1
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2025; 62:626-642. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
3
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez DG, Athonvarangkul D, Shin J, Dann P, Haberman AM, Kim LK, Ferguson SM, Choi J, Wysolmerski J. Intracellular calcium links milk stasis to lysosome-dependent cell death during early mammary gland involution. Cell Mol Life Sci 2024; 81:29. [PMID: 38212474 PMCID: PMC10784359 DOI: 10.1007/s00018-023-05044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gabriel Talaia
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Wonnam Kim
- Division of Phamacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Junho Song
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juhyeon Hong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaehun Shin
- Integrated Science Engineering Division, Underwood International College, Yonsei University, Seoul, Republic of Korea
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ann M Haberman
- Departments of Immunobiology and Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Shawn M Ferguson
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Zhang L, Zhou T, Su Y, He L, Wang Z. Involvement of histone methylation in the regulation of neuronal death. J Physiol Biochem 2023; 79:685-693. [PMID: 37544979 DOI: 10.1007/s13105-023-00978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson's disease, and Alzheimer's disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Tai Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yaxin Su
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li He
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Hua T, Robitaille M, Roberts-Thomson SJ, Monteith GR. The intersection between cysteine proteases, Ca 2+ signalling and cancer cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119532. [PMID: 37393017 DOI: 10.1016/j.bbamcr.2023.119532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Apoptosis is a highly complex and regulated cell death pathway that safeguards the physiological balance between life and death. Over the past decade, the role of Ca2+ signalling in apoptosis and the mechanisms involved have become clearer. The initiation and execution of apoptosis is coordinated by three distinct groups of cysteines proteases: the caspase, calpain and cathepsin families. Beyond its physiological importance, the ability to evade apoptosis is a prominent hallmark of cancer cells. In this review, we will explore the involvement of Ca2+ in the regulation of caspase, calpain and cathepsin activity, and how the actions of these cysteine proteases alter intracellular Ca2+ handling during apoptosis. We will also explore how apoptosis resistance can be achieved in cancer cells through deregulation of cysteine proteases and remodelling of the Ca2+ signalling toolkit.
Collapse
Affiliation(s)
- Trinh Hua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Yoon M, Phan V, Podvin S, Mosier C, O’Donoghue AJ, Hook V. Distinct Cleavage Properties of Cathepsin B Compared to Cysteine Cathepsins Enable the Design and Validation of a Specific Substrate for Cathepsin B over a Broad pH Range. Biochemistry 2023; 62:2289-2300. [PMID: 37459182 PMCID: PMC10399199 DOI: 10.1021/acs.biochem.3c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/11/2023] [Indexed: 08/02/2023]
Abstract
The biological and pathological functions of cathepsin B occur in acidic lysosomes and at the neutral pH of cytosol, nuclei, and extracellular locations. Importantly, cathepsin B displays different substrate cleavage properties at acidic pH compared to neutral pH conditions. It is, therefore, desirable to develop specific substrates for cathepsin B that measure its activity over broad pH ranges. Current substrates used to monitor cathepsin B activity consist of Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, but they lack specificity since they are cleaved by other cysteine cathepsins. Furthermore, Z-Arg-Arg-AMC monitors cathepsin B activity at neutral pH and displays minimal activity at acidic pH. Therefore, the purpose of this study was to design and validate specific fluorogenic peptide substrates that can monitor cathepsin B activity over a broad pH range from acidic to neutral pH conditions. In-depth cleavage properties of cathepsin B were compared to those of the cysteine cathepsins K, L, S, V, and X via multiplex substrate profiling by mass spectrometry at pH 4.6 and pH 7.2. Analysis of the cleavage preferences predicted the tripeptide Z-Nle-Lys-Arg-AMC as a preferred substrate for cathepsin B. Significantly, Z-Nle-Lys-Arg-AMC displayed the advantageous properties of measuring high cathepsin B specific activity over acidic to neutral pHs and was specifically cleaved by cathepsin B over the other cysteine cathepsins. Z-Nle-Lys-Arg-AMC specifically monitored cathepsin B activity in neuronal and glial cells which were consistent with relative abundances of cathepsin B protein. These findings validate Z-Nle-Lys-Arg-AMC as a novel substrate that specifically monitors cathepsin B activity over a broad pH range.
