1
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Yao Y, Xu Y, Liang JJ, Zhuang X, Ng TK. Longitudinal and simultaneous profiling of 11 modes of cell death in mouse retina post-optic nerve injury. Exp Eye Res 2022; 222:109159. [PMID: 35753433 DOI: 10.1016/j.exer.2022.109159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023]
Abstract
Retinal ganglion cell (RGC) death is a critical pathological trigger leading to irreversible visual impairment and blindness after optic nerve (ON) injury. Yet, there is still no effective clinical treatment to rescue RGC death after ON injury. Understanding the involvement of different modes of cell death post-ON injury could facilitate the development of targeting treatments against RGC death. Herein we aimed to characterize the regulation of 11 modes of cell death simultaneously and longitudinally in mouse retina post-ON injury. The number of RGCs gradually decreased from Day 3-14 in mice post-ON injury. Increase in the apoptosis (cleaved caspase-3), autolysis (cleaved cathespin B) and pyroptosis (cleaved caspase-1) marker expression in the retina began at Day 3 post-ON injury. Meanwhile, the markers for autophagy (Atg7 and Becn1) and phagocytosis (Mfge8 and Mertk) were downregulated from Day 1 to Day 5. Additionally, the expression of ferroptosis marker (4-hydroxynonenal) was upregulated from Day 7 to Day 14 post-ON injury following the early reduction of Gpx4. Yet, the reduction of parthanatos, sarmoptosis, and mitochondrial permeable transition could be related to autophagy and apoptosis. The markers for necroptosis did not show significant changes post-ON injury. In summary, this study revealed that the activation of apoptosis, autolysis, pyroptosis and ferroptosis, together with the early downregulation of autophagy and phagocytosis, are the major modes of cell death involved in the RGC death post-ON injury. Simultaneously targeting multiple modes of cell death at different time courses could be a potential treatment approach against RGC death for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Gao F, Li Z, Kang Z, Liu D, Li P, Ou Q, Xu JY, Li W, Tian H, Jin C, Wang J, Zhang J, Zhang J, Lu L, Xu GT. Inhibition of PARP activity improves therapeutic effect of ARPE-19 transplantation in RCS rats through decreasing photoreceptor death. Exp Eye Res 2021; 204:108448. [PMID: 33484702 DOI: 10.1016/j.exer.2021.108448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
Photoreceptor (PR) dysfunction or death is the key pathological change in retinal degeneration (RD). The death of PRs might be due to a primary change in PRs themselves or secondary to the dysfunction of the retinal pigment epithelium (RPE). Poly(ADP-ribose) polymerase (PARP) was reported to be involved in primary PR death, but whether it plays a role in PR death secondary to RPE dysfunction has not been determined. To clarify this question and develop a new therapeutic approach, we studied the changes in PAR/PARP in the RCS rat, a RD model, and tested the effect of PARP intervention when given alone or in combination with RPE cell transplantation. The results showed that poly(ADP-ribosyl)ation of proteins was increased in PRs undergoing secondary death in RCS rats, and this result was confirmed by the observation of similar changes in sodium iodate (SI)-induced secondary RD in SD rats. The increase in PAR/PARP was highly associated with increased apoptotic PRs and decreased visual function, as represented by lowered b-wave amplitudes on electroretinogram (ERG). Then, as we expected, when the RCS rats were treated with subretinal injection of the PARP inhibitor PJ34, the RD process was delayed. Furthermore, when PJ34 was given simultaneously with subretinal ARPE-19 cell transplantation, the therapeutic effects were significantly improved and lasted longer than those of ARPE-19 or PJ34 treatment alone. These results provide a potential new approach for treating RD.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zongyi Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ziwei Kang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, USA
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Sinha A, Katyal S, Kauppinen TM. PARP-DNA trapping ability of PARP inhibitors jeopardizes astrocyte viability: Implications for CNS disease therapeutics. Neuropharmacology 2021; 187:108502. [PMID: 33631119 DOI: 10.1016/j.neuropharm.2021.108502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
There is emerging interest in the role of poly(ADP-ribose) polymerase-1 (PARP-1) in neurodegeneration and potential of its therapeutic targeting in neurodegenerative disorders. New generations of PARP inhibitors exhibit polypharmacological properties; they do not only block enzymatic activity with lower doses, but also alter how PARP-1 interacts with DNA. While these new inhibitors have proven useful in cancer therapy due to their ability to kill cancer cell, their use in neurodegenerative disorders has an opposite goal: cell protection. We hypothesize that newer generation PARP-1 inhibitors jeopardize the viability of dividing CNS cells by promoting DNA damage upon the PARP-DNA interaction. Using enriched murine astrocyte cultures, our study evaluates the effects of a variety of drugs known to inhibit PARP; talazoparib, olaparib, PJ34 and minocycline. Despite similar PARP enzymatic inhibiting activities, we show here that these drugs result in varied cell viability. Talazoparib and olaparib reduce astrocyte growth in a dose-dependent manner, while astrocytes remain unaffected by PJ34 and minocycline. Similarly, PJ34 and minocycline do not jeopardize DNA integrity, while treatment with talazoparib and olaparib promote DNA damage. These two drugs impact astrocytes similarly in basal conditions and upon nitrosative stress, a pathological condition typical for neurodegeneration. Mechanistic assessment revealed that talazoparib and olaparib promote PARP trapping onto DNA in a dose-dependent manner, while PJ34 and minocycline do not induce PARP-DNA trapping. This study provides unique insight into the selective use of PARP inhibitors to treat neurodegenerative disorders whereby inhibition of PARP enzymatic activity must occur without deleteriously trapping PARP onto DNA.
