saccade task that assesses simple motor learning, spatial abilities, and response planning. After antipsychotic treatment, however, schizophrenia patients performing this task show a selective impairment in the accuracy of anticipatory responses, generated from learned internal representations of the task stimulus. This finding is in line with other observations of antipsychotic medication effects on frontostriatal systems, particularly dorsolateral prefrontal cortex. We sought to replicate this provocative finding with an independent sample of antipsychotic-naïve first-episode schizophrenia patients and extend it by including a group of patients with first episode bipolar disorder with psychosis (BDP). Matched healthy controls were also studied in parallel. Schizophrenia patients demonstrated intact performance pretreatment followed by impairment post-treatment for accuracy of anticipatory responses, and worse accuracy was associated with higher antipsychotic dose. BDP patients displayed saccade accuracy deficits before and after treatment and had no correlation of performance and antipsychotic dose. The findings suggest different neural alterations early in the course of each psychotic disorder, and different vulnerabilities to antipsychotic treatment effects between schizophrenia and BDP.
Collapse
Affiliation(s)
- Sarah K. Keedy
- Department of Psychiatry and Behavioral Neuroscience, 5841 S. Maryland Ave, MC3077, University of Chicago, IL, 60637,Corresponding author: ph. 773 834-7178, fax 773 834-4536
| | - Jeffrey R. Bishop
- Department of Pharmacy Practice, University of Illinois at Chicago, IL
| | - Peter J. Weiden
- Department of Psychiatry, University of Illinois at Chicago, IL
| | - John A. Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Cherise Rosen
- Department of Psychiatry, University of Illinois at Chicago, IL, United States.
| | - Robert Marvin
- Department of Psychiatry, University of Illinois at Chicago, IL, United States.
| | - James L. Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL
| |
Collapse
|
6
|
Bender J, Reuter B, Möllers D, Kaufmann C, Gallinat J, Kathmann N. Neural correlates of impaired volitional action control in schizophrenia patients. Psychophysiology 2013; 50:872-84. [PMID: 23790023 DOI: 10.1111/psyp.12060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/20/2013] [Indexed: 11/26/2022]
Abstract
Slowed initiation of volitional but not visually guided saccades indicates impaired volitional action control in schizophrenia patients (SZ). The present study aimed at identifying neural correlates of this specific deficit. Fourteen SZ and 13 healthy control participants (HC) underwent functional magnetic resonance imaging while performing volitional and visually guided saccades. SZ showed increased latencies in volitional but not in visually guided saccades. Brain activation during volitional saccades compared to visually guided saccades was increased in SZ compared to HC in several areas: the supplementary eye fields, suggesting inefficient production of volitional saccades; the prefrontal cortex, pointing to altered top down control on complex eye movements; and the left middle temporal area, suggesting changes in early sensory and attention processing during the volitional control of saccades in SZ.
Collapse
Affiliation(s)
- Julia Bender
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Buhusi M, Scripa I, Williams CL, Buhusi CV. Impaired interval timing and spatial-temporal integration in mice deficient in CHL1, a gene associated with schizophrenia. TIMING & TIME PERCEPTION 2013; 1:21-38. [PMID: 28890867 DOI: 10.1163/22134468-00002003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interval timing is crucial for decision-making and motor control and is impaired in many neuropsychiatric disorders, including schizophrenia - a neurodevelopmental disorder with a strong genetic component. Several gene mutations, polymorphisms or rare copy number variants have been associated with schizophrenia. L1 cell adhesion molecules (L1CAMs) are involved in neurodevelopmental processes, and in synaptic function and plasticity in the adult brain. Mice deficient in the Close Homolog to L1 (CHL1) adhesion molecule show alterations of hippocampal and thalamo-cortical neuroanatomy as well as deficits in sensorimotor gating and exploratory behavior. We analyzed interval timing and attentional control of temporal and spatial information in male CHL1 deficient (KO) mice and wild type (WT) controls. In a 20-s peak-interval timing procedure (standard and reversed), KO mice showed a maintained leftward shift of the response function relative to WT, indicative of a deficit in memory encoding/decoding. In trials with 2, 5, or 10-s gaps, KO mice shifted their peak times less than WT controls at longer gap durations, suggesting a decreased (attentional) effect of interruptions. In the spatial-temporal task, KO mice made more working and reference memory errors than controls, suggestive of impaired use of spatial and/or temporal information. When the duration spent on the central platform of the maze was manipulated, WT mice showed fewer spatial errors at the trained duration than at shorter or longer durations, indicative of discrimination based upon spatial-temporal integration. In contrast, performance was similar at all tested durations in KO mice, indicative of control by spatial cues, but not by temporal cues. These results suggest that CHL1 KO mice selectively attend to the more relevant cues of the task, and fail to integrate more complex spatial-temporal information, possibly as a result of reduced memory capacity related to hippocampal impairment, and altered temporal-integration mechanisms possibly due to thalamo-cortical anomalies.