Collapse
Affiliation(s)
- Michael
C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Von Phan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
- Department
of Neurosciences and Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
7
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez D, Athonvarangkul D, Shin J, Dann P, Haberman A, Kim LK, Ferguson S, Choi J, Wysolmerski J. Intracellular Calcium links Milk Stasis to Lysosome Dependent Cell Death by Activating a TGFβ3/TFEB/STAT3 Pathway Early during Mammary Gland Involution. RESEARCH SQUARE 2023:rs.3.rs-3030763. [PMID: 37398309 PMCID: PMC10312953 DOI: 10.21203/rs.3.rs-3030763/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 hours of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6 and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis. This is the result of increased TGFβ signaling and inhibition of cell cycle progression. Finally, we demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3, a process which also appears to be mediated by TGFβ signaling. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Yale School of Medicine: Yale University School of Medicine
| | | | - Gabriel Talaia
- Yale School of Medicine: Yale University School of Medicine
| | | | | | | | | | - David Gonzalez
- Yale School of Medicine: Yale University School of Medicine
| | | | | | - Pamela Dann
- Yale School of Medicine: Yale University School of Medicine
| | - Ann Haberman
- Yale School of Medicine: Yale University School of Medicine
| | | | - Shawn Ferguson
- Yale School of Medicine: Yale University School of Medicine
| | | | | |
Collapse
|
8
|
Riche K, Lenard NR. Quercetin's Effects on Glutamate Cytotoxicity. Molecules 2022; 27:7620. [PMID: 36364448 PMCID: PMC9657878 DOI: 10.3390/molecules27217620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
The potentially therapeutic effects of the naturally abundant plant flavonoid quercetin have been extensively studied. An extensive body of literature suggests that quercetin's powerful antioxidant effects may relate to its ability to treat disease. Glutamate excitotoxicity occurs when a neuron is overstimulated by the neurotransmitter glutamate and causes dysregulation of intracellular calcium concentrations. Quercetin has been shown to be preventative against many forms of neuronal cell death resulting from glutamate excitotoxicity, such as oncosis, intrinsic apoptosis, mitochondrial permeability transition, ferroptosis, phagoptosis, lysosomal cell death, parthanatos, and death by reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation. The clinical importance for the attenuation of glutamate excitotoxicity arises from the need to deter the continuous formation of tissue infarction caused by various neurological diseases, such as ischemic stroke, seizures, neurodegenerative diseases, and trauma. This review aims to summarize what is known concerning glutamate physiology and glutamate excitotoxic pathophysiology and provide further insight into quercetin's potential to hinder neuronal death caused by cell death pathways activated by glutamate excitotoxicity. Quercetin's bioavailability may limit its use clinically, however. Thus, future research into ways to increase its bioavailability are warranted.