Collapse
Affiliation(s)
- Asha Sinha
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave, RM ON5010, Winnipeg, Manitoba, R3E0V9, Canada; Kleysen Institute for Advance Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, Manitoba, R3E 0Z3, Canada.
| | - Sachin Katyal
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave, RM ON5010, Winnipeg, Manitoba, R3E0V9, Canada.
| | - Tiina M Kauppinen
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Kleysen Institute for Advance Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, Manitoba, R3E 0Z3, Canada.
| |
Collapse
|
5
|
Prado Spalm FH, Vera MS, Dibo MJ, Simón MV, Politi LE, Rotstein NP. Ceramide Induces the Death of Retina Photoreceptors Through Activation of Parthanatos. Mol Neurobiol 2018; 56:4760-4777. [DOI: 10.1007/s12035-018-1402-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023]
|
6
|
Marshall J, Wong KY, Rupasinghe CN, Tiwari R, Zhao X, Berberoglu ED, Sinkler C, Liu J, Lee I, Parang K, Spaller MR, Hüttemann M, Goebel DJ. Inhibition of N-Methyl-D-aspartate-induced Retinal Neuronal Death by Polyarginine Peptides Is Linked to the Attenuation of Stress-induced Hyperpolarization of the Inner Mitochondrial Membrane Potential. J Biol Chem 2015; 290:22030-22048. [PMID: 26100636 PMCID: PMC4571956 DOI: 10.1074/jbc.m115.662791] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/09/2015] [Indexed: 02/02/2023] Open
Abstract
It is widely accepted that overactivation of NMDA receptors, resulting in calcium overload and consequent mitochondrial dysfunction in retinal ganglion neurons, plays a significant role in promoting neurodegenerative disorders such as glaucoma. Calcium has been shown to initiate a transient hyperpolarization of the mitochondrial membrane potential triggering a burst of reactive oxygen species leading to apoptosis. Strategies that enhance cell survival signaling pathways aimed at preventing this adverse hyperpolarization of the mitochondrial membrane potential may provide a novel therapeutic intervention in retinal disease. In the retina, brain-derived neurotrophic factor has been shown to be neuroprotective, and our group previously reported a PSD-95/PDZ-binding cyclic peptide (CN2097) that augments brain-derived neurotrophic factor-induced pro-survival signaling. Here, we examined the neuroprotective properties of CN2097 using an established retinal in vivo NMDA toxicity model. CN2097 completely attenuated NMDA-induced caspase 3-dependent and -independent cell death and PARP-1 activation pathways, blocked necrosis, and fully prevented the loss of long term ganglion cell viability. Although neuroprotection was partially dependent upon CN2097 binding to the PDZ domain of PSD-95, our results show that the polyarginine-rich transport moiety C-R(7), linked to the PDZ-PSD-95-binding cyclic peptide, was sufficient to mediate short and long term protection via a mitochondrial targeting mechanism. C-R(7) localized to mitochondria and was found to reduce mitochondrial respiration, mitochondrial membrane hyperpolarization, and the generation of reactive oxygen species, promoting survival of retinal neurons.
