1
|
Bastien K, Muckle G, Ayotte P, Dodge NC, Jacobson JL, Jacobson SW, Saint-Amour D. Developmental exposure to legacy environmental contaminants, medial temporal lobe volumes and spatial navigation memory in late adolescents. ENVIRONMENTAL RESEARCH 2025; 268:120830. [PMID: 39800296 DOI: 10.1016/j.envres.2025.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Exposure to lead, mercury, and polychlorinated biphenyls (PCBs) has been causally linked to spatial memory deficits and hippocampal changes in animal models. The Inuit community in Northern Canada is exposed to higher concentrations of these contaminants compared to the general population. This study aimed to 1) investigate associations between prenatal and current contaminant exposures and medial temporal brain volumes in Inuit late adolescents; 2) examine the relationship between these brain structures and spatial memory; and 3) assess the mediating role of brain structures in the association between contaminant exposure and spatial memory. Prenatal and current exposures were assessed from blood samples collected at birth and at the time of testing in 71 participants aged 16-22. Volumetric measurements of the hippocampi, entorhinal, and parahippocampal cortices from T1-weighted images were obtained using the Automatic Segmentation of Hippocampal Subfields method. Spatial navigation memory was evaluated using a computerized Morris Water Maze task. Prenatal lead exposure was associated with a smaller left hippocampal volume (β = -0.30, 95% CI = -0.56, -0.05), while current mercury (β = -0.34, 95% CI = -0.62, -0.06) and PCB-153 (β = -0.36, 95% CI = -0.70, -0.01) exposures were linked to a smaller left entorhinal cortex. The volume of the left entorhinal cortex positively correlated with spatial navigation memory performance (β = 0.26, 95% CI = 0.01, 0.51). These findings suggest specific windows of brain vulnerability to these contaminants, with the entorhinal cortex playing a key role in spatial navigation memory and potentially mediating the effects of exposure.
Collapse
Affiliation(s)
- Kevin Bastien
- Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Gina Muckle
- École de Psychologie, Université Laval, Pavillon Félix-Antoine-Savard, Local 1116, 2325, Rue des Bibliothèques, Québec, Québec, G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, 2400 Av. D'Estimauville, Québec, Québec, G1E 6W2, Canada
| | - Pierre Ayotte
- Département de Médecine Sociale et Préventive, Université Laval, Pavillon Ferdinand-Vandry, 1050, Avenue de La Médecine, Local 4889, Québec, Québec, G1V 0A6, Canada
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit MI 48201-2167, USA
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit MI 48201-2167, USA
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit MI 48201-2167, USA
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de La Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| |
Collapse
|
2
|
Enogieru AB, Olisah EC. Upregulation of caspase-3, oxidative stress, neurobehavioural and histological alterations in mercury chloride-exposed rats: role of aqueous Allium sativum bulb extract. J Mol Histol 2024; 56:20. [PMID: 39627442 DOI: 10.1007/s10735-024-10318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Mercury is a highly toxic metal that causes a variety of neurological disorders through oxidative stress. Allium sativum, a cooking spice in diverse cultures around the world, has a long history of medicinal use due to its rich antioxidant constituents. This study was designed to evaluate the protective activity of aqueous Allium sativum bulb extract (ASBE) on mercuric chloride (HgCl2)-induced neurotoxicity. Forty Wistar rats were randomly divided into five groups namely I (control), II (HgCl2; 4 mg/kg), III (250 mg/kg of ASBE and 4 mg/kg of HgCl2), IV (500 mg/kg of ASBE and 4 mg/kg of HgCl2) and V (500 mg/kg of Vitamin E and 4 mg/kg of HgCl2). At the end of the administration, neurobehavioural, antioxidant enzymes, lipid peroxidation and apoptotic activities as well as the histology of the cerebrum, cerebellum and hippocampus were assessed. Body and brain weights, locomotion, exploration, cognition, memory and antioxidant enzymes were significantly impaired (p < 0.05) in HgCl2-exposed rats following comparison to control. Lipid peroxidation, mercury concentration and caspase-3 activity were significantly upregulated (p < 0.05) in HgCl2-exposed rats following comparison to control. In addition, significant alterations to the histology of the cerebrum, cerebellum and hippocampus were observed in the HgCl2-exposed rats. Conversely, the adverse effects induced by HgCl2 were significantly attenuated (p < 0.05) following ASBE and Vitamin E pretreatment. Taken together, these results suggest that ABSE exerts its neuroprotective activity through its potent antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Adaze Bijou Enogieru
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin, Edo State, Nigeria.
| | | |
Collapse
|
3
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
4
|
Rustom NY, Reynolds JN. Developmental exposure to methylmercury alters GAD67 immunoreactivity and morphology of endothelial cells and capillaries of midbrain and hindbrain regions of adult rat offspring. Neurotoxicol Teratol 2024; 101:107320. [PMID: 38199312 DOI: 10.1016/j.ntt.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Methylmercury (MeHg) is an environmental contaminant that is of particular concern in Northern Arctic Canadian populations. Specifically, organic mercury compounds such as MeHg are potent toxicants that affect multiple bodily systems including the nervous system. Developmental exposure to MeHg is a major concern, as the developing fetus and neonate are thought to be especially vulnerable to the toxic effects of MeHg. The objective of this study was to examine developmental exposure to low doses of MeHg and effects upon the adult central nervous system (CNS). The doses of MeHg chosen were scaled to be proportional to the concentrations of MeHg that have been reported in human maternal blood samples in Northern Arctic Canadian populations. METHOD Offspring were exposed to MeHg maternally where pregnant Sprague Dawley rats were fed cookies that contained MeHg or vehicle (vehicle corn oil; MeHg 0.02 mg/kg/body weight or 2.0 mg/kg/body weight) daily, throughout gestation (21 days) and lactation (21 days). Offspring were not exposed to MeHg after the lactation period and were euthanized on postnatal day 450. Brains were extracted, fixed, frozen, and sectioned for immunohistochemical analysis. A battery of markers of brain structure and function were selected including neuronal GABAergic enzymatic marker glutamic acid decarboxylase-67 (GAD67), apoptotic/necrotic marker cleaved caspase-3 (CC3), catecholamine marker tyrosine hydroxylase (TH), immune inflammatory marker microglia (Cd11b), endothelial cell marker rat endothelial cell antigen-1 (RECA-1), doublecortin (DCX), Bergmann glia (glial fibrillary acidic protein (GFAP)), and general nucleic acid and cellular stains Hoechst, and cresyl violet, respectively. Oxidative stress marker lipofuscin (autofluorescence) was also assessed. Both male and female offspring were included in analysis. Two-way analysis of variance (ANOVA) was utilized where sex and treatment were considered as between-subject factors (p* <0.05). ImageJ was used to assess immunohistochemical results. RESULTS In comparison with controls, adult rat offspring exposed to both doses of MeHg were observed to have (1) increased GAD67 in the cerebellum; (2) decreased lipofuscin in the locus coeruleus; and (3) decreased GAD67 in the anterior CA1 region. Furthermore, in the substantia nigra and periaqueductal gray, adult male offspring consistently had a larger endothelial cell and capillary perimeter in comparison to females. The maternal high dose of MeHg influenced RECA-1 immunoreactivity in both the substantia nigra and periaqueductal gray of adult rat offspring, where the latter neuronal region also showed statistically significant decreases in RECA-1 immunoreactivity at the maternal low dose exposure level. Lastly, males exposed to high doses of MeHg during development exhibited a statistically significant increase in the perimeter of endothelial cells and capillaries (RECA-1) in the cerebellum, in comparison to male controls. CONCLUSION Findings suggest that in utero and early postnatal exposure to MeHg at environmentally relevant doses leads to long-lasting and selective changes in the CNS. Exposure to MeHg at low doses may affect GABAergic homeostasis and vascular integrity of the CNS. Such changes may contribute to neurological disturbances in learning, cognition, and memory that have been reported in epidemiological studies.
Collapse
Affiliation(s)
- Nazneen Y Rustom
- Centre for Neuroscience Studies and Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - James N Reynolds
- Centre for Neuroscience Studies and Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
5
|
Brittain CN, Bessler AM, Elgin AS, Layko RB, Park S, Still SE, Wada H, Swaddle JP, Cristol DA. Mercury causes degradation of spatial cognition in a model songbird species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115483. [PMID: 37717355 DOI: 10.1016/j.ecoenv.2023.115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Mercury is a widespread pollutant of increasing global concern that exhibits a broad range of deleterious effects on organisms, including birds. Because the developing brain is well-known to be particularly vulnerable to the neurotoxic insults of mercury, many studies have focused on developmental effects such as on the embryonic brain and resulting behavioral impairment in adults. It is not well understood how the timing of exposure, for example exclusively in ovo versus throughout life, influences the impact of mercury. Using dietary exposure to environmentally relevant methylmercury concentrations, we examined the role that timing and duration of exposure play on spatial learning and memory in a model songbird species, the domesticated zebra finch (Taeniopygia guttata castanotis). We hypothesized that developmental exposure was both necessary and sufficient to disrupt spatial memory in adult finches. We documented profound disruption of memory for locations of hidden food at two spatial scales, cage- and room-sized enclosures, but found that both developmental and ongoing adult exposure were required to exhibit this behavioral impairment. Methylmercury-exposed birds made more mistakes before mastering the spatial task, because they revisited unrewarded locations repeatedly even after discovering the rewarded location. Contrary to our prediction, hippocampal volume was not affected in birds exposed to methylmercury over their lifetimes. The disruption of spatial cognition that we detected is severe and would likely have implications for survival and reproduction in wild birds; however, it appears that individuals that disperse or migrate from a contaminated site might recover later in life if no longer exposed to the toxicant.