Collapse
Affiliation(s)
| | - Natalie R. Lenard
- Department of Biology, School of Arts and Sciences, Franciscan Missionaries of Our Lady University, 5414 Brittany Drive, Baton Rouge, LA 70808, USA
| |
Collapse
|
9
|
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052484. [PMID: 35269632 PMCID: PMC8910227 DOI: 10.3390/ijms23052484] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Human cells are exposed to numerous exogenous and endogenous insults every day. Unlike other molecules, DNA cannot be replaced by resynthesis, hence damage to DNA can have major consequences for the cell. The DNA damage response contains overlapping signalling networks that repair DNA and hence maintain genomic integrity, and aberrant DNA damage responses are increasingly described in neurodegenerative diseases. Furthermore, DNA repair declines during aging, which is the biggest risk factor for these conditions. If unrepaired, the accumulation of DNA damage results in death to eliminate cells with defective genomes. This is particularly important for postmitotic neurons because they have a limited capacity to proliferate, thus they must be maintained for life. Neuronal death is thus an important process in neurodegenerative disorders. In addition, the inability of neurons to divide renders them susceptible to senescence or re-entry to the cell cycle. The field of cell death has expanded significantly in recent years, and many new mechanisms have been described in various cell types, including neurons. Several of these mechanisms are linked to DNA damage. In this review, we provide an overview of the cell death pathways induced by DNA damage that are relevant to neurons and discuss the possible involvement of these mechanisms in neurodegenerative conditions.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Mariana Brocardo
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
10
|
Chen S, Xu D, Fan L, Fang Z, Wang X, Li M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front Mol Neurosci 2022; 14:797253. [PMID: 35069111 PMCID: PMC8780133 DOI: 10.3389/fnmol.2021.797253] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders characterized by recurrent seizures. The mechanism of epilepsy remains unclear and previous studies suggest that N-methyl-D-aspartate receptors (NMDARs) play an important role in abnormal discharges, nerve conduction, neuron injury and inflammation, thereby they may participate in epileptogenesis. NMDARs belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian CNS. Despite numerous studies focusing on the role of NMDAR in epilepsy, the relationship appeared to be elusive. In this article, we reviewed the regulation of NMDAR and possible mechanisms of NMDAR in epilepsy and in respect of onset, development, and treatment, trying to provide more evidence for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Hernandez ML, Marone M, Gorse KM, Lafrenaye AD. Cathepsin B Relocalization in Late Membrane Disrupted Neurons Following Diffuse Brain Injury in Rats. ASN Neuro 2022; 14:17590914221099112. [PMID: 35503242 PMCID: PMC9069603 DOI: 10.1177/17590914221099112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) has consequences that last for years following injury. While TBI can precipitate a variety of diffuse pathologies, the mechanisms involved in injury-induced neuronal membrane disruption remain elusive. The lysosomal cysteine protease, Cathepsin B (Cath B), and specifically its redistribution into the cytosol has been implicated in cell death. Little is known about Cath B or neuronal membrane disruption chronically following diffuse TBI. Therefore, the current study evaluated Cath B and diffuse neuronal membrane disruption over a more chronic post-injury window (6 h-4 w). We evaluated Cath B in adult male Sprague-Dawley rats following central fluid percussion injury (CFPI). Expression of Cath B, as well as Cath B-associated pro (Bak and AIF) and anti-apoptotic (Bcl-xl) proteins, were assessed using western blot analysis. Cath B activity was also assessed. Localization of Cath B was evaluated in the membrane disrupted and non-disrupted population following CFPI using immunohistochemistry paired with quantitative image analysis and ultrastructural verification. There was no difference in expression or activity of Cath B or any of the associated proteins between sham and CFPI at any time post-injury. Immunohistological studies, however, showed a sub-cellular re-localization of Cath B at 2 w and 4 w post-injury in the membrane disrupted neuronal population as compared to the time-point matched non-disrupted neurons. Both membrane disruption and Cath B relocalization appear linked to neuronal atrophy. These observations are indicative of a late secondary pathology that represents an opportunity for therapeutic treatment of these neurons following diffuse TBI. Summary Statement Lysosomal cathepsin B relocalizes to the cytosol in neurons with disrupted plasmalemmal membranes weeks following diffuse brain injury. Both the membrane disrupted and cathepsin B relocalized neuronal subpopulations displayed smaller soma and nucleus size compared to non-pathological neurons, indicating atrophy.