Collapse
Affiliation(s)
- John Marshall
- From the Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912
| | - Kwoon Y Wong
- the Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105
| | - Chamila N Rupasinghe
- the Geisel School of Medicine at Dartmouth, Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| | - Rakesh Tiwari
- the Chapman University School of Pharmacy, Irvine, California 92618
| | - Xiwu Zhao
- the Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105
| | | | - Christopher Sinkler
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | - Icksoo Lee
- the College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, 330-714, Republic of Korea
| | - Keykavous Parang
- the Chapman University School of Pharmacy, Irvine, California 92618
| | - Mark R Spaller
- the Geisel School of Medicine at Dartmouth, Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Lebanon, New Hampshire 03756
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | | |
Collapse
|
7
|
El-Azab MF, Baldowski BRB, Mysona BA, Shanab AY, Mohamed IN, Abdelsaid MA, Matragoon S, Bollinger KE, Saul A, El-Remessy AB. Deletion of thioredoxin-interacting protein preserves retinal neuronal function by preventing inflammation and vascular injury. Br J Pharmacol 2014; 171:1299-313. [PMID: 24283717 DOI: 10.1111/bph.12535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/07/2013] [Accepted: 11/17/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Retinal neurodegeneration is an early and critical event in several diseases associated with blindness. Clinically, therapies that target neurodegeneration fail. We aimed to elucidate the multiple roles by which thioredoxin-interacting protein (TXNIP) contributes to initial and sustained retinal neurodegeneration. EXPERIMENTAL APPROACH Neurotoxicity was induced by intravitreal injection of NMDA into wild-type (WT) and TXNIP-knockout (TKO) mice. The expression of apoptotic and inflammatory markers was assessed by immunohistochemistry, elisa and Western blot. Microvascular degeneration was assessed by periodic acid-Schiff and haematoxylin staining and retinal function by electroretinogram. KEY RESULTS NMDA induced early (1 day) and significant retinal PARP activation, a threefold increase in TUNEL-positive nuclei and 40% neuronal loss in ganglion cell layer (GCL); and vascular permeability in WT but not TKO mice. NMDA induced glial activation, expression of TNF-α and IL-1β that co-localized with Müller cells in WT but not TKO mice. In parallel, NMDA triggered the expression of NOD-like receptor protein (NLRP3), activation of caspase-1, and release of IL-1β and TNF-α in primary WT but not TKO Müller cultures. After 14 days, NMDA induced 1.9-fold microvascular degeneration, 60% neuronal loss in GCL and increased TUNEL-labelled cells in the GCL and inner nuclear layer in WT but not TKO mice. Electroretinogram analysis showed more significant reductions in b-wave amplitudes in WT than in TKO mice. CONCLUSION AND IMPLICATIONS Targeting TXNIP expression prevented early retinal ganglion cell death, glial activation, retinal inflammation and secondary neuro/microvascular degeneration and preserved retinal function. TXNIP is a promising new therapeutic target for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- M F El-Azab
- Center for Pharmacy and Experimental Therapeutics, University of Georgia, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stoica BA, Loane DJ, Zhao Z, Kabadi SV, Hanscom M, Byrnes KR, Faden AI. PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. J Neurotrauma 2014; 31:758-72. [PMID: 24476502 DOI: 10.1089/neu.2013.3194] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Traumatic brain injury (TBI) causes neuronal cell death as well as microglial activation and related neurotoxicity that contribute to subsequent neurological dysfunction. Poly (ADP-ribose) polymerase (PARP-1) induces neuronal cell death through activation of caspase-independent mechanisms, including release of apoptosis inducing factor (AIF), and microglial activation. Administration of PJ34, a selective PARP-1 inhibitor, reduced cell death of primary cortical neurons exposed to N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG), a potent inducer of AIF-dependent cell death. PJ34 also attenuated lipopolysaccharide and interferon-γ-induced activation of BV2 or primary microglia, limiting NF-κB activity and iNOS expression as well as decreasing generation of reactive oxygen species and TNFα. Systemic administration of PJ34 starting as late as 24 h after controlled cortical impact resulted in improved motor function recovery in mice with TBI. Stereological analysis demonstrated that PJ34 treatment reduced the lesion volume, attenuated neuronal cell loss in the cortex and thalamus, and reduced microglial activation in the TBI cortex. PJ34 treatment did not improve cognitive performance in a Morris water maze test or reduce neuronal cell loss in the hippocampus. Overall, our data indicate that PJ34 has a significant, albeit selective, neuroprotective effect after experimental TBI, and its therapeutic effect may be from multipotential actions on neuronal cell death and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Bogdan A Stoica
- 1 Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland , School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