Collapse
Affiliation(s)
- Cara N Brittain
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Amanda M Bessler
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Andrew S Elgin
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Rachel B Layko
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Sumin Park
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shelby E Still
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - John P Swaddle
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA; Institute for Integrative Conservation, William & Mary, Williamsburg, VA 23185, USA
| | - Daniel A Cristol
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
6
|
Loan A, Leung JWH, Cook DP, Ko C, Vanderhyden BC, Wang J, Chan HM. Prenatal low-dose methylmercury exposure causes premature neuronal differentiation and autism-like behaviors in a rodent model. iScience 2023; 26:106093. [PMID: 36843845 PMCID: PMC9947313 DOI: 10.1016/j.isci.2023.106093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Aberrant neurodevelopment is a core deficit of autism spectrum disorder (ASD). Here we ask whether a non-genetic factor, prenatal exposure to the environmental pollutant methylmercury (MeHg), is a contributing factor in ASD onset. We showed that adult mice prenatally exposed to non-apoptotic MeHg exhibited key ASD characteristics, including impaired communication, reduced sociability, and increased restrictive repetitive behaviors, whereas in the embryonic cortex, prenatal MeHg exposure caused premature neuronal differentiation. Further single-cell RNA sequencing (scRNA-seq) analysis disclosed that prenatal exposure to MeHg resulted in cortical radial glial precursors (RGPs) favoring asymmetric differentiation to directly generate cortical neurons, omitting the intermediate progenitor stage. In addition, MeHg exposure in cultured RGPs increased CREB phosphorylation and enhanced the interaction between CREB and CREB binding protein (CBP). Intriguingly, metformin, an FDA-approved drug, can reverse MeHg-induced premature neuronal differentiation via CREB/CBP repulsion. These findings provide insights into ASD etiology, its underlying mechanism, and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joseph Wai-Hin Leung
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Chelsea Ko
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Hing Man Chan
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Hossain MM, Belkadi A, Zhou X, DiCicco-Bloom E. Exposure to deltamethrin at the NOAEL causes ER stress and disruption of hippocampal neurogenesis in adult mice. Neurotoxicology 2022; 93:233-243. [DOI: 10.1016/j.neuro.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
|
8
|
Pan J, Wei Y, Ni L, Li X, Deng Y, Xu B, Yang T, Sun J, Liu W. Unbalanced ER-mitochondrial calcium homeostasis promotes mitochondrial dysfunction and associated apoptotic pathways activation in methylmercury exposed rat cortical neurons. J Biochem Mol Toxicol 2022; 36:e23136. [PMID: 35678294 DOI: 10.1002/jbt.23136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
Methylmercury (MeHg) is a cumulative environmental pollutant that can easily cross the blood-brain barrier and cause damage to the brain, mainly targeting the central nervous system. The purpose of this study is to investigate the role of calcium ion (Ca2+ ) homeostasis between the endoplasmic reticulum (ER) and mitochondria in MeHg-induced neurotoxicity. Rat primary cortical neurons exposed to MeHg (0.25-1 μm) underwent dose-dependent cell damage, accompanied by increased Ca2+ release from the ER and elevated levels of free Ca2+ in cytoplasm and mitochondria. MeHg also increased the protein and messenger RNA expressions of the inositol 1,4,5-triphosphate receptor, ryanodine receptor 2, and mitochondrial calcium uniporter. Ca2+ channel inhibitors 2-aminoethyl diphenylborinate and procaine reduced the release of Ca2+ from ER, while RR and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate inhibited Ca2+ uptake from mitochondria. In addition, pretreatment with Ca2+ chelator BAPTA-AM effectively restored mitochondrial membrane potential levels, inhibited over opening of mitochondrial permeability transition pore, and maintained mitochondrial function stability. Meanwhile, the expression of mitochondrial apoptosis-related proteins recovered to some extent, along with the reduction of the early apoptosis ratio. These results suggest that Ca2+ homeostasis plays an essential role in mitochondrial damage and apoptosis induced by MeHg, which may be one of the important mechanisms of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Jingyi Sun
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
9
|
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol 2022; 35:43-58. [PMID: 34989572 DOI: 10.1021/acs.chemrestox.1c00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury (Hg) is a toxic heavy-metal element, which can be enriched in fauna and flora and transformed into methylmercury (MeHg). MeHg is a widely distributed environmental pollutant that may be harmful to fish-eating populations through enrichment of aquatic food chains. The central nervous system is a primary target of MeHg. Embryos and infants are more sensitive to MeHg, and exposure to MeHg during gestational feeding can significantly impair the homeostasis of offspring, leading to long-term neurodevelopmental defects. At present, MeHg-induced neurodevelopmental toxicity has become a hotspot in the field of neurotoxicology, but its mechanisms are not fully understood. Some evidence point to oxidative damage, excitotoxicity, calcium ion imbalance, mitochondrial dysfunction, epigenetic changes, and other molecular mechanisms that play important roles in MeHg-induced neurodevelopmental toxicity. In this review, advances in the study of neurodevelopmental toxicity of MeHg exposure during pregnancy and the molecular mechanisms of related pathways are summarized, in order to provide more scientific basis for the study of neurodevelopmental toxicity of MeHg.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| |
Collapse
|
10
|
Hossain MM, Belkadi A, Al-Haddad S, Richardson JR. Deltamethrin Exposure Inhibits Adult Hippocampal Neurogenesis and Causes Deficits in Learning and Memory in Mice. Toxicol Sci 2021; 178:347-357. [PMID: 32976580 DOI: 10.1093/toxsci/kfaa144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deficits in learning and memory are often associated with disruption of hippocampal neurogenesis, which is regulated by numerous processes, including precursor cell proliferation, survival, migration, and differentiation to mature neurons. Recent studies demonstrate that adult born neurons in the dentate gyrus (DG) in the hippocampus can functionally integrate into the existing neuronal circuitry and contribute to hippocampal-dependent learning and memory. Here, we demonstrate that relatively short-term deltamethrin exposure (3 mg/kg every 3 days for 1 month) inhibits adult hippocampal neurogenesis and causes deficits in learning and memory in mice. Hippocampal-dependent cognitive functions were evaluated using 2 independent hippocampal-dependent behavioral tests, the novel object recognition task and Morris water maze. We found that deltamethrin-treated mice exhibited profound deficits in novel object recognition and learning and memory in water maze. Deltamethrin exposure significantly decreased bromodeoxyuridine (BrdU)-positive cells (39%) and Ki67+ cells (47%) in the DG of the hippocampus, indicating decreased cellular proliferation. In addition, deltamethrin-treated mice exhibited a 44% decrease in nestin-expressing neural progenitor cells and a 38% reduction in the expression of doublecortin (DCX), an early neuronal differentiation marker. Furthermore, deltamethrin-exposed mice exhibited a 25% reduction in total number of granule cells in the DG. These findings indicate that relatively short-term exposure to deltamethrin causes significant deficits in hippocampal neurogenesis that is associated with impaired learning and memory.
Collapse
Affiliation(s)
- Muhammad M Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Abdelmadjid Belkadi
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Sara Al-Haddad
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| |
Collapse
|
11
|
Ferrer B, Suresh H, Santamaria A, Rocha JB, Bowman AB, Aschner M. The antioxidant role of STAT3 in methylmercury-induced toxicity in mouse hypothalamic neuronal GT1-7 cell line. Free Radic Biol Med 2021; 171:245-259. [PMID: 34010664 PMCID: PMC8217327 DOI: 10.1016/j.freeradbiomed.2021.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022]
Abstract
Oxidative stress, impairment of antioxidant defenses, and disruption of calcium homeostasis are associated with the toxicity of methylmercury (MeHg). Yet, the relative contribution and interdependence of these effects and other molecular mechanisms that mediate MeHg-induced neurotoxicity remain uncertain. The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates the expression of anti-apoptotic and cell cycle progression genes. In addition to its role in cell growth and survival, STAT3 regulates redox homeostasis and prevents oxidative stress by the modulation of nuclear genes that encode for electron transport complexes (ETC) and antioxidant enzymes. Here we tested the hypothesis that STAT3 contributes to the orchestration of the antioxidant defense response against MeHg injury. We show that MeHg (>1 μM) exposure induced STAT3 activation within 1 h and beyond in mouse hypothalamic neuronal GT1-7 cells in a concentration-and time-dependent manner. Pharmacological inhibition of STAT3 phosphorylation exacerbated MeHg-induced reactive oxygen species (ROS) production and antioxidant responses. Finally, treatment with the antioxidant Trolox demonstrated that MeHg-induced STAT3 activation is mediated, at least in part, by MeHg-induced ROS generation. Combined, our results demonstrated a role for the STAT3 signaling pathway as an early response to MeHg-induced oxidative stress.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Harshini Suresh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - João Batista Rocha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
12
|
Abbott LC, Nigussie F. Mercury Toxicity and Neurogenesis in the Mammalian Brain. Int J Mol Sci 2021; 22:ijms22147520. [PMID: 34299140 PMCID: PMC8305137 DOI: 10.3390/ijms22147520] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
The mammalian brain is formed from billions of cells that include a wide array of neuronal and glial subtypes. Neural progenitor cells give rise to the vast majority of these cells during embryonic, fetal, and early postnatal developmental periods. The process of embryonic neurogenesis includes proliferation, differentiation, migration, the programmed death of some newly formed cells, and the final integration of differentiated neurons into neural networks. Adult neurogenesis also occurs in the mammalian brain, but adult neurogenesis is beyond the scope of this review. Developing embryonic neurons are particularly susceptible to neurotoxicants and especially mercury toxicity. This review focused on observations concerning how mercury, and in particular, methylmercury, affects neurogenesis in the developing mammalian brain. We summarized information on models used to study developmental mercury toxicity, theories of pathogenesis, and treatments that could be used to reduce the toxic effects of mercury on developing neurons.
Collapse
Affiliation(s)
- Louise C. Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
- Correspondence: ; Tel.: +1-541-254-0779
| | - Fikru Nigussie
- College of Veterinary Medicine, Oregon State University, 700 SW 30th Street, Corvallis, OR 97331, USA;
| |
Collapse
|
13
|
Novo JP, Martins B, Raposo RS, Pereira FC, Oriá RB, Malva JO, Fontes-Ribeiro C. Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. Int J Mol Sci 2021; 22:ijms22063101. [PMID: 33803585 PMCID: PMC8003103 DOI: 10.3390/ijms22063101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Methylmercury (MeHg) toxicity is a major environmental concern. In the aquatic reservoir, MeHg bioaccumulates along the food chain until it is consumed by riverine populations. There has been much interest in the neurotoxicity of MeHg due to recent environmental disasters. Studies have also addressed the implications of long-term MeHg exposure for humans. The central nervous system is particularly susceptible to the deleterious effects of MeHg, as evidenced by clinical symptoms and histopathological changes in poisoned humans. In vitro and in vivo studies have been crucial in deciphering the molecular mechanisms underlying MeHg-induced neurotoxicity. A collection of cellular and molecular alterations including cytokine release, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate dyshomeostasis, and cell death mechanisms are important consequences of brain cells exposure to MeHg. The purpose of this review is to organize an overview of the mercury cycle and MeHg poisoning events and to summarize data from cellular, animal, and human studies focusing on MeHg effects in neurons and glial cells. This review proposes an up-to-date compendium that will serve as a starting point for further studies and a consultation reference of published studies.