Collapse
Affiliation(s)
- Martina L. Hernandez
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Marone
- Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Karen M. Gorse
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Audrey D. Lafrenaye
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
12
|
Moraes JDN, Francisco AF, Dill LM, Diniz RS, Oliveira CSD, Silva TMRD, Caldeira CADS, Corrêa EDA, Coutinho-Neto A, Zanchi FB, Fontes MRDM, Soares AM, Calderon LDA. New multienzymatic complex formed between human cathepsin D and snake venom phospholipase A2. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20220002. [DOI: 10.1590/1678-9199-jvatitd-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Aleff Ferreira Francisco
- São Paulo State University (UNESP), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil; Smart Active Ingredients Lab (SAIL), Brazil
| | | | - Rafaela Souza Diniz
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; Federal University of Rondônia (UNIR), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil
| | | | | | | | | | | | - Fernando Berton Zanchi
- Federal University of Rondônia (UNIR), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | | | - Andreimar Martins Soares
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil; São Lucas University Center (UniSL), Brazil
| | - Leonardo de Azevedo Calderon
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; Federal University of Rondônia (UNIR), Brazil; Smart Active Ingredients Lab (SAIL), Brazil; Aparicio Carvalho University Center (FIMCA), Brazil
| |
Collapse
|
13
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yoon MC, Solania A, Jiang Z, Christy MP, Podvin S, Mosier C, Lietz CB, Ito G, Gerwick WH, Wolan DW, Hook G, O’Donoghue AJ, Hook V. Selective Neutral pH Inhibitor of Cathepsin B Designed Based on Cleavage Preferences at Cytosolic and Lysosomal pH Conditions. ACS Chem Biol 2021; 16:1628-1643. [PMID: 34416110 DOI: 10.1021/acschembio.1c00138] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cathepsin B is a cysteine protease that normally functions within acidic lysosomes for protein degradation, but in numerous human diseases, cathepsin B translocates to the cytosol having neutral pH where the enzyme activates inflammation and cell death. Cathepsin B is active at both the neutral pH 7.2 of the cytosol and the acidic pH 4.6 within lysosomes. We evaluated the hypothesis that cathepsin B may possess pH-dependent cleavage preferences that can be utilized for design of a selective neutral pH inhibitor by (1) analysis of differential cathepsin B cleavage profiles at neutral pH compared to acidic pH using multiplex substrate profiling by mass spectrometry (MSP-MS), (2) design of pH-selective peptide-7-amino-4-methylcoumarin (AMC) substrates, and (3) design and validation of Z-Arg-Lys-acyloxymethyl ketone (AOMK) as a selective neutral pH inhibitor. Cathepsin B displayed preferences for cleaving peptides with Arg in the P2 position at pH 7.2 and Glu in the P2 position at pH 4.6, represented by its primary dipeptidyl carboxypeptidase and modest endopeptidase activity. These properties led to design of the substrate Z-Arg-Lys-AMC having neutral pH selectivity, and its modification with the AOMK warhead to result in the inhibitor Z-Arg-Lys-AOMK. This irreversible inhibitor displays nanomolar potency with 100-fold selectivity for inhibition of cathepsin B at pH 7.2 compared to pH 4.6, shows specificity for cathepsin B over other cysteine cathepsins, and is cell permeable and inhibits intracellular cathepsin B. These findings demonstrate that cathepsin B possesses pH-dependent cleavage properties that can lead to development of a potent, neutral pH inhibitor of this enzyme.
Collapse
Affiliation(s)
- Michael C. Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Angelo Solania
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Mitchell P. Christy
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Gen Ito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Dennis W. Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, California 92037, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
16
|
Lindhout IA, Murray TE, Richards CM, Klegeris A. Potential neurotoxic activity of diverse molecules released by microglia. Neurochem Int 2021; 148:105117. [PMID: 34186114 DOI: 10.1016/j.neuint.2021.105117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023]
Abstract
Microglia are the professional immune cells of the brain, which support numerous physiological processes. One of the defensive functions provided by microglia involves secretion of cytotoxins aimed at destroying invading pathogens. It is also recognized that the adverse activation of microglia in diseased brains may lead to secretion of cytotoxic molecules, which could be damaging to the surrounding cells, including neurons. Several of these toxins, such as reactive oxygen and nitrogen species, L-glutamate, and quinolinic acid, are widely recognized and well-studied. This review is focused on a structurally diverse group of less-established microglia neurotoxins, which were selected by applying the two criteria that these molecules 1) can be released by microglia, and 2) have the potential to be directly harmful to neurons. The following 11 molecules are discussed in detail: amyloid beta peptides (Aβ); cathepsin (Cat)B and CatD; C-X-C motif chemokine ligand (CXCL)10 and CXCL12 (5-67); high mobility group box (HMGB)1; lymphotoxin (LT)-α; matrix metalloproteinase (MMP)-2 and MMP-9; platelet-activating factor (PAF); and prolyl endopeptidase (PEP). Molecular mechanisms of their release by microglia and neurotoxicity, as well as available evidence implicating their involvement in human neuropathologies are summarized. Further studies on several of the above molecules are warranted to confirm either their microglial origin in the brain or direct neurotoxic effects. In addition, investigations into the differential secretion patterns of neurotoxins by microglia in response to diverse stimuli are required. This research could identify novel therapeutic targets for neurological disorders involving adverse microglial activation.