9
|
Yoshizawa K, Sasaki T, Uehara N, Kuro M, Kimura A, Kinoshita Y, Miki H, Yuri T, Tsubura A. N -ethyl- N -nitrosourea induces retinal photoreceptor damage in adult rats. J Toxicol Pathol 2012; 25:27-35. [PMID: 22481856 PMCID: PMC3320154 DOI: 10.1293/tox.25.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/31/2011] [Indexed: 01/16/2023] Open
Abstract
Seven-week-old male Lewis rats received a single intraperitoneal injection of N-ethyl-N-nitrosourea (ENU) (100, 200, 400 or 600 mg/kg), and retinal damage was evaluated 7 days after the treatment. Sequential morphological features of the retina and retinal DNA damage, as determined by a TUNEL assay and phospho-histone H2A.X (γ-H2AX), were analyzed 3, 6, 12, 24 and 72 hr, 7 days, and/or 30 days after 400 mg/kg ENU treatment. Activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP) was analyzed immunohistochemically by poly (ADP-ribose) (PAR) expression in response to DNA damage of the retina. All rats that received ≥ 400 mg/kg of ENU developed retinal degeneration characterized by the loss of photoreceptor cells in both the central and peripheral retina within 7 days. In the 400 mg/kg ENU-treated rats, TUNEL-positive signals were only located in the photoreceptor cells and peaked 24 hr after ENU treatment. The γ-H2AX signals in inner retinal cells appeared at 24 hr and peaked at 72 hr after ENU treatment, and the PAR signals selectively located in the photoreceptor cell nuclei appeared at 12 hr and peaked at 24 hr after ENU treatment. However, degeneration was restricted to photoreceptor cells, and no degenerative changes in inner retinal cells were seen at any time points. Retinal thickness and the photoreceptor cell ratio in the central and peripheral retina were significantly decreased, and the retinal damage ratio was significantly increased 7 days after ENU treatment. In conclusion, ENU induced retinal degeneration in adult rats that was characterized by photoreceptor cell apoptosis through PARP activity.
Collapse
|
10
|
English FA, Mccarthy FP, Andersson IJ, Stanley JL, Davidge ST, Baker PN, Walsh SK, Kenny LC. Administration of the PARP Inhibitor Pj34 Ameliorates the Impaired Vascular Function Associated With Enos−/−Mice. Reprod Sci 2012; 19:806-13. [DOI: 10.1177/1933719111433885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - Irene J. Andersson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Joanna L. Stanley
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Philip N. Baker
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah K. Walsh
- School of Pharmacy & Life Sciences, Institute for Health & Welfare Research, The Robert Gordon University, Aberdeen, UK
| | | |
Collapse
|
11
|
Al-Gayyar MMH, Abdelsaid MA, Matragoon S, Pillai BA, El-Remessy AB. Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br J Pharmacol 2012; 164:170-80. [PMID: 21434880 DOI: 10.1111/j.1476-5381.2011.01336.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Up-regulation of thioredoxin interacting protein (TXNIP), an endogenous inhibitor of thioredoxin (Trx), compromises cellular antioxidant and anti-apoptotic defences and stimulates pro-inflammatory cytokines expression, implying a role for TXNIP in apoptosis. Here we have examined the causal role of TXNIP expression in mediating retinal neurotoxicity and assessed the neuroprotective actions of verapamil, a calcium channel blocker and an inhibitor of TXNIP expression. EXPERIMENTAL APPROACH Retinal neurotoxicity was induced by intravitreal injection of NMDA in Sprague-Dawley rats, which received verapamil (10 mg·kg(-1), p.o.) or vehicle. Neurotoxicity was examined by terminal dUTP nick-end labelling assay and ganglion cell count. Expression of TXNIP, apoptosis signal-regulating kinase 1 (ASK-1), NF-κB, p38 MAPK, JNK, cleaved poly-ADP-ribose polymerase (PARP), caspase-3, nitrotyrosine and 4-hydroxy-nonenal were examined by Western and slot-blot analysis. Release of TNF-α and IL-1β was examined by elisa. KEY RESULTS NMDA injection enhanced TXNIP expression, decreased Trx activity, causing increased oxidative stress, glial activation and release of TNF-α and IL-1β. Enhanced TXNIP expression disrupted Trx/ASK-1 inhibitory complex leading to release of ASK-1 and activation of the pro-apoptotic p38 MAPK/JNK pathway, as indicated by cleaved PARP and caspase-3 expression. Treatment with verapamil blocked these effects. CONCLUSION AND IMPLICATIONS Elevated TXNIP expression contributed to retinal neurotoxicity by three different mechanisms, inducing release of inflammatory mediators such as TNF-α and IL-1β, altering antioxidant status and disrupting the Trx-ASK-1 inhibitory complex leading to activation of the p38 MAPK/JNK apoptotic pathway. Targeting TXNIP expression is a potential therapeutic target for retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Mohammed M H Al-Gayyar
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
12
|
Chertov AO, Holzhausen L, Kuok IT, Couron D, Parker E, Linton JD, Sadilek M, Sweet IR, Hurley JB. Roles of glucose in photoreceptor survival. J Biol Chem 2011; 286:34700-11. [PMID: 21840997 PMCID: PMC3186402 DOI: 10.1074/jbc.m111.279752] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/04/2011] [Indexed: 11/06/2022] Open
Abstract
Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.