Collapse
Affiliation(s)
- João P. Novo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Beatriz Martins
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Ramon S. Raposo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Experimental Biology Core, University of Fortaleza, Health Sciences, Fortaleza 60110-001, Brazil
| | - Frederico C. Pereira
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil;
| | - João O. Malva
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| | - Carlos Fontes-Ribeiro
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| |
Collapse
|
14
|
Abdelzaher LA, Hussein OA, Ashry IEM. The Novel Potential Therapeutic Utility of Montelukast in Alleviating Autistic Behavior Induced by Early Postnatal Administration of Thimerosal in Mice. Cell Mol Neurobiol 2021; 41:129-150. [PMID: 32303879 PMCID: PMC11448635 DOI: 10.1007/s10571-020-00841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM: Thimerosal (THIM) is a mercury-containing preservative widely used in many biological and medical products including many vaccines. It has been accused of being a possible etiological factor for some neurodevelopmental disorders such as autistic spectrum disorders (ASDs). In our study, the potential therapeutic effect of montelukast, a leukotriene receptor antagonist used to treat seasonal allergies and asthma, on THIM mice model (ASDs model) was examined. METHODOLOGY Newborn mice were randomly distributed into three groups: (Group 1) Control (Cont.) group received saline injections. (Group 2) THIM-treated (THIM) group received THIM intramuscular (IM) at a dose of 3000 μg Hg/kg on postnatal days 7, 9, 11, and 15. (Group 3) Montelukast-treated (Monte) group received THIM followed by montelukast sodium (10 mg/kg/day) intraperitoneal (IP) for 3 weeks. Mice were evaluated for growth development, social interactions, anxiety, locomotor activity, and cognitive function. Brain histopathology, alpha 7 nicotinic acetylcholine receptors (α7nAChRs), nuclear factor kappa B p65 (NF-κB p65), apoptotic factor (Bax), and brain injury markers were evaluated as well. RESULTS THIIM significantly impaired social activity and growth development. Montelukast mitigated THIM-induced social deficit probably through α7nAChRs upregulation, NF-κB p65, Bax, and brain injury markers downregulation, thus suppressing THIM-induced neuronal toxicity and inflammation. CONCLUSION Neonatal exposure to THIM can induce growth retardation and abnormal social interactions similar to those observed in ASDs. Some of these abnormalities could be ameliorated by montelukast via upregulation of α7nAChRs that inhibited NF-κB activation and significant suppression of neuronal injury and the associated apoptosis.
Collapse
Affiliation(s)
- Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - I E M Ashry
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Methylmercury, oxidative stress, and neurodegeneration. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Xie J, Wettschurack K, Yuan C. Review: In vitro Cell Platform for Understanding Developmental Toxicity. Front Genet 2020; 11:623117. [PMID: 33424939 PMCID: PMC7785584 DOI: 10.3389/fgene.2020.623117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Developmental toxicity and its affiliation to long-term health, particularly neurodegenerative disease (ND) has attracted significant attentions in recent years. There is, however, a significant gap in current models to track longitudinal changes arising from developmental toxicity. The advent of induced pluripotent stem cell (iPSC) derived neuronal culture has allowed for more complex and functionally active in vitro neuronal models. Coupled with recent progress in the detection of ND biomarkers, we are equipped with promising new tools to understand neurotoxicity arising from developmental exposure. This review provides a brief overview of current progress in neuronal culture derived from iPSC and in ND markers.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kyle Wettschurack
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Raposo RDS, Pinto DV, Moreira R, Dias RP, Fontes Ribeiro CA, Oriá RB, Malva JO. Methylmercury Impact on Adult Neurogenesis: Is the Worst Yet to Come From Recent Brazilian Environmental Disasters? Front Aging Neurosci 2020; 12:591601. [PMID: 33328968 PMCID: PMC7719787 DOI: 10.3389/fnagi.2020.591601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Worldwide environmental tragedies of anthropogenic origin causing massive release of metals and other pollutants have been increasing considerably. These pollution outbreaks affect the ecosystems and impact human health. Among those tragedies, recent large-scale environmental disasters in Brazil strongly affected riverside populations, leading to high-risk exposure to methylmercury (MeHg). MeHg is highly neurotoxic to the developing brain. This toxicant causes neural stem cell dysfunction and neurodevelopmental abnormalities. However, less is known about the effects of MeHg in the postnatal neurogenic niche, which harbors neural stem cells and their progeny, in the adult brain. Therefore, taking in consideration the impact of MeHg in human health it is urgent to clarify possible associations between exposure to mercury, accelerated cognitive decline, and neurodegenerative diseases. In this perspectives paper, we discuss the neurotoxic mechanisms of MeHg on postnatal neurogenesis and the putative implications associated with accelerated brain aging and early-onset cognitive decline in populations highly exposed to this environmental neurotoxicant.
Collapse
Affiliation(s)
- Ramon da Silva Raposo
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB) and Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Experimental Biology Core, Health Sciences Center, University of Fortaleza, Fortaleza, Brazil
| | - Daniel Vieira Pinto
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ricardo Moreira
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB) and Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Ronaldo Pereira Dias
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Carlos Alberto Fontes Ribeiro
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB) and Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - João Oliveira Malva
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB) and Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Pinto DV, Raposo RS, Matos GA, Alvarez-Leite JI, Malva JO, Oriá RB. Methylmercury Interactions With Gut Microbiota and Potential Modulation of Neurogenic Niches in the Brain. Front Neurosci 2020; 14:576543. [PMID: 33224022 PMCID: PMC7670038 DOI: 10.3389/fnins.2020.576543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Daniel V Pinto
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ramon S Raposo
- Experimental Biology Core, University of Fortaleza, Fortaleza, Brazil
| | - Gabriella A Matos
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João O Malva
- Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Reinaldo B Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
19
|
Bittencourt LO, Dionizio A, Nascimento PC, Puty B, Leão LKR, Luz DA, Silva MCF, Amado LL, Leite A, Buzalaf MR, Crespo-Lopez ME, Maia CSF, Lima RR. Proteomic approach underlying the hippocampal neurodegeneration caused by low doses of methylmercury after long-term exposure in adult rats. Metallomics 2020; 11:390-403. [PMID: 30525157 DOI: 10.1039/c8mt00297e] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methylmercury (MeHg) is an important toxicant that causes cognitive dysfunctions in humans. This study aimed to investigate the proteomic and biochemical alterations of the hippocampus associated with behavioural consequences of low doses of MeHg in a long-term exposure model, and to realistically mimic in vivo the result of human exposure to this toxicant. Adult Wistar male rats were exposed to a dose of MeHg at 0.04 mg kg-1 day-1 by gavage for 60 days. Total mercury (Hg) content was significantly increased in the hippocampal parenchyma. The increase in the Hg levels was capable of reducing neuron and astrocyte cell density in the CA1, CA3, hilus and dentate gyrus regions, increasing both malondialdehyde and nitrite levels and decreasing antioxidant capacity against peroxyl radicals. The proteomic analysis detected 1041 proteins with altered expression due to MeHg exposure, including 364 proteins with no expression, 295 proteins with de novo expression and 382 proteins with up- or down-regulated expression. This proteomic approach revealed alterations in pathways related to chemical synapses, metabolism, amino acid transport, cell energy, neurodegenerative processes and myelin maintenance. Therefore, even at low doses of MeHg exposure, it is possible to cause hippocampal damage in adult rats at many organisational levels, triggering oxidative stress and proteome misbalance, featuring a neurodegenerative process and culminating in long- and short-term memory and learning deficits.
Collapse
Affiliation(s)
- Leonardo Oliveira Bittencourt
- Laboratory of Structural and Functional Biology, Institute of Biological Sciences, Federal University of Pará, No 125, Augusto Corrêa Street N. 01, Guamá, 66075-900, Belém, Pará, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Aaseth J, Wallace DR, Vejrup K, Alexander J. Methylmercury and developmental neurotoxicity: A global concern. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Siblerud R, Mutter J, Moore E, Naumann J, Walach H. A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E5152. [PMID: 31861093 PMCID: PMC6950077 DOI: 10.3390/ijerph16245152] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022]
Abstract
Mercury is one of the most toxic elements and causes a multitude of health problems. It is ten times more toxic to neurons than lead. This study was created to determine if mercury could be causing Alzheimer's disease (AD) by cross referencing the effects of mercury with 70 factors associated with AD. The results found that all these factors could be attributed to mercury. The hallmark changes in AD include plaques, beta amyloid protein, neurofibrillary tangles, phosphorylated tau protein, and memory loss-all changes that can be caused by mercury. Neurotransmitters such as acetylcholine, serotonin, dopamine, glutamate, and norepinephrine are inhibited in patients with Alzheimer's disease, with the same inhibition occurring in mercury toxicity. Enzyme dysfunction in patients with Alzheimer's disease include BACE 1, gamma secretase, cyclooxygenase-2, cytochrome-c-oxidase, protein kinases, monoamine oxidase, nitric oxide synthetase, acetyl choline transferase, and caspases, all which can be explained by mercury toxicity. Immune and inflammatory responses seen in patients with Alzheimer's disease also occur when cells are exposed to mercury, including complement activation, cytokine expression, production of glial fibrillary acid protein antibodies and interleukin-1, transforming growth factor, beta 2 microglobulins, and phosphodiesterase 4 stimulation. Genetic factors in patients with Alzheimer's disease are also associated with mercury. Apolipoprotein E 4 allele increases the toxicity of mercury. Mercury can inhibit DNA synthesis in the hippocampus, and has been associated with genetic mutations of presenilin 1 and 2, found in AD. The abnormalities of minerals and vitamins, specifically aluminum, calcium, copper, iron, magnesium, selenium, zinc, and vitamins B1, B12, E, and C, that occur in patients with Alzheimer's disease, also occur in mercury toxicity. Aluminum has been found to increase mercury's toxicity. Likewise, similar biochemical factors in AD are affected by mercury, including changes in blood levels of homocysteine, arachidonic acid, DHEA sulfate, glutathione, hydrogen peroxide, glycosamine glycans, acetyl-L carnitine, melatonin, and HDL. Other factors seen in Alzheimer's disease, such as increased platelet activation, poor odor identification, hypertension, depression, increased incidences of herpes virus and chlamydia infections, also occur in mercury exposure. In addition, patients diagnosed with Alzheimer's disease exhibit higher levels of brain mercury, blood mercury, and tissue mercury in some studies. The greatest exogenous sources of brain mercury come from dental amalgams. Conclusion: This review of the literature strongly suggests that mercury can be a cause of Alzheimer's Disease.