Collapse
Affiliation(s)
- Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
17
|
Elsawy H, Alzahrani AM, Alfwuaires M, Sedky A, El-Trass EE, Mahmoud O, Abdel-Moneim AM, Khalil M. Analysis of silymarin-modulating effects against acrylamide-induced cerebellar damage in male rats: Biochemical and pathological markers. J Chem Neuroanat 2021; 115:101964. [PMID: 33965515 DOI: 10.1016/j.jchemneu.2021.101964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acrylamide (ACR) is a well-proven neurotoxin and potential food carcinogen in humans and rodent models. Silymarin (SIL) is a flavonoid mixture isolated from seeds, leaves, and fruits of Silymarin marianum (milk thistle) that possesses a free-radical scavenging effect. OBJECTIVE In this work, the primary focus was to investigate the efficacy of SIL to mitigate ACR-induced subacute neurotoxic effects and oxidative changes in rat cerebellum. METHODS Adult male rats were treated intraperitoneally with ACR (50 mg/kg) with or without SIL (160 mg/kg). The neuropathology and biochemical parameters viz. lipid peroxidation (measured as levels of malondialdehyde or MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), serotonin (5-hydroxytryptamine; 5-HT), dopamine (DA), and cathepsin D (CTSD) in the cerebellum have been evaluated. RESULTS The data showed that ACR induced redox disruptions as measured by increased MDA levels and inhibition of CAT, SOD, and GPx antioxidant enzyme activities. Besides, cerebellar monoamine neurotransmitters, 5-HT and DA, were depleted in ACR-treated rats. Furthermore, ACR administration caused a significant elevation of CTSD activity, indicating that ACR could trigger apoptosis or apoptosis-like death. At the tissue level, cerebellar cortex sections from ACR-treated animals were characterized by severe neuronal damage. The administration of SIL to ACR-treated rats remarkably alleviated all the aforementioned ACR-induced effects. CONCLUSION SIL has a potent therapeutic effect against ACR-induced cerebellar neurotoxicity in experimental rats via the attenuation of oxidative/antioxidative responses and the inhibition of CTSD-activity.
Collapse
Affiliation(s)
- Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia.
| | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia.
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia; Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman E El-Trass
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Omar Mahmoud
- Essex Partnership University NHS Foundation Trust: Harlow, Essex, Great Britain, United Kingdom.
| | - Ashraf M Abdel-Moneim
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia; Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mahmoud Khalil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon.