Collapse
Affiliation(s)
| | | | | | - Drew Couron
- Medicine, Diabetes, Obesity Center of Excellence
| | | | | | - Martin Sadilek
- Chemistry, University of Washington, Seattle, Washington 98195
| | - Ian R. Sweet
- Medicine, Diabetes, Obesity Center of Excellence
| | | |
Collapse
|
13
|
Zhu H, Jiang Z, Lei P, Huang W, Yu X. Poly(ADP-ribose) polymerase-1 mediates angiotensin II-induced expression of plasminogen activator inhibitor-1 and fibronectin in rat mesangial cells. Kidney Blood Press Res 2011; 34:320-7. [PMID: 21613793 DOI: 10.1159/000327344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 03/07/2011] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the effects of poly(ADP-ribose) polymerase-1 (PARP-1) on angiotensin II (Ang II)-induced plasminogen activator inhibitor-1 (PAI-1) and fibronectin (FN) in rat mesangial cells (RMCs). METHODS Followed by serum starvation for 16 h, RMCs were exposed to Ang II for an indicated time to examine the protein expression of PARP-1. The cells were treated with or without Ang II for 12-24 h in the presence or absence of an inhibitor of PARP, N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride (PJ34) or small interfering RNA (siRNA) duplexes targeting PARP-1. The mRNA and protein expressions of PARP-1, PAI-1 and FN were determined by real-time RT-PCR and Western blot, respectively. The activity of PARP-1 was examined by colorimetric assay. RESULTS Ang II did not only significantly induce PARP-1 expression and activity, but also increased PAI-1 and FN expression in RMCs. All these responses induced by Ang II were significantly inhibited by both the PARP inhibitor PJ34 and downregulating PARP-1 with the siRNA technique. CONCLUSIONS Our data suggest that PARP-1 mediates Ang II-induced PAI-1 and FN in RMCs and may thus represent a potential therapeutic target in the treatment of glomerular disease.
Collapse
Affiliation(s)
- Hengmei Zhu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
14
|
Mazzone GL, Nistri A. Effect of the PARP-1 inhibitor PJ 34 on excitotoxic damage evoked by kainate on rat spinal cord organotypic slices. Cell Mol Neurobiol 2011; 31:469-78. [PMID: 21190076 PMCID: PMC11498577 DOI: 10.1007/s10571-010-9640-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/13/2010] [Indexed: 12/20/2022]
Abstract
Excitotoxicity triggered by over-activation of glutamate receptors is thought to be an early mechanism of extensive neuronal death with consequent loss of function following lesion of spinal networks. One important process responsible for excitotoxic death is 'parthanatos' caused by hyperactivation of poly(ADP-ribose) polymerase (PARP) enzyme 1. Using rat organotypic spinal slices as in vitro models, the present study enquired if 2-(dimethylamino)-N-(5,6-dihydro-6-oxophenanthridin-2yl)acetamide (PJ 34), a pharmacological inhibitor of PARP-1, could counteract the excitotoxic damage evoked by transient application (1 h) of kainate, a potent analogue of glutamate. Kainate induced dose-dependent (1 μM threshold) neuronal loss (without damage to astrocytes) detected 24 h later via a PARP-1 dependent process that had peaked at 4 h after washout kainate. All spinal regions (ventral, central and dorsal) were affected, even though the largest damage was found in the dorsal area. Whereas PJ 34 did not protect against a large concentration (100 μM) of kainate, it significantly inhibited neuronal losses evoked by 10 μM kainate as long as it was co-applied with this glutamate agonist. When the application of PJ 34 was delayed to the washout time, neuroprotection was weak and regionally restricted. These data suggest that kainate-induced parthanatos developed early and was prevented by PJ 34 only when it was co-applied together with excitotoxic stimulus. Our results highlight the difficulty to arrest parthanatos as a mechanism of spinal neuron death in view of its low threshold of activation by kainate, its widespread distribution, and relatively fast development.