Collapse
Affiliation(s)
- Mona Buhusi
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| | - Ioana Scripa
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| | | | - Catalin V Buhusi
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| |
Collapse
|
8
|
Spencer KM, Nestor PG, Valdman O, Niznikiewicz MA, Shenton ME, McCarley RW. Enhanced facilitation of spatial attention in schizophrenia. Neuropsychology 2011; 25:76-85. [PMID: 20919764 PMCID: PMC3017629 DOI: 10.1037/a0020779] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE While attentional functions are usually found to be impaired in schizophrenia, a review of the literature on the orienting of spatial attention in schizophrenia suggested that voluntary attentional orienting in response to a valid cue might be paradoxically enhanced. We tested this hypothesis with orienting tasks involving the cued detection of a laterally presented target stimulus. METHOD Subjects were chronic schizophrenia patients (SZ) and matched healthy control subjects (HC). In Experiment 1 (15 SZ, 16 HC), cues were endogenous (arrows) and could be valid (100% predictive) or neutral with respect to the subsequent target position. In Experiment 2 (16 SZ, 16 HC), subjects performed a standard orienting task with unpredictive exogenous cues (brightening of the target boxes). RESULTS In Experiment 1, SZ showed a larger attentional facilitation effect on reaction time than HC. In Experiment 2, no clear sign of enhanced attentional facilitation was found in SZ. CONCLUSIONS The voluntary, facilitatory shifting of spatial attention may be relatively enhanced in individuals with schizophrenia in comparison to healthy individuals. This effect bears resemblance to other relative enhancements of information processing in schizophrenia such as saccade speed and semantic priming.
Collapse
Affiliation(s)
- Kevin M Spencer
- Veterans Affairs Boston Healthcare System/Harvard Medical School, Research 151C, 150 S. Huntington Avenue, Boston, MA 02130, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Harris MSH, Wiseman CL, Reilly JL, Keshavan MS, Sweeney JA. Effects of risperidone on procedural learning in antipsychotic-naive first-episode schizophrenia. Neuropsychopharmacology 2009; 34:468-76. [PMID: 18536701 PMCID: PMC3312390 DOI: 10.1038/npp.2008.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of procedural learning in medicated schizophrenia patients using predictive saccade paradigms have consistently demonstrated hypometric predictive responses. Findings from antipsychotic-naive schizophrenia patients indicate fewer or no deficits. This pattern of findings suggests that antipsychotic medications might adversely affect frontostriatal systems supporting procedural learning on this task. The accuracy and latency of predictive saccades were assessed in 25 antipsychotic-naive first-episode schizophrenia patients and 22 matched healthy individuals. Patients were retested after 6 weeks of treatment with risperidone. Healthy individuals were reevaluated after a similar time period. The ability to learn to time response initiation in anticipation of target appearance (target prediction) was not impaired in patients before or after treatment. In contrast, although no deficits were evident before treatment initiation, after treatment patients showed a marked decrease in the accuracy of predictive but not sensory-guided responses. The findings from pretreatment testing indicate that procedural learning is a relatively unaffected cognitive domain in antipsychotic-naive first-episode schizophrenia. Although treatment-emergent extrapyramidal symptoms were minimal, these data suggest that D2 antagonism in striatum after risperidone treatment was sufficiently robust to disrupt the generation of planned volitional behavior guided by internalized representations.
