1
|
Capela JP, Carvalho FD. A review on the mitochondrial toxicity of "ecstasy" (3,4-methylenedioxymethamphetamine, MDMA). Curr Res Toxicol 2022; 3:100075. [PMID: 35651589 PMCID: PMC9149009 DOI: 10.1016/j.crtox.2022.100075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a drug of abuse used by millions worldwide. MDMA human abuse and dependence is well described, but addictive properties are not always consistent among studies. This amphetamine is a substrate type releaser, binding to monoamine transporters, leading to a pronounced release of serotonin and noradrenaline and to a minor extent dopamine. The toxicity of MDMA is well studied at the pre-clinical level, with neurotoxicity and hepatotoxicity being particularly described. In this review, we describe the most relevant MDMA effects at the mitochondrial level found in in vitro and in vivo models, these later conducted in mice and rats. Most of these reports focus on the mitochondria of brain or liver. In in vitro models, MDMA causes depletion of ATP levels and inhibition of mitochondrial complex I and III, loss in mitochondrial membrane potential (ΔΨm) and induction of mitochondrial permeability transition. The involvement of mitochondria in the apoptotic cell death evoked by MDMA has also been shown, such as the release of cytochrome c. Additionally, MDMA or its metabolites impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria. In animal studies, MDMA decreased mitochondrial complex I activity and decreased ATP levels. Moreover, MDMA-evoked oxidative stress has been shown to cause deletion on mitochondrial DNA and impairment in mitochondrial protein synthesis. Although the concentrations and doses used in some studies do not always correlate to the human scenario, the mitochondrial abnormalities evoked by MDMA are well described and are in part responsible for its mechanism of toxicity.
Collapse
Key Words
- 3,4-Methylenedioxymethamphetamine
- 5-HT, Serotonin
- Drug of Abuse
- Hepatotoxicity
- MAO, Monoamine oxidase
- MDMA, 3,4-Methylenedioxymethamphetamine
- MPT, Mitochondrial permeability transition
- Mitochondrial membrane potential
- Mitochondrial toxicity
- Mitochondrial trafficking
- NA, Noradrenaline
- Neurotoxicity
- PST, Post-traumatic stress disorder
- ROS, Reactive oxygen species
- SERT, Serotonin transporter
- UCP-3, Uncoupling protein-3
- ΔΨm, Mitochondrial membrane potential
Collapse
Affiliation(s)
- João Paulo Capela
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-I3ID, Faculty of Health Sciences, University Fernando Pessoa, 4020-150 Porto, Portugal
| | - Félix Dias Carvalho
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Orejana L, Barros-Miñones L, Jordan J, Cedazo-Minguez A, Tordera RM, Aguirre N, Puerta E. Sildenafil Decreases BACE1 and Cathepsin B Levels and Reduces APP Amyloidogenic Processing in the SAMP8 Mouse. J Gerontol A Biol Sci Med Sci 2014; 70:675-85. [DOI: 10.1093/gerona/glu106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 06/08/2014] [Indexed: 12/21/2022] Open
|
3
|
Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway. Neuropharmacology 2013; 75:407-15. [PMID: 23973310 DOI: 10.1016/j.neuropharm.2013.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/31/2013] [Accepted: 08/10/2013] [Indexed: 11/21/2022]
Abstract
Adenosine 5'-triphosphate-sensitive potassium channel (KATP channel) activator, minoxidil sulfate (MS), can selectively increase the permeability of the blood-tumor barrier (BTB); however, the mechanism by which this occurs is still under investigation. Using a rat brain glioma (C6) model, we first examined the expression levels of occludin and claudin-5 at different time points after intracarotid infusion of MS (30 μg/kg/min) by western blotting. Compared to MS treatment for 0 min group, the protein expression levels of occludin and claudin-5 in brain tumor tissue of rats showed no changes within 1 h and began to decrease significantly after 2 h of MS infusion. Based on these findings, we then used an in vitro BTB model and selective inhibitors of diverse signaling pathways to investigate whether reactive oxygen species (ROS)/RhoA/PI3K/PKB pathway play a key role in the process of the increase of BTB permeability induced by MS. The inhibitor of ROS or RhoA or PI3K or PKB significantly attenuated the expression of tight junction (TJ) protein and the increase of the BTB permeability after 2 h of MS treatment. In addition, the significant increases in RhoA activity and PKB phosphorylation after MS administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine (MPG) or C3 exoenzyme or LY294002 pretreatment. The present study indicates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in BTB was required for the increase of BTB permeability induced by MS. Taken together, all of these results suggested that MS might increase BTB permeability in a time-dependent manner by down-regulating TJ protein expression and this effect could be related to ROS/RhoA/PI3K/PKB signal pathway.