| |
Collapse
|
18
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
19
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
20
|
Zhao Y, Yang J, Li C, Zhou G, Wan H, Ding Z, Wan H, Zhou H. Role of the neurovascular unit in the process of cerebral ischemic injury. Pharmacol Res 2020; 160:105103. [PMID: 32739425 DOI: 10.1016/j.phrs.2020.105103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemic injury exhibits both high morbidity and mortality worldwide. Traditional research of the pathogenesis of cerebral ischemic injury has focused on separate analyses of the involved cell types. In recent years, the neurovascular unit (NVU) mechanism of cerebral ischemic injury has been proposed in modern medicine. Hence, more effective strategies for the treatment of cerebral ischemic injury may be provided through comprehensive analysis of brain cells and the extracellular matrix. However, recent studies that have investigated the function of the NVU in cerebral ischemic injury have been insufficient. In addition, the metabolism and energy conversion of the NVU depend on interactions among multiple cell types, which make it difficult to identify the unique contribution of each cell type. Therefore, in the present review, we comprehensively summarize the regulatory effects and recovery mechanisms of four major cell types (i.e., astrocytes, microglia, brain-microvascular endothelial cells, and neurons) in the NVU under cerebral ischemic injury, as well as discuss the interactions among these cell types in the NVU. Furthermore, we discuss the common signaling pathways and signaling factors that mediate cerebral ischemic injury in the NVU, which may help to provide a theoretical basis for the comprehensive elucidation of cerebral ischemic injury.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoying Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
21
|
Hook V, Yoon M, Mosier C, Ito G, Podvin S, Head BP, Rissman R, O'Donoghue AJ, Hook G. Cathepsin B in neurodegeneration of Alzheimer's disease, traumatic brain injury, and related brain disorders. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140428. [PMID: 32305689 DOI: 10.1016/j.bbapap.2020.140428] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Investigations of Alzheimer's disease (AD), traumatic brain injury (TBI), and related brain disorders have provided extensive evidence for involvement of cathepsin B, a lysosomal cysteine protease, in mediating the behavioral deficits and neuropathology of these neurodegenerative diseases. This review integrates findings of cathepsin B regulation in clinical biomarker studies, animal model genetic and inhibitor evaluations, structural studies, and lysosomal cell biological mechanisms in AD, TBI, and related brain disorders. The results together indicate the role of cathepsin B in the behavioral deficits and neuropathology of these disorders. Lysosomal leakage occurs in AD and TBI, and related neurodegeneration, which leads to the hypothesis that cathepsin B is redistributed from the lysosome to the cytosol where it initiates cell death and inflammation processes associated with neurodegeneration. These results together implicate cathepsin B as a major contributor to these neuropathological changes and behavioral deficits. These findings support the investigation of cathepsin B as a potential drug target for therapeutic discovery and treatment of AD, TBI, and TBI-related brain disorders.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, United States of America; Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, United States of America.
| | - Michael Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, United States of America
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Gen Ito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Brian P Head
- VA San Diego Healthcare System, La Jolla, CA, United States of America; Department of Anesthesia, University of California San Diego, La Jolla, CA, United States of America
| | - Robert Rissman
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, United States of America; VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, CA, United States of America
| |
Collapse
|
22
|
Cui L, Zhao LP, Ye JY, Yang L, Huang Y, Jiang XP, Zhang Q, Jia JZ, Zhang DX, Huang Y. The Lysosomal Membrane Protein Lamp2 Alleviates Lysosomal Cell Death by Promoting Autophagic Flux in Ischemic Cardiomyocytes. Front Cell Dev Biol 2020; 8:31. [PMID: 32117965 PMCID: PMC7019187 DOI: 10.3389/fcell.2020.00031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Lysosomal membrane permeabilization (LMP) has recently been recognized as an important cell death pathway in various cell types. However, studies regarding the correlation between LMP and cardiomyocyte death are scarce. Lysosomal membrane-associated protein 2 (Lamp2) is an important component of lysosomal membranes and is involved in both autophagy and LMP. In the present study, we found that the protein content of Lamp2 gradually decreased in response to oxygen, glucose and serum deprivation (OGD) treatment in vitro. To further elucidate its role in ischemic cardiomyocytes, particularly with respect to autophagy and LMP, we infected cardiomyocytes with adenovirus carrying full-length Lamp2 to restore its protein level in cells. We found that OGD treatment resulted in the occurrence of LMP and a decline in the viability of cardiomyocytes, which were remarkably reversed by Lamp2 restoration. Exogenous expression of Lamp2 also significantly alleviated the autophagic flux blockade induced by OGD treatment by promoting the trafficking of cathepsin B (Cat B) and cathepsin D (Cat D). Through drug intervention and gene regulation to alleviate and exacerbate autophagic flux blockade respectively, we found that impaired autophagic flux in response to ischemic injury contributed to the occurrence of LMP in cardiomyocytes. In conclusion, our present data suggest that Lamp2 overexpression can improve autophagic flux blockade probably by promoting the trafficking of cathepsins and consequently conferring cardiomyocyte resistance against lysosomal cell death (LCD) that is induced by ischemic injury. These results may indicate a new therapeutic target for ischemic heart damage.