Collapse
Affiliation(s)
- Robert Siblerud
- Rocky Mountain Research Institute, 9435 Olsen Court, Wellington, CO 80549, USA
| | | | - Elaine Moore
- Memorial Hospital, Colorado Springs, CO 80549 (Retired), USA;
| | - Johannes Naumann
- European Institute for Physical Therapy and Balneology, Stadtsr 7, D-79104 Freiburg, Germany;
| | - Harald Walach
- Department of Psychology, University Witten-Herdecke, 58455 Witten, Germany;
| |
Collapse
|
22
|
Reardon AJF, Karathra J, Ribbenstedt A, Benskin JP, MacDonald AM, Kinniburgh DW, Hamilton TJ, Fouad K, Martin JW. Neurodevelopmental and Metabolomic Responses from Prenatal Coexposure to Perfluorooctanesulfonate (PFOS) and Methylmercury (MeHg) in Sprague-Dawley Rats. Chem Res Toxicol 2019; 32:1656-1669. [PMID: 31340646 DOI: 10.1021/acs.chemrestox.9b00192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methylmercury (MeHg) and perfluorooctanesulfonate (PFOS) are major contaminants of human blood that are both common in dietary fish, thereby raising questions about their combined impact on human development. Here, pregnant Sprague-Dawley rats ingested a daily dose, from gestational day 1 through to weaning, of either 1 mg/kg bw PFOS (PFOS-only), 1 mg/kg MeHg (MeHg-only), a mixture of 0.1 mg/kg PFOS and 1 mg/kg MeHg (Low-Mix), or of 1 mg/kg of PFOS and 1 mg/kg MeHg (High-Mix). Newborns were monitored for physical milestones and reflexive developmental responses, and in juveniles the spontaneous activity, anxiety, memory, and cognition were assessed. Targeted metabolomics of 199 analytes was applied to sectioned brain regions of juvenile offspring. Newborns in the High-Mix group had decreased weight gain as well as delayed reflexes and innate behavioral responses compared to controls and individual chemical groups indicating a toxicological interaction on early development. In juveniles, cumulative mixture effects increased in a dose-dependent manner in tests of anxiety-like behavior. However, other developmental test results suggested antagonism, as PFOS-only and MeHg-only juveniles had increased hyperactivity and thigmotaxic behavior, respectively, but fewer effects in Low-Mix and High-Mix groups. Consistent with these behavioral observations, a pattern of antagonism was also observed in neurochemicals measured in rat cortex, as PFOS-only and MeHg-only juveniles had altered concentrations of metabolites (e.g., lipids, amino acids, and biogenic amines), while no changes were evident in the combined exposures. The cortical metabolites altered in PFOS-only and MeHg-only exposed groups are involved in inhibitory and excitatory neurotransmission. These proof-of-principle findings at relatively high doses indicate the potential for toxicological interaction between PFOS and MeHg, with developmental-stage specific effects. Future mixture studies at lower doses are warranted, and prospective human birth cohorts should consider possible confounding effects from PFOS and mercury exposure on neurodevelopment.
Collapse
Affiliation(s)
- Anthony J F Reardon
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Jacqueline Karathra
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Anton Ribbenstedt
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , Stockholm SE-11418 , Sweden
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , Stockholm SE-11418 , Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Trevor J Hamilton
- Department of Psychology , MacEwan University , Edmonton , Alberta T5J 4S2 , Canada
| | - Karim Fouad
- Department of Physical Therapy , University of Alberta , Edmonton , Alberta T6G 2G4 , Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada.,Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , Stockholm SE-11418 , Sweden
| |
Collapse
|
23
|
Kim W, Yoo DY, Jung HY, Kim JW, Hahn KR, Kwon HJ, Yoo M, Lee S, Nam SM, Yoon YS, Kim DW, Hwang IK. Leaf extracts from Dendropanax morbifera Léveille mitigate mercury-induced reduction of spatial memory, as well as cell proliferation, and neuroblast differentiation in rat dentate gyrus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:94. [PMID: 31046739 PMCID: PMC6498467 DOI: 10.1186/s12906-019-2508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/17/2019] [Indexed: 01/09/2023]
Abstract
Background The brain is susceptible to methylmercury toxicity, which causes irreversible damage to neurons and glia and the leaf extract Dendropanax morbifera Léveille (DML) has various biological functions in the nervous system. In this study, we examined the effects of DML on mercury-induced proliferating cells and differentiated neuroblasts. Methods Dimethylmercury (5 μg/kg) and galantamine (5 mg/kg) was administered intraperitoneally and/or DML (100 mg/kg) was orally to 7-week-old rats every day for 36 days. One hour after the treatment, novel object recognition test was examined. In addition, spatial probe tests were conducted on the 6th day after 5 days of continuous training in the Morris swim maze. Thereafter, the rats were euthanized for immunohistochemical staining analysis with Ki67 and doublecortin and measurement for acetylcholinesterase (AChE) activity. Results Dimethylmercury-treated rats showed reduced discrimination index in novel object recognition test and took longer to find the platform than did control group. Compared with dimethylmercury treatment alone, supplementation with DML or galatamine significantly ameliorated the reduction of discrimination index and reduced the time spent to find the platform. In addition, the number of platform crossings was lower in the dimethylmercury-treated group than in controls, while the administration of DML or galantamine significantly increased the number of crossings than did dimethylmercury treatment alone. Proliferating cells and differentiated neuroblasts, assessed by Ki67 and doublecortin immunohistochemical staining was significantly decreased in the dimethylmercury treated group versus controls. Supplementation with DML or galantamine significantly increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus. In addition, treatment with dimethylmercury significantly increased AChE activity in hippocampal homogenates, while treatment with dimethylmercury+DML or dimethylmercury+galantamine significantly ameliorated this increase. Conclusions These results suggest that DML may be a functional food that improves dimethylmercury-induced memory impairment and ameliorates dimethylmercury-induced reduction in proliferating cells and differentiated neuroblasts, and demonstrates corresponding activation of AChE activity in the dentate gyrus.
Collapse
|
24
|
Insights into the Potential Role of Mercury in Alzheimer's Disease. J Mol Neurosci 2019; 67:511-533. [PMID: 30877448 DOI: 10.1007/s12031-019-01274-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
Mercury (Hg), which is a non-essential element, is considered a highly toxic pollutant for biological systems even when present at trace levels. Elevated Hg exposure with the growing release of atmospheric pollutant Hg and rising accumulations of mono-methylmercury (highly neurotoxic) in seafood products have increased its toxic potential for humans. This review aims to highlight the potential relationship between Hg exposure and Alzheimer's disease (AD), based on the existing literature in the field. Recent reports have hypothesized that Hg exposure could increase the potential risk of developing AD. Also, AD is known as a complex neurological disorder with increased amounts of both extracellular neuritic plaques and intracellular neurofibrillary tangles, which may also be related to lifestyle and genetic variables. Research reports on AD and relationships between Hg and AD indicate that neurotransmitters such as serotonin, acetylcholine, dopamine, norepinephrine, and glutamate are dysregulated in patients with AD. Many researchers have suggested that AD patients should be evaluated for Hg exposure and toxicity. Some authors suggest further exploration of the Hg concentrations in AD patients. Dysfunctional signaling pathways in AD and Hg exposure appear to be interlinked with some driving factors such as arachidonic acid, homocysteine, dehydroepiandrosterone (DHEA) sulfate, hydrogen peroxide, glucosamine glycans, glutathione, acetyl-L carnitine, melatonin, and HDL. This evidence suggests the need for a better understanding of the relationship between AD and Hg exposure, and potential mechanisms underlying the effects of Hg exposure on regional brain functions. Also, further studies evaluating brain functions are needed to explore the long-term effects of subclinical and untreated Hg toxicity on the brain function of AD patients.
Collapse
|
25
|
Prince LM, Aschner M, Bowman AB. Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury. Biochim Biophys Acta Gen Subj 2019; 1863:129300. [PMID: 30742955 DOI: 10.1016/j.bbagen.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 01/07/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxicant affecting both the developing and mature central nervous system (CNS) with apparent indiscriminate disruption of multiple homeostatic pathways. However, genetic and environmental modifiers contribute significant variability to neurotoxicity associated with human exposures. MeHg displays developmental stage and neural lineage selective neurotoxicity. To identify mechanistic-based neuroprotective strategies to mitigate human MeHg exposure risk, it will be critical to improve our understanding of the basis of MeHg neurotoxicity and of this selective neurotoxicity. Here, we propose that human-based pluripotent stem cell cellular approaches may enable mechanistic insight into genetic pathways that modify sensitivity of specific neural lineages to MeHg-induced neurotoxicity. Such studies are crucial for the development of novel disease modifying strategies impinging on MeHg exposure vulnerability.
Collapse
Affiliation(s)
- Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States.
| |
Collapse
|
26
|
Santana LNDS, Bittencourt LO, Nascimento PC, Fernandes RM, Teixeira FB, Fernandes LMP, Freitas Silva MC, Nogueira LS, Amado LL, Crespo-Lopez ME, Maia CDSF, Lima RR. Low doses of methylmercury exposure during adulthood in rats display oxidative stress, neurodegeneration in the motor cortex and lead to impairment of motor skills. J Trace Elem Med Biol 2019; 51:19-27. [PMID: 30466930 DOI: 10.1016/j.jtemb.2018.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Despite the vast distribution among tissues, the central nervous system (CNS) represents the main target of methylmercury (MeHg) toxicity. However, few studies have evaluated the effects of MeHg exposure on the CNS at equivalent doses to human environmental exposure. In our study, we evaluated the motor cortex, an important area of motor control, in adult rats chronically exposed to MeHg in a concentration equivalent to those found in fish-eating populations exposed to mercury (Hg). The parameters evaluated were total Hg accumulation, oxidative stress, tissue damage, and behavioral assessment in functional actions that involved this cortical region. Our results show in exposed animals a significantly greater level of Hg in the motor cortex; increase of nitrite levels and lipid peroxidation, associated with decreased antioxidant capacity against peroxyl radicals; reduction of neuronal and astrocyte density; and poor coordination and motor learning impairment. Our data showed that chronic exposure at low doses to MeHg is capable of promoting damages to the motor cortex of adult animals, with changes in oxidative biochemistry misbalance, neurodegeneration, and motor function impairment.