Collapse
|
4
|
Orejana L, Barros-Miñones L, Aguirre N, Puerta E. Implication of JNK pathway on tau pathology and cognitive decline in a senescence-accelerated mouse model. Exp Gerontol 2013; 48:565-71. [PMID: 23501261 DOI: 10.1016/j.exger.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/14/2013] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
Abstract
The senescence accelerated mouse-prone 8 (SAMP8) strain of mice is an experimental model of accelerated senescence that also shares several pathological features with Alzheimer's disease. Among them, cognitive impairments and abnormal hyperphosphorylation of tau are ameliorated by the phosphodiesterase 5 inhibitor sildenafil, possibly through the modulation of Cdk5/p25 and Akt/GSK-3β pathways. Here we studied the implication of protein phosphatase 2A (PP2A) and c-Jun N-terminal kinase (JNK) in the therapeutic effects of sildenafil. Results demonstrated that there were no differences in hippocampal PP2A protein levels or activity (measured by its inactive isoform phopho-PP2A Y307) when we compared 6-month old SAMP8 mice and age-matched control, SAMR1 mice, treated with saline or sildenafil (7.5mg/kg i.p. for 4 weeks). However, this same treatment of sildenafil, that had been shown to reverse the cognitive impairment and tau hyperphosphorylation in this animal model, also reversed the increased levels of activated JNK (p-JNK) found in the hippocampus of SAMP8 mice. Moreover, the administration of the JNK inhibitor, D-JNKI-1 (0.2mg/kg i.p. for 3 weeks) also ameliorated the cognitive deficits shown by SAMP8 mice in the Morris water maze and decreased hippocampal levels of phospho-c-Jun(Ser73). When phosphorylated tau (AT8 epitope) was analyzed a significant reduction was observed in the hippocampus of D-JNKI-1 treated SAMP8 mice, providing a plausible explanation for the attenuation of cognitive decline shown by these animals. These findings suggest the involvement of the JNK pathway on tau pathology and cognitive deficits shown by 6-month old SAMP8 mice. They also point to the modulation of this kinase to be among the mechanisms responsible for the beneficial effects shown by sildenafil.
Collapse
Affiliation(s)
- Lourdes Orejana
- Department of Pharmacology, School of Pharmacy, University of Navarra, Spain
| | | | | | | |
Collapse
|
5
|
Mele A, Buttiglione M, Cannone G, Vitiello F, Camerino DC, Tricarico D. Opening/blocking actions of pyruvate kinase antibodies on neuronal and muscular KATP channels. Pharmacol Res 2012; 66:401-8. [PMID: 22967932 DOI: 10.1016/j.phrs.2012.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/30/2022]
Abstract
ATP-sensitive-K(+) (KATP) channels couple metabolism to the electrical activity of the cells. This channel is associated with glycolytic enzymes to form complexes regulating the channel activity in various tissues. The pyruvate-kinase (PK) enzyme is an antigen in the Paediatric Autoimmune Neuropsychiatric Disorders Associated Streptococcal infection known as PANDAS which is characterized by an abnormal production of auto-antibodies against PK. Here, the effects of the anti-pyruvate kinase antibody (anti-PK-ab) on the muscle and neuronal KATP channels were investigated in native rat skeletal muscle fibres and human neuroblastoma cell-line (SH-SY5Y), respectively. Furthermore, the interaction of PK with the inwardly rectifier potassium channel (Kir6.1/Kir6.2) subunits of the KATP channels was investigated by co-immunoprecipitation experiments in mouse brain using the anti-PK-ab. Patch-clamp experiments showed that the short-term incubation (1h) of the fibres with the anti-PK-ab at the dilutions of 1:500 and 1:300 enhanced the KATP current of 19.6% and 33.5%, respectively. As opposite, the long-term incubation (24h) of the fibres with the anti-PK-ab at the dilutions of 1:500 and 1:300 reduced the KATP current of 16% and 24%, respectively, reducing the diameter with atrophy. The direct application of the anti-PK-ab to the excised patches in the absence of intracellular ATP caused channel block, while in the presence of nucleotide channel opened. In neuronal cell line, in the short-term the anti-PK-ab potentiated KATP currents without affecting survival, while in the long-term the anti-PK-ab reduced KATP currents inducing neuronal death. Opening/blocking actions of the anti-PK antibodies on the KATP channels were observed, the blocking action causes fibre atrophy and neuronal death. We demonstrated that PK and Kir subunits are physically/functionally coupled in neurons. The KATP/PK complex can be proposed a novel target in the autoimmune diseases associated with anti-PK production as in PANDAS.