Collapse
Affiliation(s)
- Graciela L. Mazzone
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Andrea Nistri
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (SPINAL), Istituto di Medicina Fisica e Riabilitazione, Udine, Italy
| |
Collapse
|
15
|
Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS One 2011; 6:e14731. [PMID: 21390294 PMCID: PMC3046953 DOI: 10.1371/journal.pone.0014731] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Background Sirtuins (Sirt), a family of nicotinamide adenine nucleotide (NAD) dependent deacetylases, are implicated in energy metabolism and life span. Among the known Sirt isoforms (Sirt1-7), Sirt3 was identified as a stress responsive deacetylase recently shown to play a role in protecting cells under stress conditions. Here, we demonstrated the presence of Sirt3 in neurons, and characterized the role of Sirt3 in neuron survival under NMDA-induced excitotoxicity. Methodology/Principal Findings To induce excitotoxic injury, we exposed primary cultured mouse cortical neurons to NMDA (30 µM). NMDA induced a rapid decrease of cytoplasmic NAD (but not mitochondrial NAD) in neurons through poly (ADP-ribose) polymerase-1 (PARP-1) activation. Mitochondrial Sirt3 was increased following PARP-1 mediated NAD depletion, which was reversed by either inhibition of PARP-1 or exogenous NAD. We found that massive reactive oxygen species (ROS) produced under this NAD depleted condition mediated the increase in mitochondrial Sirt3. By transfecting primary neurons with a Sirt3 overexpressing plasmid or Sirt3 siRNA, we showed that Sirt3 is required for neuroprotection against excitotoxicity. Conclusions This study demonstrated for the first time that mitochondrial Sirt3 acts as a prosurvival factor playing an essential role to protect neurons under excitotoxic injury.
Collapse
|
16
|
Marshall J, Blair LAC, Singer JD. BTB-Kelch proteins and ubiquitination of kainate receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 717:115-25. [PMID: 21713671 DOI: 10.1007/978-1-4419-9557-5_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kainate receptors (KAR) form a class of glutamate receptors that have been implicated in epilepsy, stroke, Alzheimer's and neuropathic pain.1 KAR subtypes are known to be segregated to specific locations within neurons and play significant roles in synaptic transmission and plasticity.2 Increasing evidence suggests a the role for ubiqutination in regulating the number of synaptic neurotransmitter receptors.3-5 The ubiquitin pathway consists of activation (E1), conjugation (E2) and ligation (E3). Cullins form the largest family of E3 ligase complexes. We have recently shown that the BTB/Kelch domain proteins, actinfilin and mayven, bind both Cul3 and specific KAR subtypes (GluR6 and GluR5-2b) to target these KARs for ubiquitination and degradation.5 In this chapter we will review how these interactions occur, what they mean for the stability of KARs and their associated proteins and how, in turn, they may affect synaptic functions in the central nervous system.
Collapse
Affiliation(s)
- John Marshall
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
17
|
Giansanti V, Donà F, Tillhon M, Scovassi AI. PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 2010; 80:1869-77. [PMID: 20417190 DOI: 10.1016/j.bcp.2010.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Poly(ADP-ribosylation) consists in the conversion of β-NAD(+) into ADP-ribose, which is then bound to acceptor proteins and further used to form polymers of variable length and structure. The correct turnover of poly(ADP-ribose) is ensured by the concerted action of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes, which are responsible for polymer synthesis and degradation, respectively. Despite the positive role of poly(ADP-ribosylation) in sensing and repairing DNA damage, generated also by ROS, PARP over-activation could allow NAD depletion and consequent necrosis, thus leading to an inflammatory condition in many diseases. In this respect, inhibition of PARP enzymes could exert a protective role towards a number of pathological conditions; i.e. the combined treatment of tumors with PARP inhibitors/anticancer agents proved to have a beneficial effect in cancer therapy. Thus, pharmacological inactivation of poly(ADP-ribosylation) could represent a novel therapeutic strategy to limit cellular injury and to attenuate the inflammatory processes that characterize many disorders.