Collapse
Affiliation(s)
- Luana Nazaré da Silva Santana
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Francisco Bruno Teixeira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Lygia Sega Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Lílian Lund Amado
- Laboratory of Ecotoxicology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
27
|
Ke T, Gonçalves FM, Gonçalves CL, Dos Santos AA, Rocha JBT, Farina M, Skalny A, Tsatsakis A, Bowman AB, Aschner M. Post-translational modifications in MeHg-induced neurotoxicity. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2068-2081. [PMID: 30385410 DOI: 10.1016/j.bbadis.2018.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Cinara Ludvig Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | | | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, SC, Brazil
| | - Anatoly Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 105064, Russia; Orenburg State University, Pobedy Ave., 13, Orenburg 460352, Russia
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
28
|
Zou Q, Li X, Xue T, Mo S, Su Q, Zheng J. Sensitive and Selective Detection of Mercury Ions in Aqueous Media Using an Oligonucleotide-functionalized Nanosensor and SERS Chip. ANAL SCI 2018; 35:493-498. [PMID: 30298820 DOI: 10.2116/analsci.18p381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of Hg2+ ions was reported, based on poly-thymine (T) aptamer/2-naphthalenethiol (2-NT)-modified gold nanoparticles (AuNPs), which was an oligonucleotide-functionalized nanosensor and SERS chip. 2-NT was used as a Raman reporter, and T aptamer could form a T-Hg2+-T structure with Hg2+ ions making an SERS nanosensor absorbed to the SERS chip. The optimum concentrations of DNA and 2-NT were obtained. An average of 960 DNA molecules attached to each AuNP were measured. The limit of detection (LOD) was 1.0 ppt (1.0 × 10-12 g/mL), which is far below the limit of 10.0 ppb for drinking water, stipulated by the World Health Organization. The sensor has the advantages of low detection cost, a simple sample pretreatment, a green solution and reducing false positives. Furthermore, the nanosensor was used for the determination of trace Hg2+ in the water of a lake; a reliable result was obtained accurately.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Marine Environmental Science and Technology, School of Marine Science and Technology, Tianjin University.,School of Microelectronics, Tianjin University.,Xuanhuai School of Innovation and Entrepreneurship, Tianjin University
| | - Xin Li
- Department of Marine Environmental Science and Technology, School of Marine Science and Technology, Tianjin University
| | - Tao Xue
- College of Material Science and Engineering, Tianjin University
| | - Shentong Mo
- School of Microelectronics, Tianjin University
| | - Qi Su
- School of Microelectronics, Tianjin University
| | - Jia Zheng
- School of Microelectronics, Tianjin University
| |
Collapse
|
29
|
Continuous Exposure to Inorganic Mercury Affects Neurobehavioral and Physiological Parameters in Mice. J Mol Neurosci 2018; 66:291-305. [PMID: 30251082 DOI: 10.1007/s12031-018-1176-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/14/2018] [Indexed: 02/02/2023]
Abstract
Contamination with mercury is a real health issue for humans with physiological consequences. The main objective of the present study was to assess the neurotoxicological effect of inorganic mercury: HgCl2. For this, adult mice were exposed prenatally, postnatally, and during the adult period to a low level of the metal, and their behavior and antioxidant status were analyzed. First, we showed that mercury concentrations in brain tissue of treated animals showed significant bioaccumulation, which resulted in behavioral deficits in adult mice. Thus, the treated mice developed an anxiogenic state, as evidenced by open field and elevated plus maze tests. This anxiety-like behavior was accompanied by a decrease in social behavior. Furthermore, an impairment of memory in these treated mice was detected in the object recognition and Y-maze tests. The enzymatic activity of the antioxidant system was assessed in eight brain structures, including the cerebral cortex, olfactory bulb, hippocampus, hypothalamus, mesencephalon, pons, cerebellum, and medulla oblongata. The results show that chronic exposure to HgCl2 caused alterations in the activity of catalase, thioredoxin reductase, glutathione peroxidase, superoxide dismutase, and glutathione S-transferase, accompanied by peroxidation of membrane lipids, indicating a disturbance in intracellular redox homeostasis with subsequent increased intracellular oxidative stress. These changes in oxidative stress were concomitant with a redistribution of essential heavy metals, i.e., iron, copper, zinc, and magnesium, in the brain as a possible response to homeostatic dysfunction following chronic exposure. The alterations observed in overall oxidative stress could constitute the basis of the anxiety-like state and the neurocognitive disorders observed.
Collapse
|
30
|
Unoki T, Akiyama M, Kumagai Y, Gonçalves FM, Farina M, da Rocha JBT, Aschner M. Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation. Front Genet 2018; 9:373. [PMID: 30271424 PMCID: PMC6146031 DOI: 10.3389/fgene.2018.00373] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxin that affects particularly the developing brain. Since MeHg is a potent electrophilic agent, a wide range of intracellular effects occur in response to its exposure. Yet, the molecular mechanisms associated with MeHg-induced cell toxicity have yet to be fully understood. Activation of cell defense mechanisms in response to metal exposure, including the up-regulation of Nrf2- (nuclear factor erythroid 2-related factor 2)-related genes has been previously shown. Nrf2 is a key regulator of cellular defenses against oxidative, electrophilic and environmental stress, regulating the expression of antioxidant proteins, phase-II xenobiotic detoxifying enzymes as well phase-III xenobiotic transporters. Analogous to other electrophiles, MeHg activates Nrf2 through modification of its repressor Keap1 (Kelch-like ECH-associated protein 1). However, recent findings have also revealed that Keap1-independent signal pathways might contribute to MeHg-induced Nrf2 activation and cytoprotective responses against MeHg exposure. These include, Akt phosphorylation (Akt/GSK-3β/Fyn-mediated Nrf2 activation pathway), activation of the PTEN/Akt/CREB pathway and MAPK-induced autophagy and p62 expression. In this review, we summarize the state-of-the-art knowledge regarding Nrf2 up-regulation in response to MeHg exposure, highlighting the modulation of signaling pathways related to Nrf2 activation. The study of these mechanisms is important in evaluating MeHg toxicity in humans, and can contribute to the identification of the molecular mechanisms associated with MeHg exposure.
Collapse
Affiliation(s)
- Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Diseasexy3Minamata, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
31
|
Pereira R, Leite E, Raimundo J, Guilherme S, Puga S, Pinto-Ribeiro F, Santos MA, Canário J, Almeida A, Pacheco M, Pereira P. Metals(loids) targeting fish eyes and brain in a contaminated estuary - Uncovering neurosensory (un)susceptibility through bioaccumulation, antioxidant and morphometric profiles. MARINE ENVIRONMENTAL RESEARCH 2018; 140:403-411. [PMID: 30054132 DOI: 10.1016/j.marenvres.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
This study examined the susceptibility of fish (Liza aurata) eyes and brain to metals(loids) contamination under realistic exposure conditions. A multidimensional approach was applied to fish caught at a chronically contaminated site (BAR) and at a reference site of the Tagus estuary (Portugal), which comprised metals(loids) accumulation in eyes and brain together with a battery of enzymatic and non-enzymatic antioxidants, as well as brain morphometry (i.e. cell density). Trace element levels in the blood, gills, liver and kidney allowed interpretations on their preferential pathway(s) to the eyes and brain. Metals(loids) accumulation pointed out the elevated vulnerability of the fish eyes at BAR, probably related with the direct waterborne uptake. Pb uptake in L. aurata eyes could be associated both with water and indirect pathways. At the most contaminated site, metals(loids) were on the basis of pro-oxidant conditions in the ocular tissues, while no indication of toxicity was recorded in the brain. Overall, the results disclosed a differential bioaccumulation among fish organs, suggesting that, in the L. aurata population studied, metal organotropism underlie the lower susceptibility of the brain comparing to the eyes. However, mechanisms remain little understood and further work is needed.
Collapse
Affiliation(s)
- Ricardo Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Leite
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Sofia Guilherme
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Ana Santos
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
MeHg Causes Ultrastructural Changes in Mitochondria and Autophagy in the Spinal Cord Cells of Chicken Embryo. J Toxicol 2018; 2018:8460490. [PMID: 30228816 PMCID: PMC6136469 DOI: 10.1155/2018/8460490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023] Open
Abstract
Methylmercury (MeHg) is a known neurodevelopmental toxicant, which causes changes in various structures of the central nervous system (CNS). However, ultrastructural studies of its effects on the developing CNS are still scarce. Here, we investigated the effect of MeHg on the ultrastructure of the cells in spinal cord layers. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Then, we used transmission electron microscopy (TEM) to identify possible damage caused by MeHg to the structures and organelles of the spinal cord cells. After MeHg treatment, we observed, in the spinal cord mantle layer, a significant number of altered mitochondria with external membrane disruptions, crest disorganization, swelling in the mitochondrial matrix, and vacuole formation between the internal and external mitochondrial membranes. We also observed dilations in the Golgi complex and endoplasmic reticulum cisterns and the appearance of myelin-like cytoplasmic inclusions. We observed no difference in the total mitochondria number between the control and MeHg-treated groups. However, the MeHg-treated embryos showed an increased number of altered mitochondria and a decreased number of mitochondrial fusion profiles. Additionally, unusual mitochondrial shapes were found in MeHg-treated embryos as well as autophagic vacuoles similar to mitophagic profiles. In addition, we observed autophagic vacuoles with amorphous, homogeneous, and electron-dense contents, similar to the autophagy. Our results showed, for the first time, the neurotoxic effect of MeHg on the ultrastructure of the developing spinal cord. Using TEM we demonstrate that changes in the endomembrane system, mitochondrial damage, disturbance in mitochondrial dynamics, and increase in mitophagy were caused by MeHg exposure.