Collapse
Affiliation(s)
- Margret SH Harris
- Department of Psychiatry, Center for Cognitive Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Courtney L Wiseman
- Department of Psychiatry, Center for Cognitive Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - James L Reilly
- Department of Psychiatry, Center for Cognitive Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Matcheri S Keshavan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Sweeney
- Department of Psychiatry, Center for Cognitive Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
McDowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 2008; 68:255-70. [PMID: 18835656 PMCID: PMC2614688 DOI: 10.1016/j.bandc.2008.08.016] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2008] [Indexed: 12/26/2022]
Abstract
This review provides a summary of the contributions made by human functional neuroimaging studies to the understanding of neural correlates of saccadic control. The generation of simple visually guided saccades (redirections of gaze to a visual stimulus or pro-saccades) and more complex volitional saccades require similar basic neural circuitry with additional neural regions supporting requisite higher level processes. The saccadic system has been studied extensively in non-human (e.g., single-unit recordings) and human (e.g., lesions and neuroimaging) primates. Considerable knowledge of this system's functional neuroanatomy makes it useful for investigating models of cognitive control. The network involved in pro-saccade generation (by definition largely exogenously-driven) includes subcortical (striatum, thalamus, superior colliculus, and cerebellar vermis) and cortical (primary visual, extrastriate, and parietal cortices, and frontal and supplementary eye fields) structures. Activation in these regions is also observed during endogenously-driven voluntary saccades (e.g., anti-saccades, ocular motor delayed response or memory saccades, predictive tracking tasks and anticipatory saccades, and saccade sequencing), all of which require complex cognitive processes like inhibition and working memory. These additional requirements are supported by changes in neural activity in basic saccade circuitry and by recruitment of additional neural regions (such as prefrontal and anterior cingulate cortices). Activity in visual cortex is modulated as a function of task demands and may predict the type of saccade to be generated, perhaps via top-down control mechanisms. Neuroimaging studies suggest two foci of activation within FEF - medial and lateral - which may correspond to volitional and reflexive demands, respectively. Future research on saccade control could usefully (i) delineate important anatomical subdivisions that underlie functional differences, (ii) evaluate functional connectivity of anatomical regions supporting saccade generation using methods such as ICA and structural equation modeling, (iii) investigate how context affects behavior and brain activity, and (iv) use multi-modal neuroimaging to maximize spatial and temporal resolution.
Collapse
Affiliation(s)
- Jennifer E McDowell
- Departments of Psychology & Neuroscience, Bio-Imaging Research Center, Psychology Building, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
11
|
Gooding DC, Basso MA. The tell-tale tasks: a review of saccadic research in psychiatric patient populations. Brain Cogn 2008; 68:371-90. [PMID: 18950927 PMCID: PMC2755089 DOI: 10.1016/j.bandc.2008.08.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
This review focuses on saccade research with adult psychiatric patients. It begins with an introduction of the various types of saccades and the tasks used to evoke them. The functional significance of the different types of eye movements is briefly discussed. Research findings regarding the saccadic performance of different adult psychiatric patient populations are discussed in detail, with particular emphasis on findings regarding error rates, response latencies, and any specific task parameters that might affect those variables. Findings regarding the symptom, neurocognitive, and neural correlates of saccadic performance and the functional significance of patients' saccadic deficits are also discussed. We also discuss the saccadic deficits displayed by various patient groups in terms of circuitry (e.g. cortical/basal ganglia circuits) that may be implicated in the underlying pathophysiology of several of these disorders. Future directions for research in this growing area are offered.