Collapse
Affiliation(s)
- Lin Cui
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li-Ping Zhao
- Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Jing-Ying Ye
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xu-Pin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie-Zhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong-Xia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
23
|
Lin HH, Chen SJ, Shen MR, Huang YT, Hsieh HP, Lin SY, Lin CC, Chang WSW, Chang JY. Lysosomal cysteine protease cathepsin S is involved in cancer cell motility by regulating store-operated Ca2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118517. [DOI: 10.1016/j.bbamcr.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
|
24
|
CaMKII/proteasome/cytosolic calcium/cathepsin B axis was present in tryspin activation induced by nicardipine. Biosci Rep 2019; 39:BSR20190516. [PMID: 31221819 PMCID: PMC6603279 DOI: 10.1042/bsr20190516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Premature trypsinogen activation is the early event of acute pancreatitis. Therefore, the studies on the processes of trypsinogen activation induced by compounds are important to understand mechanism underly acute pancreatitis under various conditions. Calcium overload in the early stage of acute pancreatitis was previously found to cause intracellular trypsinogen activation; however, treatment of acute pancreatitis using calcium channel blockers did not produced consistent results. Proteasome activity that could be inhibited by some calcium channel blocker has recently been reported to affect the development of acute pancreatitis; however, the associated mechanism were not fully understood. Here, the roles of nicardipine were investigated in trypsinogen activation in pancreatic acinar cells. The results showed that nicardipine could increase cathepsin B activity that caused trypsinogen activation, but higher concentration of nicardipine or prolonged treatment had an opposite effect. The effects of short time treatment of nicardipine at low concentration were studied here. Proteasome inhibition was observed under nicardipine treatment that contributed to the up-regulation in cytosolic calcium. Increased cytosolic calcium from ER induced by nicardipine resulted in the release and activation of cathepsin B. Meanwhile, calcium chelator inhibited cathepsin B as well as trypsinogen activation. Consistently, proteasome activator protected acinar cells from injury induced by nicardipine. Moreover, proteasome inhibition caused by nicardipine depended on CaMKII. In conclusion, CaMKII down-regulation/proteasome inhibition/cytosolic calcium up-regulation/cathepsin B activation/trypsinogen activation axis was present in pancreatic acinar cells injury under nicardipine treatment.
Collapse
|
25
|
cPLA2 activation contributes to lysosomal defects leading to impairment of autophagy after spinal cord injury. Cell Death Dis 2019; 10:531. [PMID: 31296844 PMCID: PMC6624263 DOI: 10.1038/s41419-019-1764-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
The autophagy–lysosomal pathway plays an essential role in cellular homeostasis as well as a protective function against a variety of diseases including neurodegeneration. Conversely, inhibition of autophagy, for example due to lysosomal dysfunction, can lead to pathological accumulation of dysfunctional autophagosomes and consequent neuronal cell death. We previously reported that autophagy is inhibited and contributes to neuronal cell death following spinal cord injury (SCI). In this study, we examined lysosomal function and explored the mechanism of lysosomal defects following SCI. Our data demonstrated that expression levels and processing of the lysosomal enzyme cathepsin D (CTSD) are decreased by 2 h after SCI. Enzymatic activity levels of CTSD and another lysosomal enzyme, N-acetyl-alpha-glucosaminidase, are both decreased 24 h post injury, indicating general lysosomal dysfunction. Subcellular fractionation and immunohistochemistry analysis demonstrated that this dysfunction is due to lysosomal membrane permeabilization and leakage of lysosomal contents into the cytosol. To directly assess extent and mechanisms of damage to lysosomal membranes, we performed mass spectrometry-based lipidomic analysis of lysosomes purified from SCI and control spinal cord. At 2 h post injury our data demonstrated increase in several classes of lysosophospholipids, the products of phospholipases (PLAs), as well as accumulation of PLA activators, ceramides. Phospholipase cPLA2, the main PLA species expressed in the CNS, has been previously implicated in mediation of secondary injury after SCI, but the mechanisms of its involvement remain unclear. Our data demonstrate that cPLA2 is activated within 2 h after SCI preferentially in the lysosomal fraction, where it colocalizes with lysosomal-associated membrane protein 2 in neurons. Inhibition of cPLA2 in vivo decreased lysosomal damage, restored autophagy flux, and reduced neuronal cell damage. Taken together our data implicate lysosomal defects in pathophysiology of SCI and for the first time indicate that cPLA2 activation leads to lysosomal damage causing neuronal autophagosome accumulation associated with neuronal cell death.