Collapse
|
33
|
Puga S, Cardoso V, Pinto-Ribeiro F, Pacheco M, Almeida A, Pereira P. Brain morphometric profiles and their seasonal modulation in fish (Liza aurata) inhabiting a mercury contaminated estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:318-328. [PMID: 29499575 DOI: 10.1016/j.envpol.2018.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) is a potent neurotoxicant known to induce important adverse effects on fish, but a deeper understanding is lacking regarding how environmental exposure affects the brain morphology and neural plasticity of specific brain regions in wild specimens. In this work, it was evaluated the relative volume and cell density of the lateral pallium, hypothalamus, optic tectum and molecular layer of the cerebellum on wild Liza aurata captured in Hg-contaminated (LAR) and non-contaminated (SJ) sites of a coastal system (Ria de Aveiro, Portugal). Given the season-related variations in the environment that fish are naturally exposed, this assessment was performed in the winter and summer. Hg triggered a deficit in cell density of hypothalamus during the winter that could lead to hormonal dysfunctions, while in the summer Hg promoted larger volumes of the optic tectum and cerebellum, indicating the warm period as the most critical for the manifestation of putative changes in visual acuity and motor-dependent tasks. Moreover, in fish from the SJ site, the lateral pallium relative volume and the cell density of the hypothalamus and optic tectum were higher in the winter than in summer. Thus, season-related stimuli strongly influence the size and/or cell density of specific brain regions in the non-contaminated area, pointing out the ability of fish to adapt to environmental and physiological demands. Conversely, fish from the Hg-contaminated site showed a distinct seasonal profile of brain morphology, presenting a larger optic tectum in the summer, as well as a larger molecular layer of the cerebellum with higher cell density. Moreover, Hg exposure impaired the winter-summer variation of the lateral pallium relative size (as observed at SJ). Altogether, seasonal variations in fish neural morphology and physiology should be considered when performing ecotoxicological studies in order to better discriminate the Hg neurotoxicity.
Collapse
Affiliation(s)
- Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Vera Cardoso
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Belém-Filho IJA, Ribera PC, Nascimento AL, Gomes ARQ, Lima RR, Crespo-Lopez ME, Monteiro MC, Fontes-Júnior EA, Lima MO, Maia CSF. Low doses of methylmercury intoxication solely or associated to ethanol binge drinking induce psychiatric-like disorders in adolescent female rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:184-194. [PMID: 29734102 DOI: 10.1016/j.etap.2018.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) is an environmental contaminant that provokes damage to developing brain. Simultaneously, the consumption of ethanol among adolescents has increased. Evidence concerning the effects of MeHg low doses per se or associated with ethanol during adolescence are scarce. Thus, we investigate behavioral disorders resulted from exposure to MeHg low doses and co-intoxicated with ethanol in adolescent rats. Wistar rats received chronic exposure to low doses of MeHg (40 μg/kg/day for 5 weeks) and/or ethanol binge drinking (3 g/kg/day at 3 days per week for 5 weeks). Animals were submitted to behavioral assays to assess emotionality and cognitive function. Total mercury content was evaluated in the brain and hair. Oxidative parameters were analyzed in blood samples. MeHg at low doses or associated to ethanol binge drinking produced psychiatric-like disorders and cognitive impairment. Peripherally, MeHg altered oxidative parameters when associated to ethanol. Ethanol administration reduced brain mercury deposit. We proposed that ethanol reduces the necessity of mercury tissue levels to display psychiatric-like disorders/cognitive impairment.
Collapse
Affiliation(s)
| | - Paula Cardoso Ribera
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Aline Lima Nascimento
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratório de Biologia Funcional e Estrutural, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Ensaios In Vitro, Imunologia e Microbiologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Laboratório de Farmacologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marcelo Oliveira Lima
- Laboratório de Toxicologia, Seção de Meio Ambiente, Instituto Evandro Chagas, Belém, Pará, Brazil
| | | |
Collapse
|
35
|
Eissa N, Al-Houqani M, Sadeq A, Ojha SK, Sasse A, Sadek B. Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder. Front Neurosci 2018; 12:304. [PMID: 29867317 PMCID: PMC5964170 DOI: 10.3389/fnins.2018.00304] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
Autistic Spectrum Disorder (ASD) is a complex neurodevelopmental brain disorder characterized by two core behavioral symptoms, namely impairments in social communication and restricted/repetitive behavior. The molecular mechanisms underlying ASD are not well understood. Recent genetic as well as non-genetic animal models contributed significantly in understanding the pathophysiology of ASD, as they establish autism-like behavior in mice and rats. Among the genetic causes, several chromosomal mutations including duplications or deletions could be possible causative factors of ASD. In addition, the biochemical basis suggests that several brain neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), gamma-amino butyric acid (GABA), acetylcholine (ACh), glutamate (Glu) and histamine (HA) participate in the onset and progression of ASD. Despite of convincible understanding, risperidone and aripiprazole are the only two drugs available clinically for improving behavioral symptoms of ASD following approval by Food and Drug Administration (FDA). Till date, up to our knowledge there is no other drug approved for clinical usage specifically for ASD symptoms. However, many novel drug candidates and classes of compounds are underway for ASD at different phases of preclinical and clinical drug development. In this review, the diversity of numerous aetiological factors and the alterations in variety of neurotransmitter generation, release and function linked to ASD are discussed with focus on drugs currently used to manage neuropsychiatric symptoms related to ASD. The review also highlights the clinical development of drugs with emphasis on their pharmacological targets aiming at improving core symptoms in ASD.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Al-Houqani
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adel Sadeq
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
36
|
Morran SAM, Elliott JE, Young JML, Eng ML, Basu N, Williams TD. Ecologically-relevant exposure to methylmercury during early development does not affect adult phenotype in zebra finches (Taeniopygia guttata). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:259-266. [PMID: 29313303 DOI: 10.1007/s10646-017-1890-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Methylmercury causes behavioural and reproductive effects in adult mammals via early developmental exposure. Similar studies in birds are limited and mostly focussed on aquatic systems, but recent work has reported high blood mercury concentrations in terrestrial, passerine songbirds. We used the zebra finch (Taeniopygia guttata) as a model to explore the long-term effects of early developmental exposure to methylmercury exposure. Chicks were dosed orally with either the vehicle control, 0.0315 µg Hg/g bw/day, or 0.075 µg Hg/g bw/day throughout the nestling period (days 1-21 post-hatching). We then measured (a) short-term effects on growth, development, and behaviour (time to self-feeding, neophobia) until 30 days of age (independence), and (b) long-term effects on courtship behaviour and song (males) and reproduction (females) once methylmercury-exposed birds reached sexual maturity (90 days post-hatching). High methylmercury treated birds had mean blood mercury of 0.734 ± 0.163 µg/g at 30 days post-hatching, within the range of values reported for field-sampled songbirds at mercury contaminated sites. However, there were no short-term effects of treatment on growth, development, and behaviour of chicks, and no long-term effects on courtship behaviour and song in males or reproductive performance in females. These results suggest that the nestling period is not a critical window for sensitivity to mercury exposure in zebra finches. Growing nestlings can reduce blood mercury levels through somatic growth and depuration into newly growing feathers, and as a result they might actually be less susceptible compared to adult birds receiving the same level of exposure.
Collapse
Affiliation(s)
- Spencer A M Morran
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - John E Elliott
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Environment and Climate Change Canada, Science & Technology Branch, Pacific Wildlife Research Centre, Delta, BC, Canada
| | - Jessica M L Young
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Margaret L Eng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- University of Saskatchewan, Saskatoon, SK, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
37
|
Azevedo R, Rodriguez E, Mendes RJ, Mariz-Ponte N, Sario S, Lopes JC, Ferreira de Oliveira JMP, Santos C. Inorganic Hg toxicity in plants: A comparison of different genotoxic parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:247-254. [PMID: 29477088 DOI: 10.1016/j.plaphy.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Inorganic Mercury (Hg) contamination persists an environmental problem, but its cyto- and genotoxicity in plants remains yet unquantified. To determine the extent of Hg-induced cyto- and genotoxicity, and assess most sensitive endpoints in plants, Pisum sativum L. seedlings were exposed for 14 days to different HgCl2 concentrations up to 100 μM. Shoots and roots from hydroponic exposure presented growth impairment and/or morphological disorders for doses >1 μM, being the roots more sensitive. Plant growth, ploidy changes, clastogenicity (HPCV), cell cycle dynamics (G1-S-G2), Comet-tail moment (TM), Comet-TD, Mitotic-index (MI) and cell proliferation index (CPI) were used to evaluate Hg-induced cyto/genotoxicity. Both leaf and root DNA-ploidy levels, assessed by flow cytometry (FCM), remained unaltered after exposure. Root cell cycle impairment occurred at lower doses (≥1 μM) than structural DNA damages (≥10 μM). Cytostatic effects depended on the Hg concentration, with delays during S-phase at lower doses, and arrests at G1 at higher ones. This arrest was paralleled with decreases of both mitotic index (MI) and cell proliferation index (CPI). DNA fragmentation, assessed by the Comet assay parameters of TD and TM, could be visualized for conditions ≥10 μM, while FCM-clastogenic parameter (FPCV) and micronuclei (MNC) were only altered in roots exposed to 100 μM. We demonstrate that inorganic-Hg induced cytostaticity is detectable even at 1 μM (a value found in contaminated sites), while structural DNA breaks/damage are only visualized in plants at concentrations ≥10 μM. We also demonstrate that among the different techniques tested for cyto- and genotoxicity, TD and TM Comet endpoints were more sensitive than FPCV or MNC. Regarding cytostatic effects, cell cycle analysis by FCM, including the difference in % cell cycle phases and CPI were more sensitive than MI or MNC frequency. Our data contribute to better understand Hg cyto- and genotoxicity in plants and to understand the information and sensitivity provided by each of the genotoxic techniques used.