Collapse
Affiliation(s)
- Antonietta Mele
- Unit of Pharmacology, Department of Pharmacy, via Orabona no. 4, University of Bari, I-70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Chen Y, Zhao J, Du J, Xu G, Tang C, Geng B. Hydrogen sulfide regulates cardiac sarcoplasmic reticulum Ca(2+) uptake via K(ATP) channel and PI3K/Akt pathway. Life Sci 2012; 91:271-8. [PMID: 22884808 DOI: 10.1016/j.lfs.2012.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 07/05/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
AIMS To investigate the effects of hydrogen sulfide (H(2)S) on calcium uptake activity of the rat cardiac sarcoplasmic reticulum (SR) and possible signaling. MAIN METHODS Crude SR was isolated after treatment with H(2)S, then SR Ca(2+) uptake and SR Ca(2+)-ATPase (SERCA) activity was measured by the isotopic tracer method. The possible roles of the K(ATP) channel and PI3K/Akt and SR-membrane protein phospholamban (PLB) pathway were analyzed by specific blockers, and target protein activation was assayed by measuring protein phosphorylation. KEY FINDINGS Exogenous H(2)S lowered Ca(2+) uptake into the SR time or concentration dependently, which was associated with decreased SERCA activity. Inhibiting endogenous H(2)S production by DL-propargylglycine increased SR Ca(2+) uptake and SERCA activity. H(2)S inhibition of PLB phosphorylation was through SERCA activity and was reversed by two PI3K inhibitors, wortmannin and LY294002. Glibenclamide (a K(ATP) channel blocker) blocked the inhibitory effects of H(2)S on PLB and Akt phosphorylation. Pinacidil (a K(ATP) channel opener) reduced the phosphorylation of PLB and reversed the effects of DL-propargylglycine. H(2)S preconditioning increased PLB phosphorylation but did not affect SERCA activity. SIGNIFICANCE Endogenous H(2)S transiently and reversibly inhibits SR Ca(2+) uptake in rat heart SR because of downregulated SERCA activity associated with PLB phosphorylation by the PI3K/Akt or K(ATP) channel. The transient negative regulation of SR Ca(2+) uptake and the L-type Ca(2+) channel contributes to Ca(2+) cycle homeostasis, which might be an important molecular mechanism in ischemic diseases.