Collapse
Affiliation(s)
- Vincenzo Giansanti
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
18
|
Szabadfi K, Mester L, Reglodi D, Kiss P, Babai N, Racz B, Kovacs K, Szabo A, Tamas A, Gabriel R, Atlasz T. Novel neuroprotective strategies in ischemic retinal lesions. Int J Mol Sci 2010; 11:544-561. [PMID: 20386654 PMCID: PMC2852854 DOI: 10.3390/ijms11020544] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i) urocortin 2; (ii) a mitochondrial ATP-sensitive K+ channel opener, diazoxide; (iii) a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv) a novel poly(ADP-ribose) polymerase inhibitor (HO3089). The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Laszlo Mester
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Peter Kiss
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Norbert Babai
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Boglarka Racz
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Tamas Atlasz
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
- Department of Sportbiology, University of Pecs, H-7624 Pecs, Hungary
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +36-72-503-600/4613; Fax: +36-72-501-517
| |
Collapse
|
19
|
Nicolescu AC, Holt A, Kandasamy AD, Pacher P, Schulz R. Inhibition of matrix metalloproteinase-2 by PARP inhibitors. Biochem Biophys Res Commun 2009; 387:646-650. [PMID: 19619515 PMCID: PMC2756481 DOI: 10.1016/j.bbrc.2009.07.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64kDa MMP-2 in a concentration-dependent manner. The IC(50) values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.
Collapse
Affiliation(s)
- Adrian C. Nicolescu
- Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | - Andrew Holt
- Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | - Arulmozhi D. Kandasamy
- Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | - Pal Pacher
- National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD, USA
| | - Richard Schulz
- Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| |
Collapse
|
20
|
Zhang M, Hu H, Zhang X, Lu W, Lim J, Eysteinsson T, Jacobson KA, Laties AM, Mitchell CH. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells. Neurochem Int 2009; 56:35-41. [PMID: 19723551 DOI: 10.1016/j.neuint.2009.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 01/06/2023]
Abstract
The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Ophthalmology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee WK, Reichold M, Edemir B, Ciarimboli G, Warth R, Koepsell H, Thévenod F. Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule. Am J Physiol Renal Physiol 2009; 296:F1504-13. [DOI: 10.1152/ajprenal.90754.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The positively charged fluorescent dyes ethidium (Et+) and propidium (Pr2+) are widely used as DNA and necrosis markers. Et+is cytotoxic and mutagenic. The polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2), and OCT3 (SLC22A3) mediate electrogenic facilitated diffusion of small (≤500 Da) organic cations with broad specificities. In humans, OCT2 mediates basolateral uptake by kidney proximal tubules (PT), whereas in rodents OCT1/2 are involved. In mouse kidney, perfused Et+accumulated predominantly in the S2/S3 segments of the PT, but not Pr2+. In cells stably overexpressing human OCTs (hOCTs), Et+uptake was observed with Kmvalues of 0.8 ± 0.2 μM (hOCT1), 1.7 ± 0.5 μM (hOCT2), and 2.0 ± 0.5 μM (hOCT3), whereas Pr2+was not transported. Accumulation of Et+was inhibited by OCT substrates quinine, 3-methyl-4-phenylpyridinium (MPP+), cimetidine, and tetraethylammonium (TEA+). For hOCT1 and hOCT2, the IC50values for MPP+, TEA+, and cimetidine were higher than for inhibition of previously tested transported substrates. For hOCT2, the inhibition of Et+uptake by MPP+and cimetidine was shown to be competitive. Et+also inhibited transport of 0.1 μM [3H]MPP+by all hOCT isoforms with IC50values between 0.4 and 1.3 μM, and the inhibition of hOCT1-mediated uptake of MPP+by Et+was competitive. In Oct1/2−/−mice, Et+uptake in the PT was almost abolished. The data demonstrate that Et+is taken up avidly by the PT, which is mediated by OCT1 and/or OCT2. Considering the high affinity of OCTs for Et+and their strong expression in various organs, strict safety guidelines for Et+handling should be reinforced.