Collapse
Affiliation(s)
- Raquel Azevedo
- Laboratory of Biotechnology and Cytomics, University of Aveiro, 3810-123, Aveiro, Portugal
| | - Eleazar Rodriguez
- Laboratory of Biotechnology and Cytomics, University of Aveiro, 3810-123, Aveiro, Portugal
| | - Rafael José Mendes
- iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Nuno Mariz-Ponte
- iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Sara Sario
- iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - José Carlos Lopes
- Department of Physics, University of Aveiro, 3810-123, Aveiro, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Porto, Portugal
| | - Conceição Santos
- iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
38
|
Al-Hamdan AZ, Preetha PP, Albashaireh RN, Al-Hamdan MZ, Crosson WL. Investigating the effects of environmental factors on autism spectrum disorder in the USA using remotely sensed data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7924-7936. [PMID: 29299867 DOI: 10.1007/s11356-017-1114-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to assess the association between exposures to outdoor environmental factors and autism spectrum disorder (ASD) prevalence in a diverse and spatially distributed population of 8-year-old children from the USA (n = 2,097,188) using the air quality index (AQI) of the US Environmental Protection Agency as well as satellite-derived data of PM2.5 concentrations, sunlight, and maximum heat index. Multivariable logistic regression analyses were performed to determine whether the unhealthy AQI, PM2.5, sunlight, and maximum heat index were related to the odds of ASD prevalence based on gender and race and taking into consideration the confounding factors of smoking and socioeconomic status. The logistic regression odds ratios for ASD per 10% increase in the unhealthy AQI were greater than 1 for all categories, indicating that unhealthy AQI is related to the odds of ASD prevalence. The odds ratio of ASD due to the exposure to the unhealthy AQI was higher for Asians (OR = 2.96, 95% CI = 1.11-7.88) than that for Hispanics (OR = 1.308, 95% CI = 0.607-2.820), and it was higher for Blacks (OR = 1.398, 95% CI = 0.827-2.364) than that for Whites (OR = 1.219, 95% CI = 0.760-1.954). The odds ratio of ASD due to the unhealthy AQI was slightly higher for males (OR = 1.123, 95% CI = 0.771-1.635) than that for females (OR = 1.117, 95% CI = 0.789-1.581). The effects of the unhealthy environmental exposures on the odds ratios of ASD of this study were inconclusive (i.e., statically insignificant; p value > 0.05) for all categories except for Asians. The odds ratios of ASD for Asians were increased by 5, 12, and 14% with increased levels of the environmental exposures of 10 μg/m3 of PM2.5, 1000 kJ/m2 of sunlight, and 1 °F of maximum heat index, respectively. The odds ratios of ASD prevalence for all categories, except for Asians, were increased with the inclusion of the smoking covariate, reflecting the effect of smoking on ASD prevalence besides the unhealthy environmental factors.
Collapse
Affiliation(s)
- Ashraf Z Al-Hamdan
- Department of Civil and Environmental Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA.
| | - Pooja P Preetha
- Department of Civil and Environmental Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Reem N Albashaireh
- Department of Mathematics, Alabama Agricultural and Mechanical University, Normal, AL, 35762, USA
| | - Mohammad Z Al-Hamdan
- Universities Space Research Association, NASA Marshall Space Flight Center, National Space Science and Technology Center, 320 Sparkman Drive, Huntsville, AL, 35805, USA
| | - William L Crosson
- Universities Space Research Association, NASA Marshall Space Flight Center, National Space Science and Technology Center, 320 Sparkman Drive, Huntsville, AL, 35805, USA
| |
Collapse
|
39
|
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food Chem Toxicol 2018; 113:328-336. [PMID: 29428217 DOI: 10.1016/j.fct.2018.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD+/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Collapse
|
40
|
Landler L, Painter MS, Coe BH, Youmans PW, Hopkins WA, Phillips JB. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle hatchlings (Chelydra serpentina). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:19-25. [PMID: 28501632 DOI: 10.1016/j.envpol.2017.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The Earth's magnetic field is involved in spatial behaviours ranging from long-distance migration to non-goal directed behaviours, such as spontaneous magnetic alignment (SMA). Mercury is a harmful pollutant most often generated from anthropogenic sources that can bio-accumulate in animal tissue over a lifetime. We compared SMA of hatchling snapping turtles from mothers captured at reference (i.e., low mercury) and mercury contaminated sites. Reference turtles showed radio frequency-dependent SMA along the north-south axis, consistent with previous studies of SMA, while turtles with high levels of maternally inherited mercury failed to show consistent magnetic alignment. In contrast, there was no difference between reference and mercury exposed turtles on standard performance measures. The magnetic field plays an important role in animal orientation behaviour and may also help to integrate spatial information from a variety of sensory modalities. As a consequence, mercury may compromise the performance of turtles in a wide variety of spatial tasks. Future research is needed to determine the threshold for mercury effects on snapping turtles, whether mercury exposure compromises spatial behaviour of adult turtles, and whether mercury has a direct effect on the magnetoreception mechanism(s) that mediate SMA or a more general effect on the nervous system.
Collapse
Affiliation(s)
- Lukas Landler
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA
| | - Michael S Painter
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA
| | - Brittney Hopkins Coe
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paul W Youmans
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA; Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
| | - William A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Phillips
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA.
| |
Collapse
|
41
|
Developmental neurotoxicity of the hippocampus following in utero exposure to methylmercury: impairment in cell signaling. Arch Toxicol 2017; 92:513-527. [PMID: 28821999 DOI: 10.1007/s00204-017-2042-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/10/2017] [Indexed: 01/01/2023]
Abstract
In this study, we assessed some hippocampal signaling cascades and behavioral impairments in 30-day-old rat pups prenatally exposed to methylmercury (MeHg). Pregnant rats were exposed to 1.0 or 2.0 mg/kg MeHg by gavage in alternated days from gestational day 5 until parturition. We found increased anxiety-like and decreased exploration behavior evaluated by open field test and deficit of both short- and long-term memories by novel object recognition task, respectively, in MeHg-treated pups. Downregulated PI3K/Akt/mTOR pathway and activated/hypophosphorylated (Ser9) GSK3β in MeHg-treated pups could be upstream of hyperphosphorylated Tau (Ser396) destabilizing microtubules and contributing to neural dysfunction in the hippocampus of these rats. Hyperphosphorylated/activated p38MAPK and downregulated phosphoErk1/2 support a role for mitogen-activated protein kinase (MAPK) cascade on MeHg neurotoxicity. Decreased receptor of advanced glycation end products (RAGE) immunocontent supports the assumption that downregulated RAGE/Erk1/2 pathway could be involved in hypophosphorylated lysine/serine/proline (KSP) repeats on neurofilament subunits and disturbed axonal transport. Downregulated myelin basic protein (MBP), the major myelin protein, is compatible with dysmyelination and neurofilament hypophosphorylation. Increased glial fibrillary acidic protein (GFAP) levels suggest reactive astrocytes, and active apoptotic pathways BAD/BCL-2, BAX/BCL-XL, and caspase 3 suggest cell death. Taken together, our findings get light on important signaling mechanisms that could underlie the behavioral deficits in 30-day-old pups prenatally exposed to MeHg.
Collapse
|
42
|
Jacob S, Thangarajan S. Effect of Gestational Intake of Fisetin (3,3',4',7-Tetrahydroxyflavone) on Developmental Methyl Mercury Neurotoxicity in F 1 Generation Rats. Biol Trace Elem Res 2017; 177:297-315. [PMID: 27815688 DOI: 10.1007/s12011-016-0886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Methyl mercury (MeHg) is a developmental neurotoxin that causes irreversible cognitive damage in offspring of gestationally exposed mothers. Currently, no preventive drugs are established against MeHg developmental neurotoxicity. The neuroprotective effect of gestational administration of a flavanoid against in utero toxicity of MeHg is not explored much. Hence, the present study validated the effect of a bioactive flavanoid, fisetin, on MeHg developmental neurotoxicity outcomes in rat offspring at postnatal weaning age. Pregnant Wistar rats were simultaneously given MeHg (1.5 mg/kg b.w.) and two doses of fisetin (10 and 50 mg/kg b.w. in two separate groups) orally from gestational day (GD) 5 till parturition. Accordingly, after parturition, on postnatal day (PND) 24, weaning F1 generation rats were studied for motor and cognitive behavioural changes. Biochemical and histopathological changes were also studied in the cerebral cortex, cerebellum and hippocampus on PND 25. Administration of fisetin during pregnancy prevented behavioural impairment due to transplacental MeHg exposure in weaning rats. Fisetin decreased the levels of oxidative stress markers, increased enzymatic and non-enzymatic antioxidant levels and increased the activity of membrane-bound ATPases and cholinergic function in F1 generation rats. In light microscopic studies, fisetin treatment protected the specific offspring brain regions from significant morphological aberrations. Between the two doses of fisetin studied, 10 mg/kg b.w. was found to be more satisfactory and effective than 50 mg/kg b.w. The present study shows that intake of fisetin during pregnancy in rats ameliorated in utero MeHg exposure-induced neurotoxicity outcomes in postnatal weaning F1 generation rats.
Collapse
Affiliation(s)
- Sherin Jacob
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - Sumathi Thangarajan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600 113, India.
| |
Collapse
|
43
|
Oulhote Y, Debes F, Vestergaard S, Weihe P, Grandjean P. Aerobic Fitness and Neurocognitive Function Scores in Young Faroese Adults and Potential Modification by Prenatal Methylmercury Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:677-683. [PMID: 27611346 PMCID: PMC5381980 DOI: 10.1289/ehp274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Exposure to methylmercury was shown to decrease neural stem cell populations, whereas aerobic fitness has beneficial effects on the adult brain that relies on improved neurogenesis in the hippocampus. OBJECTIVES We examined the association between aerobic fitness and neurocognitive outcomes at young adult age, along with the potential moderating effect of prenatal exposure to methylmercury. METHODS At age 22 years, 262 members of a Faroese birth cohort, established in 1986-1987, underwent a graded exercise test of aerobic fitness to measure maximal oxygen uptake (VO2Max). Their prenatal methylmercury exposure had been assessed from the mercury concentration in cord blood. We estimated cross-sectional associations between VO2Max and multiple measures of neurocognitive function. In addition, we compared groups with low and high prenatal methylmercury exposure. RESULTS A 1 standard deviation (SD) increase in VO2Max was associated with better scores on short-term memory and cognitive processing speed by 0.21 SD (95% CI: -0.04, 0.46) and 0.28 SD (95% CI: 0.02, 0.54), respectively. In the group with lower prenatal methylmercury exposure, a 1 SD increase in VO2Max was associated with increased scores on cognitive processing speed by 0.45 SD (95% CI: 0.08, 0.81) and with a slightly lesser benefit in short-term memory. No such association was observed in the group with high prenatal methylmercury exposure. CONCLUSIONS Higher aerobic capacity was associated with better performance in short-term memory and processing speed. However, prenatal methylmercury exposure seemed to attenuate these positive associations.