Collapse
Affiliation(s)
- Diane C Gooding
- Department of Psychology, University of Wisconsin-Madison, College of Letters and Sciences, 1202 West Johnson Street, Madison, WI 53706, USA.
| | | |
Collapse
|
12
|
Winograd-Gurvich C, Fitzgerald PB, Georgiou-Karistianis N, Millist L, White O. Inhibitory control and spatial working memory: a saccadic eye movement study of negative symptoms in schizophrenia. Psychiatry Res 2008; 157:9-19. [PMID: 17897722 DOI: 10.1016/j.psychres.2007.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 09/04/2006] [Accepted: 02/03/2007] [Indexed: 11/24/2022]
Abstract
The negative symptoms of schizophrenia are perhaps the most unremitting and burdensome features of the disorder. Negative symptoms have been associated with distinct motor, cognitive and neuropathological impairments, possibly stemming from prefrontal dysfunction. Eye movement paradigms can be used to investigate basic sensorimotor functions, as well as higher order cognitive aspects of motor control such as inhibition and spatial working memory - functions subserved by the prefrontal cortex. This study investigated inhibitory control and spatial working memory in the saccadic system of 21 patients with schizophrenia (10 with high negative symptoms scores and 11 with low negative symptom scores) and 14 healthy controls. Tasks explored suppression of reflexive saccades during qualitatively different tasks, the generation of express and anticipatory saccades, and the ability to respond to occasional, unpredictable ("oddball") targets that occurred during a sequence of well-learned, reciprocating saccades between horizontal targets. Spatial working memory was assessed using a single and a two-step memory-guided task (involving a visually-guided saccade during the delay period). Results indicated significant increases in response suppression errors, as well as increased response selection impairments, during the oddball task, in schizophrenia patients with prominent negative symptoms. The variability of memory-guided saccade accuracy was also increased in patients with prominent negative symptom scores. Collectively, these findings provide further support for the proposed association between prefrontal dysfunction and negative symptoms.
Collapse
Affiliation(s)
- Caroline Winograd-Gurvich
- Experimental Neuropsychology Research Unit, School of Psychology, Psychiatry and Psychological Medicine, Monash University, Clayton, Victoria, 3800, Australia.
| | | | | | | | | |
Collapse
|
13
|
Sailer U, Eggert T, Strassnig M, Riedel M, Straube A. Predictive eye and hand movements are differentially affected by schizophrenia. Eur Arch Psychiatry Clin Neurosci 2007; 257:413-22. [PMID: 17902005 DOI: 10.1007/s00406-007-0749-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 06/08/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Schizophrenic patients are known to have problems suppressing reflexive eye movements. This is considered to indicate a dysfunction in prefrontal cortex. As the eye and hand motor systems are tightly coupled, we investigated whether predictive hand movements and eye-hand coordination are unimpaired in schizophrenic patients. METHODS Saccades and hand movements of 19 patients during an acute schizophrenic episode and 19 controls were measured in a task in which the predictability of target timing was varied. RESULTS Schizophrenic patients generated more anticipatory and less visually triggered saccades than controls with both non-predictable and predictable target timing. Anticipatory saccades in the wrong direction were clearly directed towards previous target positions, indicating that they are indicators of erroneous prediction rather than of fixation instability. In contrast to saccades, the number of anticipatory and visually triggered hand movements was the same in patients as in controls. As a consequence, patients took longer to initiate a hand movement after a saccade than controls. CONCLUSIONS Schizophrenic patients show increased predictive saccadic activity, but no qualitative changes in predictive saccades. Since prediction itself was not disturbed, the patients' deficit rather lies in the suppression or gating of anticipatory saccades than in their generation. This may be explained by a selective dysfunction of the basal ganglia oculomotor loop. As predictive hand movements were unimpaired, the problems in eye-hand coordination as expressed by a longer initiation time of hand movements relative to saccades are a direct consequence of impaired predictive saccadic behaviour.
Collapse
Affiliation(s)
- Uta Sailer
- Klinikum Grosshadern, Dept. of Neurology, Ludwig-Maximilians University, Marchioninistr. 23, 81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
14
|
Barton JJS, Kuzin A, Polli F, Manoach DS. The use of working memory for task prediction: What benefits accrue from different types of foreknowledge? Neuroscience 2006; 139:385-92. [PMID: 16326018 DOI: 10.1016/j.neuroscience.2005.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 09/29/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
The assumption that the deployment of executive processes invariably improves task performance is implicit to cognitive theory. In particular, working memory can be used to retain and update historical information about predictable trial sequences (foreknowledge) so that subjects can anticipate and prepare for the upcoming trial more effectively. We review the effects of different types of foreknowledge on response accuracy and latency, particularly in relation to experiments investigating saccadic eye movements in humans. While it is possible to make all aspects of an impending trial predictable, varying the predictability of different components of the trial independently can reveal which cognitive operations are potentially modifiable by foreknowledge. These operations include stimulus processing, retrieval of task-set rules, and response preparation, among others. The available data suggest that, while response preparation can be completed and the response even executed before the stimulus appears (i.e. anticipation) when the subject possesses complete task-foreknowledge (knowing both the stimulus to appear and the response required), foreknowledge of the task-set alone does not permit advance configuration of the task-set rules. A taxonomy for foreknowledge is proposed, including foreknowledge for timing, stimulus, set, response, and task. Work on differentiating these effects in neurophysiology, neuroimaging, and neuropsychology is still in the early stages.