Collapse
Affiliation(s)
- Yu Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, PR China
| | | | | | | | | | | |
Collapse
|
7
|
Puerta E, Barros-Miñones L, Hervias I, Gomez-Rodriguez V, Orejana L, Pizarro N, de la Torre R, Jordán J, Aguirre N. Long-lasting neuroprotective effect of sildenafil against 3,4-methylenedioxymethamphetamine- induced 5-hydroxytryptamine deficits in the rat brain. J Neurosci Res 2011; 90:518-28. [PMID: 21948520 DOI: 10.1002/jnr.22759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/14/2011] [Accepted: 07/03/2011] [Indexed: 11/11/2022]
Abstract
Sildenafil, given shortly before 3,4-methylenedioxymethamphetamine (MDMA), affords protection against 5-hydroxytryptamine (5-HT) depletions caused by this amphetamine derivative by an acute preconditioning-like mechanism. Because acute and delayed preconditionings do not share the same mechanisms, we investigated whether sildenafil would also protect the 5-HT system of the rat if given 24 hr before MDMA. For this, MDMA (3 × 5 mg/kg i.p., every 2 hr) was administered to rats previously treated with sildenafil (8 mg/kg p.o.). One week later, 5-HT content and 5-HT transporter density were measured in the striatum, frontal cortex, and hippocampus of the rats. Our findings indicate that sildenafil afforded significant protection against MDMA-induced 5-HT deficits without altering the acute hyperthermic response to MDMA or its metabolic disposition. Sildenafil promoted ERK1/2 activation an effect that was paralleled by an increase in MnSOD expression that persisted 24 hr later. In addition, superoxide and superoxide-derived oxidants, shown by ethidium fluorescence, increased after the last MDMA injection, an effect that was prevented by sildenafil pretreatment. Similarly, MDMA increased nitrotyrosine concentration in the hippocampus, an effect not shown by sildenafil-pretreated rats. In conclusion, our data demonstrate that sildenafil produces a significant, long-lasting neuroprotective effect against MDMA-induced 5-HT deficits. This effect is apparently mediated by an increased expression of MnSOD and a subsequent reduced susceptibility to the oxidative stress caused by MDMA.
Collapse
Affiliation(s)
- Elena Puerta
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Methylenedioxymethamphetamine (MDMA, 'Ecstasy'): Neurodegeneration versus Neuromodulation. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058674 DOI: 10.3390/ph4070992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is widely abused as a recreational drug due to its unique psychological effects. Of interest, MDMA causes long-lasting deficits in neurochemical and histological markers of the serotonergic neurons in the brain of different animal species. Such deficits include the decline in the activity of tryptophan hydroxylase in parallel with the loss of 5-HT and its main metabolite 5-hydoxyindoleacetic acid (5-HIAA) along with a lower binding of specific ligands to the 5-HT transporters (SERT). Of concern, reduced 5-HIAA levels in the CSF and SERT density have also been reported in human ecstasy users, what has been interpreted to reflect the loss of serotonergic fibers and terminals. The neurotoxic potential of MDMA has been questioned in recent years based on studies that failed to show the loss of the SERT protein by western blot or the lack of reactive astrogliosis after MDMA exposure. In addition, MDMA produces a long-lasting down-regulation of SERT gene expression; which, on the whole, has been used to invoke neuromodulatory mechanisms as an explanation to MDMA-induced 5-HT deficits. While decreased protein levels do not necessarily reflect neurodegeneration, the opposite is also true, that is, neuroregulatory mechanisms do not preclude the existence of 5-HT terminal degeneration.