Collapse
Affiliation(s)
- Youssef Oulhote
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
44
|
Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells. Int J Mol Sci 2016; 17:ijms17122058. [PMID: 27941687 PMCID: PMC5187858 DOI: 10.3390/ijms17122058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to MeHg was investigated. We found that MeHg altered cell viability and the number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells. We also observed that low-dose MeHg exposure increased the mRNA expression of cell cycle regulators. We observed that MeHg induced ROS production in a dose-dependent manner. In addition, mRNA levels of peroxisome-proliferator-activated receptor gammacoactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM) and p53-controlled ribonucleotide reductase (p53R2) were significantly elevated, which were correlated with the increase of mitochondrial DNA (mtDNA) copy number at a concentration as low as 10 nM. Moreover, we examined the expression of microRNAs (miRNAs) known as regulatory miRNAs of p53 (i.e., miR-30d, miR-1285, miR-25). We found that the expression of these miRNAs was significantly downregulated upon MeHg treatment. Furthermore, the overexpression of miR-25 resulted in significantly reducted p53 protein levels and decreased mRNA expression of genes involved in mitochondrial biogenesis regulation. Taken together, these results demonstrated that MeHg could induce developmental neurotoxicity in ihNPCs through altering mitochondrial functions and the expression of miRNA.
Collapse
|
45
|
Rizzetti DA, Altermann CDC, Martinez CS, Peçanha FM, Vassallo DV, Uranga-Ocio JA, Castro MM, Wiggers GA, Mello-Carpes PB. Ameliorative effects of egg white hydrolysate on recognition memory impairments associated with chronic exposure to low mercury concentration. Neurochem Int 2016; 101:30-37. [DOI: 10.1016/j.neuint.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022]
|
46
|
Antunes Dos Santos A, Appel Hort M, Culbreth M, López-Granero C, Farina M, Rocha JBT, Aschner M. Methylmercury and brain development: A review of recent literature. J Trace Elem Med Biol 2016; 38:99-107. [PMID: 26987277 PMCID: PMC5011031 DOI: 10.1016/j.jtemb.2016.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/02/2016] [Indexed: 02/02/2023]
Abstract
Methylmercury (MeHg) is a potent environmental pollutant, which elicits significant toxicity in humans. The central nervous system (CNS) is the primary target of toxicity, and is particularly vulnerable during development. Maternal exposure to MeHg via consumption of fish and seafood can have irreversible effects on the neurobehavioral development of children, even in the absence of symptoms in the mother. It is well documented that developmental MeHg exposure may lead to neurological alterations, including cognitive and motor dysfunction. The neurotoxic effects of MeHg on the developing brain have been extensively studied. The mechanism of toxicity, however, is not fully understood. No single process can explain the multitude of effects observed in MeHg-induced neurotoxicity. This review summarizes the most current knowledge on the effects of MeHg during nervous system development considering both, in vitro and in vivo experimental models. Considerable attention was directed towards the role of glutamate and calcium dyshomeostasis, mitochondrial dysfunction, as well as the effects of MeHg on cytoskeletal components/regulators.
Collapse
Affiliation(s)
| | - Mariana Appel Hort
- Institute of Biological Sciences, Federal University of Rio Grande, Campus Carreiros, Rio Grande do Sul, Brazil
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Caridad López-Granero
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Joao B T Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
47
|
Schaefers ATU, Teuchert-Noodt G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J Biol Psychiatry 2016; 17:587-599. [PMID: 23705632 DOI: 10.3109/15622975.2013.797104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Neurodegenerative diseases like Alzheimer's and Parkinson's Disease, marked by characteristic protein aggregations, are more and more accepted to be synaptic disorders and to arise from a combination of genetic and environmental factors. In this review we propose our concept that neuroplasticity might constitute a link between early life challenges and neurodegeneration. METHODS After introducing the general principles of neuroplasticity, we show how adverse environmental stimuli during development impact adult neuroplasticity and might lead to neurodegenerative processes. RESULTS There are significant overlaps between neurodevelopmental and neurodegenerative processes. Proteins that represent hallmarks of neurodegeneration are involved in plastic processes under physiological conditions. Brain regions - particularly the hippocampus - that retain life-long plastic capacities are the key targets of neurodegeneration. Neuroplasticity is highest in young age making the brain more susceptible to external influences than later in life. Impacts during critical periods have life-long consequences on neuroplasticity and structural self-organization and are known to be common risk factors for neurodegenerative diseases. CONCLUSIONS Several lines of evidence support a link between developmental neuroplasticity and neurodegenerative processes later in life. A deeper insight into these processes is necessary to design strategies to mitigate or even prevent neurodegenerative pathologies.
Collapse
|
48
|
Puga S, Pereira P, Pinto-Ribeiro F, O'Driscoll NJ, Mann E, Barata M, Pousão-Ferreira P, Canário J, Almeida A, Pacheco M. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:320-333. [PMID: 27780124 DOI: 10.1016/j.aquatox.2016.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg-1), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where homeostatic mechanisms prevented circumstantially morphometric alterations in the brain and behavioral shifts. Although it has become clear the complexity of matching brain morphometric changes and behavioral shifts, motor-related alterations induced by MeHg seem to depend on a combination of disruptions in different brain regions.
Collapse
Affiliation(s)
- Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, Center for Analytical Research on the Environment, K.C. Irving Center, Acadia University, Wolfville, Nova Scotia, Canada
| | - Erin Mann
- Department of Earth and Environmental Science, Center for Analytical Research on the Environment, K.C. Irving Center, Acadia University, Wolfville, Nova Scotia, Canada
| | - Marisa Barata
- IPMA - Aquaculture Research Station, 8700-005 Olhão, Portugal
| | | | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
49
|
Tyler CR, Labrecque MT, Solomon ER, Guo X, Allan AM. Prenatal arsenic exposure alters REST/NRSF and microRNA regulators of embryonic neural stem cell fate in a sex-dependent manner. Neurotoxicol Teratol 2016; 59:1-15. [PMID: 27751817 DOI: 10.1016/j.ntt.2016.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
Exposure to arsenic, a common environmental toxin found in drinking water, leads to a host of neurological pathologies. We have previously demonstrated that developmental exposure to a low level of arsenic (50ppb) alters epigenetic processes that underlie deficits in adult hippocampal neurogenesis leading to aberrant behavior. It is unclear if arsenic impacts the programming and regulation of embryonic neurogenesis during development when exposure occurs. The master negative regulator of neural-lineage, REST/NRSF, controls the precise timing of fate specification and differentiation of neural stem cells (NSCs). Early in development (embryonic day 14), we observed increased expression of Rest, its co-repressor, CoREST, and the inhibitory RNA binding/splicing protein, Ptbp1, and altered expression of mRNA spliced isoforms of Pbx1 that are directly regulated by these factors in the male brain in response to prenatal 50ppb arsenic exposure. These increases were concurrent with decreased expression of microRNA-9 (miR-9), miR-9*, and miR-124, all of which are REST/NRSF targets and inversely regulate Rest expression to allow for maturation of NSCs. Exposure to arsenic decreased the formation of neuroblasts in vitro from NSCs derived from male pup brains. The female response to arsenic was limited to increased expression of CoREST and Ptbp2, an RNA binding protein that allows for appropriate splicing of genes involved in the progression of neurogenesis. These changes were accompanied by increased neuroblast formation in vitro from NSCs derived from female pups. Unexposed male mice express transcriptomic factors to induce differentiation earlier in development compared to unexposed females. Thus, arsenic exposure likely delays differentiation of NSCs in males while potentially inducing precocious differentiation in females early in development. These effects are mitigated by embryonic day 18 of development. Arsenic-induced dysregulation of the regulatory loop formed by REST/NRSF, its target microRNAs, miR-9 and miR-124, and RNA splicing proteins, PTBP1 and 2, leads to aberrant programming of NSC function that is perhaps perpetuated into adulthood inducing deficits in differentiation we have previously observed.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, United States
| | - Matthew T Labrecque
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Xun Guo
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
50
|
Tian J, Luo Y, Chen W, Yang S, Wang H, Cui J, Lu Z, Lin Y, Bi Y. MeHg Suppressed Neuronal Potency of Hippocampal NSCs Contributing to the Puberal Spatial Memory Deficits. Biol Trace Elem Res 2016; 172:424-436. [PMID: 26743863 DOI: 10.1007/s12011-015-0609-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
Hippocampal neurogenesis-related structural damage, particularly that leading to defective adult cognitive function, is considered an important risk factor for neurodegenerative and psychiatric diseases. Normal differentiation of neurons and glial cells during development is crucial in neurogenesis, which is particularly sensitive to the environmental toxicant methylmercury (MeHg). However, the exact effects of MeHg on hippocampal neural stem cell (hNSC) differentiation during puberty remain unknown. This study investigates whether MeHg exposure induces changes in hippocampal neurogenesis and whether these changes underlie cognitive defects in puberty. A rat model of methylmercury chloride (MeHgCl) exposure (0.4 mg/kg/day, PND 5-PND 33, 28 days) was established, and the Morris water maze was used to assess cognitive function. Primary hNSCs from hippocampal tissues of E16-day Sprague-Dawley rats were purified, identified, and cloned. hNSC proliferation and differentiation and the growth and morphology of newly generated neurons were observed by MTT and immunofluorescence assays. MeHg exposure induced defects in spatial learning and memory accompanied by a decrease in number of doublecortin (DCX)-positive cells in the dentate gyrus (DG). DCX is a surrogate marker for newly generated neurons. Proliferation and differentiation of hNSCs significantly decreased in the MeHg-treated groups. MeHg attenuated microtubule-associated protein-2 (MAP-2) expression in neurons and enhanced the glial fibrillary acidic protein (GFAP)-positive cell differentiation of hNSCs, thereby inducing degenerative changes in a dose-dependent manner. Moreover, MeHg induced deficits in hippocampus-dependent spatial learning and memory during adolescence as a consequence of decreased generation of DG neurons. Our findings suggested that MeHg exposure could be a potential risk factor for psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianying Tian
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
- Basic Medical School, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China.
| | - Yougen Luo
- The Research Center of Neurodegenerative Diseases and Aging, Medical College of Jinggangshan University, Ji'an, Jiangxi, 343000, China
| | - Weiwei Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Shengsen Yang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Hao Wang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Jing Cui
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Zhiyan Lu
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yuanye Lin
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yongyi Bi
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
| |
Collapse
|