Collapse
Affiliation(s)
- J J S Barton
- Department of Neurology, Section D, VGH Eye Care Center, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9.
| | | | | | | |
Collapse
|
15
|
McDowell JE, Brown GG, Paulus M, Martinez A, Stewart SE, Dubowitz DJ, Braff DL. Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biol Psychiatry 2002; 51:216-23. [PMID: 11839364 DOI: 10.1016/s0006-3223(01)01204-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Schizophrenia subjects demonstrate difficulties on tasks requiring saccadic inhibition, despite normal refixation saccade performance. Saccadic inhibition is ostensibly mediated via prefrontal cortex and associated cortical/subcortical circuitry. The current study tests hypotheses about the neural substrates of normal and abnormal saccadic performance among subjects with schizophrenia. METHODS Using functional magnetic resonance imaging, blood oxygenation level-dependent (BOLD) data were recorded while 13 normal and 14 schizophrenia subjects were engaged in refixation and antisaccade tasks. RESULTS Schizophrenia subjects did not demonstrate the increased prefrontal cortex BOLD contrast during antisaccade performance that was apparent in the normal subjects. Schizophrenia subjects did, however, demonstrate normal BOLD contrast associated with refixation saccade performance in the frontal and supplementary eye fields, and posterior parietal cortex. CONCLUSIONS Results from the current study support hypotheses of dysfunctional prefrontal cortex circuitry among schizophrenia subjects. Furthermore, this abnormality existed despite normal BOLD contrast observed during refixation saccade generation in the schizophrenia group.
Collapse
Affiliation(s)
- Jennifer E McDowell
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093-0804, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Broerse A, Crawford TJ, den Boer JA. Parsing cognition in schizophrenia using saccadic eye movements: a selective overview. Neuropsychologia 2001; 39:742-56. [PMID: 11311304 DOI: 10.1016/s0028-3932(00)00155-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eye movements provide a behavioural measure of sensorimotor processing and higher cognitive functions of the brain. With the development of novel paradigms that can be used for the study of various cognitive operations, saccadic eye movements in particular, have become increasingly popular. Patients with schizophrenia have neurocognitive impairments that can be readily investigated with these paradigms. From animal, human lesion and neuroimaging studies, the cerebral centres underlying saccadic eye movements have been identified. The areas of the prefrontal cortex include the dorsolateral prefrontal cortex, the frontal eye fields, the supplementary eye fields, and the anterior cingulate cortex. Pathology of saccadic eye movements, therefore, provides information on the functional status of the underlying neural circuitry in brain disorders such as schizophrenia. In this paper, we evaluate: (i) methodological considerations that are central to the design and application of saccadic paradigms; (ii) brain activation that is associated with saccadic paradigms; (iii) recent findings in healthy subjects and schizophrenic patients; (iv) saccadic abnormalities in other psychiatric and neurological disorders and in individuals at risk for developing schizophrenia.