Collapse
|
9
|
Orejana L, Barros-Miñones L, Jordán J, Puerta E, Aguirre N. Sildenafil ameliorates cognitive deficits and tau pathology in a senescence-accelerated mouse model. Neurobiol Aging 2011; 33:625.e11-20. [PMID: 21546125 DOI: 10.1016/j.neurobiolaging.2011.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/14/2011] [Accepted: 03/22/2011] [Indexed: 01/03/2023]
Abstract
Aging is associated with a deterioration of cognitive performance and with increased risk of neurodegenerative disorders. In the present study we tested whether the specific phosphodiesterase 5 inhibitor sildenafil could ameliorate the age-dependent cognitive impairments shown by the senescence-accelerated mouse prone-8 (SAMP8). Sildenafil administration (7.5 mg/kg for 4 weeks) to 5-month-old SAMP8 mice attenuated spatial learning and memory impairments shown by these mice in the Morris Water Maze. Tau hyperphosphorylation (AT8 but not PHF-1 epitope) shown by SAMP8 mice at this age was also decreased in the hippocampus of sildenafil-treated mice, an effect probably related to a decrease in cyclin-dependent kinase 5 protein expression and activity (p25/p35 ratio). Interestingly, sildenafil also phosphorylated Akt, which was associated with an increase of glycogen synthase kinase-3β phosphorylation, providing a plausible explanation for the reductions in tau hyperphosphorylation (AT8 and PHF-1 epitopes) and attenuation of cognitive deficits shown by 9-month-old SAMP8 mice. Overall, sildenafil might be beneficial in age-related brain dysfunction and could be an emerging candidate for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lourdes Orejana
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
10
|
Gu YT, Xue YX, Zhang H, Li Y, Liang XY. Adenosine 5'-triphosphate-sensitive potassium channel activator induces the up-regulation of caveolin-1 expression in a rat brain tumor model. Cell Mol Neurobiol 2011; 31:629-34. [PMID: 21331626 PMCID: PMC11498491 DOI: 10.1007/s10571-011-9658-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
This study was performed to determine whether minoxidil sulfate (MS), a selective Adenosine 5'-triphosphate-sensitive potassium channel (K (ATP) channel) activator, has an effect on the expression of caveolin-1 in the rat's brain tumor tissue. Using a rat brain glioma (C6) model, we found that the expression of caveolin-1 protein at tumor sites was greatly increased after intracarotid infusion of MS at a dose of 30 μg/kg/min for 15, 30, and 60 min via Western blot analysis. And the peak value of the caveolin-1 expression was observed in rats with glioma after 15 min of MS perfusion, which was significantly attenuated by reactive oxygen species (ROS) scavenger (N-2-mercaptopropionyl glycine, MPG). In addition, MPG also significantly inhibited the increase of blood-brain tumor barrier (BTB) permeability which was induced by MS. This led to the conclusion that the MS-induced BTB permeability increase may be related to the accelerated formation of caveolin-1 protein, and could be mediated by ROS.
Collapse
Affiliation(s)
- Yan-ting Gu
- Department of Physiology, Life Science and Biology Pharmacopedia Institution, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning Province People’s Republic of China
| | - Yi-xue Xue
- Department of Neurobiology, College Basic of Medicine, China Medical University, Shenyang, 110001 Liaoning Province People’s Republic of China
| | - Hua Zhang
- Department of Neurobiology, College Basic of Medicine, China Medical University, Shenyang, 110001 Liaoning Province People’s Republic of China
| | - Yan Li
- Department of Physiology, Life Science and Biology Pharmacopedia Institution, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning Province People’s Republic of China
| | - Xin-yuan Liang
- Department of Physiology, Life Science and Biology Pharmacopedia Institution, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning Province People’s Republic of China
| |
Collapse
|
11
|
Gramage E, Rossi L, Granado N, Moratalla R, Herradón G. Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum. Neuroscience 2010; 170:308-16. [PMID: 20620199 DOI: 10.1016/j.neuroscience.2010.06.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/26/2010] [Accepted: 06/29/2010] [Indexed: 01/04/2023]
Abstract
Pleiotrophin (PTN) is a neurotrophic factor with important effects in survival and differentiation of dopaminergic neurons that has been suggested to play important roles in drug of abuse-induced neurotoxicity. To test this hypothesis, we have studied the effects of amphetamine (10 mg/kg, four times, every 2 h) on the nigrostriatal pathway of PTN genetically deficient (PTN-/-) mice. We found that amphetamine causes a significantly enhanced loss of dopaminergic terminals in the striatum of PTN-/- mice compared to wild type (WT+/+) mice. In addition, we found a significant decrease ( approximately 20%) of tyrosine hydroxylase (TH)-positive neurons only in the substantia nigra of amphetamine-treated PTN-/- mice, whereas this area of WT+/+ animals remained unaffected after amphetamine treatment. This effect was accompanied by enhanced amphetamine-induced astrocytosis in the substantia nigra of PTN-/- mice. Interestingly, we found a significant decrease in the phosphorylation levels of p42 extracellular-signal regulated kinase (ERK2) in both saline- and amphetamine-treated PTN-/- mice, whereas phosphorylation of p44 ERK (ERK1) was almost abolished in the striatum of PTN-/- mice compared to WT+/+ mice, suggesting that basal deficiencies in the phosphorylation levels of ERK1/2 could underlie the higher vulnerability of PTN-/- mice to amphetamine-induced neurotoxic effects. The data suggest an important role of PTN in the protection of nigrostriatal pathways against amphetamine insult.