Collapse
|
22
|
Protection against chronic hypoperfusion-induced retinal neurodegeneration by PARP inhibition via activation of PI-3-kinase Akt pathway and suppression of JNK and p38 MAP kinases. Neurotox Res 2009; 16:68-76. [PMID: 19526300 DOI: 10.1007/s12640-009-9049-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) activation is considered as a major regulator of cell death in various pathophysiological conditions, however, no direct information is available about its role in chronic hypoperfusion-induced neuronal death. Here, we provide evidence for the protective effect of PARP inhibition on degenerative retinal damage induced by bilateral common carotid artery occlusion (BCCAO), an adequate chronic hypoperfusion murine model. We found that BCCAO in adult male Wistar rats led to severe degeneration of all retinal layers that was attenuated by a carboxaminobenzimidazol-derivative PARP inhibitor (HO3089) administered unilaterally into the vitreous body immediately following carotid occlusion and then 4 times in a 2-week-period. Normal morphological structure of the retina was preserved and the thickness of the retinal layers was increased in HO3089-treated eyes compared to the BCCAO eyes. For Western blot studies, HO3089 was administered immediately after BCCAO and retinas were removed 4 h later. According to Western blot analysis utilizing phosphorylation-specific primary antibodies, besides activating poly-ADP-ribose (PAR) synthesis, BCCAO induced phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). HO3089 inhibited PAR synthesis, and decreased the phosphorylation of these proapoptotic MAPKs. In addition, HO3089 treatment induced phosphorylation, that is activation, of the protective Akt/glycogen synthase kinase (GSK)-3beta and extracellular signal-regulated kinase (ERK1/2) signaling pathways. These data indicate that PARP activation has a major role in mediating chronic hypoperfusion-induced neuronal death, and inhibition of the enzyme prevents the pathological changes both in the morphology and the kinase signaling cascades involved. These results identify PARP inhibition as a possible molecular target in the clinical management of chronic hypoperfusion-induced neurodegenerative diseases including ocular ischemic syndrome.
Collapse
|
23
|
Goebel DJ. Selective blockade of CaMKII-α inhibits NMDA-induced caspase-3-dependent cell death but does not arrest PARP-1 activation or loss of plasma membrane selectivity in rat retinal neurons. Brain Res 2009; 1256:190-204. [DOI: 10.1016/j.brainres.2008.12.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 12/12/2008] [Accepted: 12/12/2008] [Indexed: 01/08/2023]
|
24
|
Seki M, Lipton SA. Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma. PROGRESS IN BRAIN RESEARCH 2008; 173:495-510. [DOI: 10.1016/s0079-6123(08)01134-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Paquet-Durand F, Silva J, Talukdar T, Johnson LE, Azadi S, van Veen T, Ueffing M, Hauck SM, Ekström PAR. Excessive activation of poly(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci 2007; 27:10311-9. [PMID: 17881537 PMCID: PMC6672664 DOI: 10.1523/jneurosci.1514-07.2007] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited blinding disease for which there is no treatment available. It is characterized by a progressive and neurodegenerative loss of photoreceptors but the underlying mechanisms are poorly understood. Excessive activation of the enzyme poly(ADP-ribose) polymerase (PARP) has recently been shown to be involved in several neuropathologies. To investigate the possible role of PARP in retinal photoreceptor degeneration, we used the retinal degeneration 1 (rd1) mouse RP model to study PARP expression, PARP activity, and to test the effects of PARP inhibition on photoreceptor viability. PARP expression was found to be equal between rd1 and wild-type counterpart retinas. In contrast to this, a dramatic increase in both PARP activity per se and PARP product formation was detected by in situ assays in rd1 photoreceptors actively undergoing cell death. Furthermore, PARP activity colabeled with oxidatively damaged DNA and nuclear translocation of AIF (apoptosis-inducing factor), suggesting activation of PARP as a bridge between these events in the degenerating photoreceptors. The PARP-specific inhibitor PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide x HCl[ reduced the number of cells exhibiting death markers in a short-term retinal culture paradigm, a protective effect that was translated into an increased number of surviving photoreceptors when the inhibitor was used in a long-term culture setting. Our results thus demonstrate an involvement of PARP activity in rd1 photoreceptor cell death, which could have a bearing on the understanding of neurodegenerations as such. The findings also suggest that the therapeutical possibilities of PARP inhibition should include retinal diseases like RP.
Collapse
|