Collapse
Affiliation(s)
- A Broerse
- Department of Psychiatry, Section Biological Psychiatry, School of Behavioral and Cognitive Neurosciences, Academic Hospital Groningen, State University Groningen, PO Box 30-001, 9700 RB Groningen, Netherlands.
| | | | | |
Collapse
|
17
|
Abstract
Data are reviewed from a series of saccadic studies demonstrating that schizophrenia subjects have normal performance on some types, and abnormal performance on other types, of tasks. Normal refixation saccade characteristics and BOLD signal change among schizophrenia subjects suggest that basic saccade generating circuitry is functionally intact among these subjects. Schizophrenia patients and their relatives, however, demonstrate difficulty with saccadic inhibition, a function ostensibly mediated by DLPFC circuitry. We review additional evidence for saccadic inhibition being associated with prefrontal circuitry provided by EEG and fMRI data. Minimum norm analysis of EEG data suggests that dipolar activity preceding correct antisaccades occurred preferentially in prefrontal cortex. Furthermore, there is an indication from the fMRI data that prefrontal activity may be increased in normal, but not in schizophrenia, subjects during antisaccade tasks. These data suggest that a research program relying on multiple functional imaging technologies may be helpful for furthering our understanding of schizophrenia's essential neuropathology.
Collapse
Affiliation(s)
- J E McDowell
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093-0804, USA
| | | |
Collapse
|
18
|
Krebs MO, Gut-Fayand A, Amado I, Daban C, Bourdel MC, Poirier MF, Berthoz A. Impairment of predictive saccades in schizophrenia. Neuroreport 2001; 12:465-9. [PMID: 11234747 DOI: 10.1097/00001756-200103050-00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using infrared oculography, we compared saccades toward predictable and pseudo-random visual targets in 19 neuroleptic-free patients with schizophrenia (including 13 neuroleptic-naïve patients) and in 29 age- and gender-matched healthy volunteers. Externally driven saccades were not different between patients and controls, whether or not the target was predictable. Anticipated saccades were specifically less accurate in the patients compared to the controls. The difference between primary gain of anticipated and non-anticipated saccades was markedly higher in the patients compared to controls (p=0.003). These results point to a deficit in the early step of internally driven oculomotor planning in schizophrenia.
Collapse
Affiliation(s)
- M O Krebs
- Biological Psychiatry Laboratory, UPRES EA 2501, University of Paris V, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Farber RH, Swerdlow NR, Clementz BA. Saccadic performance characteristics and the behavioural neurology of Tourette's syndrome. J Neurol Neurosurg Psychiatry 1999; 66:305-12. [PMID: 10084528 PMCID: PMC1736262 DOI: 10.1136/jnnp.66.3.305] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To better understand the neuropathological correlates of Tourette's syndrome (TS), measures of saccadic eye movement performance were examined among patients with TS. METHODS A case-control design was used. Twenty one patients with DSM-IV TS (mean age 40.6 years (SD 11.0); 38% female) mainly recruited from UCSD Psychiatry Services, and a community based sample of 21 normal subjects (mean age 34.6 years (SD 13.4); 43% women) participated in this study. Participants were administered ocular motor tasks assessing visual fixation, and the generation of prosaccades, predictive saccades, and antisaccades. Saccadic reaction time, amplitude, duration, and mean and peak velocity were computed. Intrusive saccades during visual fixation and the proportion of correct antisaccade responses were also evaluated. RESULTS The groups had similar visual fixation performance. Whereas patients with TS generated prosaccades with normal reaction times and amplitudes, their saccade durations were shorter and their mean velocities were higher than in normal subjects. During a prosaccade gap task, patients with TS exhibited an increased proportion of anticipatory saccades (RTs<90). The proportion of "express" saccades (90<RTs<135) did not differ between groups. Patients with TS had fewer correct antisaccade responses than did normal subjects, an effect accounted for by 19% of the patients. Antisaccade reaction times among patients with TS were increased during an overlap version of the task. CONCLUSION These findings suggest that TS mildly affects the ocular motor control circuitry associated with saccade inhibition.