Collapse
Affiliation(s)
- E Gramage
- Lab. Pharmacology and Toxicology, University San Pablo CEU, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Yuan J, Darvas M, Sotak B, Hatzidimitriou G, McCann UD, Palmiter RD, Ricaurte GA. Dopamine is not essential for the development of methamphetamine-induced neurotoxicity. J Neurochem 2010; 114:1135-42. [PMID: 20533999 PMCID: PMC3124237 DOI: 10.1111/j.1471-4159.2010.06839.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is widely believed that dopamine (DA) mediates methamphetamine (METH)-induced toxicity to brain dopaminergic neurons, because drugs that interfere with DA neurotransmission decrease toxicity, whereas drugs that increase DA neurotransmission enhance toxicity. However, temperature effects of drugs that have been used to manipulate brain DA neurotransmission confound interpretation of the data. Here we show that the recently reported ability of l-dihydroxyphenylalanine to reverse the protective effect of alpha-methyl-para-tyrosine on METH-induced DA neurotoxicity is also confounded by drug effects on body temperature. Further, we show that mice genetically engineered to be deficient in brain DA develop METH neurotoxicity, as long as the thermic effects of METH are preserved. In addition, we demonstrate that mice genetically engineered to have unilateral brain DA deficits develop METH-induced dopaminergic deficits that are of comparable magnitude on both sides of the brain. Taken together, these findings demonstrate that DA is not essential for the development of METH-induced dopaminergic neurotoxicity and suggest that mechanisms independent of DA warrant more intense investigation.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Puerta E, Pastor F, Dvoracek J, De Saavedra MDM, Goñi-Allo B, Jordán J, Hervias I, Aguirre N. Delayed pre-conditioning by 3-nitropropionic acid prevents 3,4-methylenedioxymetamphetamine-induced 5-HT deficits. J Neurochem 2010; 114:843-52. [DOI: 10.1111/j.1471-4159.2010.06808.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Puerta E, Hervias I, Barros-Miñones L, Jordan J, Ricobaraza A, Cuadrado-Tejedor M, García-Osta A, Aguirre N. Sildenafil protects against 3-nitropropionic acid neurotoxicity through the modulation of calpain, CREB, and BDNF. Neurobiol Dis 2010; 38:237-45. [DOI: 10.1016/j.nbd.2010.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/24/2009] [Accepted: 01/17/2010] [Indexed: 11/26/2022] Open
|
15
|
Eun JW, Kwack SJ, Noh JH, Jung KH, Kim JK, Bae HJ, Xie H, Ryu JC, Ahn YM, Min JH, Park WS, Lee JY, Rhee GS, Nam SW. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine. Toxicol Appl Pharmacol 2009; 237:91-101. [PMID: 19285098 DOI: 10.1016/j.taap.2009.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 02/27/2009] [Accepted: 02/28/2009] [Indexed: 11/27/2022]
Abstract
The amphetamine derivative (+/-)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significant gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Pathology, Microdissection Genomics Research Center, College of Medicine, The Catholic University of Korea, #505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Puerta E, Hervias I, Goñi-Allo B, Lasheras B, Jordan J, Aguirre N. Phosphodiesterase 5 inhibitors prevent 3,4-methylenedioxymethamphetamine-induced 5-HT deficits in the rat. J Neurochem 2009; 108:755-66. [PMID: 19187094 DOI: 10.1111/j.1471-4159.2008.05825.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphodiesterase 5 (PDE5) inhibitors are often used in combination with club drugs such as 3,4-methylenedioxymethamphetamine (MDMA or ecstasy). We investigated the consequences of such combination in the serotonergic system of the rat. Oral administration of sildenafil citrate (1.5 or 8 mg/kg) increased brain cGMP levels and protected in a dose-dependent manner against 5-hydroxytryptamine depletions caused by MDMA (3 x 5 mg/kg, i.p., every 2 h) in the striatum, frontal cortex and hippocampus without altering the acute hyperthermic response to MDMA. Intrastriatal administration of the protein kinase G (PKG) inhibitor, KT5823 [(9S, 10R, 12R)-2,3,9,10,11,12-Hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, methyl ester)], suppressed sildenafil-mediated protection. By contrast, the cell permeable cGMP analogue, 8-bromoguanosine cyclic 3',5'-monophosphate, mimicked sildenafil effects further suggesting the involvement of the PKG pathway in mediating sildenafil protection. Because mitochondrial ATP-sensitive K(+) channels are a target for PKG, we next administered the specific mitochondrial ATP-sensitive K(+) channel blocker, 5-hydroxydecanoic acid, 30 min before sildenafil. 5-hydroxydecanoic acid completely reversed the protection afforded by sildenafil, thereby implicating the involvement of mitochondrial ATP-sensitive K(+) channels. Sildenafil also increased Akt phosphorylation, and so the possible involvement of the Akt/endothelial nitric oxide synthase (eNOS)/sGC signalling pathway was analysed. Neither the phosphatidylinositol 3-kinase inhibitor, wortmannin, nor the selective eNOS inhibitor, L-N5-(1-iminoethyl)-L-ornithine dihydrochloride, reversed the protection afforded by sildenafil, suggesting that Akt/eNOS/sGC cascade does not participate in the protective mechanisms. Our data also show that the protective effect of sildenafil can be extended to vardenafil, another PDE5 inhibitor. In conclusion, sildenafil protects against MDMA-induced long-term reduction of indoles by a mechanism involving increased production of cGMP and subsequent activation of PKG and mitochondrial ATP-sensitive K(+) channel opening.
Collapse
Affiliation(s)
- Elena Puerta
- Department of Pharmacology, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Shi XR, Chang J, Ding JH, Fan Y, Sun XL, Hu G. Kir6.2 knockout alters neurotransmitter release in mouse striatum: An in vivo microdialysis study. Neurosci Lett 2008; 439:230-4. [DOI: 10.1016/j.neulet.2008.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/29/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
|
18
|
Hance MW, Dhar MS, Plummer HK. G-Protein Inwardly Rectifying Potassium Channel 1 (GIRK1) Knockdown Decreases Beta-Adrenergic, MAP Kinase and Akt Signaling in the MDA-MB-453 Breast Cancer Cell Line. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2008; 1:25-34. [PMID: 21655370 PMCID: PMC3091401 DOI: 10.4137/bcbcr.s629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Previous data from our laboratory have indicated that there is a functional link between the beta-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1) in breast cancer cell lines and that these pathways are involved in growth regulation of these cells. To determine functionality, MDA-MB-453 breast cancer cells were stimulated with ethanol, known to open GIRK channels. Decreased GIRK1 protein levels were seen after treatment with 0.12% ethanol. In addition, serum-free media completely inhibited GIRK1 protein expression. This data indicates that there are functional GIRK channels in breast cancer cells and that these channels are involved in cellular signaling. In the present research, to further define the signaling pathways involved, we performed RNA interference (siRNA) studies. Three stealth siRNA constructs were made starting at bases 1104, 1315, and 1490 of the GIRK1 sequence. These constructs were transfected into MDA-MB-453 cells, and both RNA and protein were isolated. GIRK1, β2-adrenergic and 18S control levels were determined using real-time PCR 24 hours after transfection. All three constructs decreased GIRK1 mRNA levels. However, β2 mRNA levels were unchanged by the GIRK1 knockdown. GIRK1 protein levels were also reduced by the knockdown, and this knockdown led to decreases in beta-adrenergic, MAP kinase and Akt signaling.
Collapse
Affiliation(s)
- Michael W Hance
- Molecular Cancer Analysis Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996-4542, U.S.A
| | | | | |
Collapse
|