Collapse
Affiliation(s)
- R H Farber
- Department of Psychology, University of California, San Diego, USA
| | | | | |
Collapse
|
20
|
Sweeney JA, Luna B, Srinivasagam NM, Keshavan MS, Schooler NR, Haas GL, Carl JR. Eye tracking abnormalities in schizophrenia: evidence for dysfunction in the frontal eye fields. Biol Psychiatry 1998; 44:698-708. [PMID: 9798073 DOI: 10.1016/s0006-3223(98)00035-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Eye tracking deficits are robust abnormalities in schizophrenia, but the neurobiological disturbance underlying these deficits is not known. METHODS To clarify the pathophysiology of eye tracking disturbances in schizophrenia, we tested 12 first-episode treatment-naive schizophrenic patients and 10 matched healthy individuals on foveofugal and foveopetal step-ramp pursuit tasks. RESULTS On foveopetal tasks, the initiation of pursuit eye movements was delayed in schizophrenic patients, and their steady-state pursuit gain was reduced particularly at slower target speeds (8 and 16 deg/sec). In foveofugal step-ramp tasks, their primary catch-up saccades were normal in latency and accuracy, but their postsaccadic pursuit in the first 100 msec after the primary catch-up saccade was significantly reduced even relative to their slow steady-state pursuit, especially during and immediately after an acute episode of illness. CONCLUSIONS These observations indicate that motion-sensitive areas in posterior temporal cortex provide sufficiently intact information about moving targets to guide accurate catch-up saccades, but that the sensory processing of motion information is not being used effectively for pursuit eye movements. Low-gain pursuit after the early stage of pursuit initiation suggests that the use of extraretinal signals about target motion (e.g., anticipatory prediction) only partially compensates for this deficit. The pattern of low-gain pursuit, impaired pursuit initiation, and intact processing of motion information for catch-up saccades but not pursuit eye movements, was consistent in the schizophrenic patients tested at five time points over a 2-year follow-up period, and implicates the frontal eye fields or their efferent or afferent pathways in the pathophysiology of eye tracking abnormalities in schizophrenia.
Collapse
Affiliation(s)
- J A Sweeney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Clementz BA. Saccades to moving targets in schizophrenia: evidence for normal posterior cortex functioning. Psychophysiology 1996; 33:650-4. [PMID: 8961786 DOI: 10.1111/j.1469-8986.1996.tb02360.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
People diagnosed with schizophrenia have abnormalities of smooth pursuit eye movement initiation that could be attributable to dysfunction of posterior cortical areas and/or the smooth pursuit regions of frontal cortex. To evaluate whether schizophrenia patients' pursuit initiation performance is most consistent with pre- or postrolandic neuropathology, 25 schizophrenia patients and 25 nonpsychiatric individuals were presented step-ramp stimuli moving either away from or toward the fovea. Schizophrenia and nonpsychiatric individuals did not differ on position error of saccades to moving targets, suggesting that the schizophrenia patients did not have general difficulty with motion perception. During the initial 100 ms of smooth pursuit, however, schizophrenia patients had significantly slower eye velocities than did nonpsychiatric individuals. These results suggest that schizophrenia patients' smooth pursuit abnormalities are not associated with neuropathology of posterior cortical areas.
Collapse
Affiliation(s)
- B A Clementz
- Department of Psychology, University of California-San Diego, La Jolla, USA
| |
Collapse
|
22
|
Clementz BA. The ability to produce express saccades as a function of gap interval among schizophrenia patients. Exp Brain Res 1996; 111:121-30. [PMID: 8891642 DOI: 10.1007/bf00229561] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability to produce "express saccades" is associated with adequate functioning of saccadic burst cells in the superior colliculus. Saccadic burst cells appear to be under the inhibitory control of both the collicular and the dorsolateral frontal fixation systems. Twenty schizophrenia patients and 20 nonpsychiatric subjects were presented a saccade task that included five different gap intervals (0, 100, 200, 300, and 400 ms) between fixation point offset and peripheral target onset (at +/-4 degrees). All subjects generated the highest frequency of express saccades in trials with a gap interval of 200 ms. Schizophrenia patients had an increased frequency of express saccades across gap intervals, especially for targets presented in the right visual field. The groups did not differ in the percentages of anticipatory saccades or saccadic amplitudes. These results suggest that schizophrenia patients' saccadic burst cells in the superior colliculus are functioning adequately, but may be consistent with dysfunction of dorsolateral frontal cortex and/or its interconnecting subcortical circuitry.
Collapse
Affiliation(s)
- B A Clementz
- Department of Psychology, University of California, San Diego, USA.
| |
Collapse
|