Collapse
|
26
|
Cheng CY, Kao ST, Lee YC. Ferulic Acid Exerts Anti-apoptotic Effects against Ischemic Injury by Activating HSP70/Bcl-2- and HSP70/Autophagy-Mediated Signaling after Permanent Focal Cerebral Ischemia in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:39-61. [PMID: 30612456 DOI: 10.1142/s0192415x19500034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study assessed the anti-apoptotic effects of the administration of ferulic acid (FrA) in rats 30 min before middle cerebral artery occlusion (MCAo) followed by 3 d of ischemia and the involvement of 70 kDa heat shock protein (HSP70)-mediated signaling in the penumbral cortex. Our results demonstrated that FrA pretreatment at doses of 80 mg/kg (FrA-80 mg) and 100 mg/kg (FrA-100 mg) effectively ameliorated neurological functions and reduced the numbers of cytochrome c-, cleaved caspase-3-, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells in the penumbral cortex 3 d after ischemia. Moreover, FrA-80 mg and FrA-100 mg pretreatment markedly upregulated cytosolic HSP70, Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) A/B-II and autophagy-related protein 5 (Atg5) expression; cytosolic and mitochondrial X-linked inhibitor of apoptosis (XIAP) expression and the Bcl-2/Bax ratio. FrA pretreatment downregulated cytosolic cytochrome c, apoptosis-inducing factor (AIF), procathepsin B, and cathepsin B expression and mitochondrial and cytosolic second mitochondria-derived activator of caspase/direct inhibitor of apoptosis protein-binding protein with a low isoelectric point (Smac/DIABLO) expression in the penumbral cortex. Pretreatment with VER155008, a HSP70 family inhibitor, significantly inhibited the effects of FrA-100 mg on the expression of the aforementioned proteins expression in the penumbral cortex. FrA-80 mg and FrA-100 mg pretreatment exerts neuroprotective effects against caspase-dependent and -independent apoptosis through activating HSP70/Bcl-2- and HSP70/autophagy-induced signaling pathways. Furthermore, the HSP70/Bcl-2- and HSP70/autophagy-induced anti-apoptotic effects of FrA pretreatment can be attributed to the regulation of Bax/cytochrome c/Smac/DIABLO/XIAP/ caspase-3- (or Bax/AIF-) and Beclin-1/LC3A/B-II/Atg5-mediated signaling, respectively, in the penumbral cortex 3 d after permanent MCAo.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- * School of Post-Baccalaureate Chinese Medicine, College of Chinese medicine, China Medical University, Taichung 40402, Taiwan.,¶ Department of Chinese Medicine, Hui-Sheng Hospital 42056, Taichung, Taiwan
| | - Shung-Te Kao
- † School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yu-Chen Lee
- ‡ Research Center for Chinese Medicine & Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,§ Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,∥ Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan
| |
Collapse
|
27
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 750] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
28
|
Dong F, Yao R, Yu H, Liu Y. Neuroprotection of Ro25-6981 Against Ischemia/Reperfusion-Induced Brain Injury via Inhibition of Autophagy. Cell Mol Neurobiol 2017; 37:743-752. [PMID: 27456026 PMCID: PMC11482226 DOI: 10.1007/s10571-016-0409-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the neuroprotective effect of Ro25-6981 against cerebral ischemia/reperfusion injury. Ro25-6981 alone or in combination with rapamycin was intracerebroventricularly administered to rats which suffered transient forebrain ischemia inducing by 4-vessel occlusion and reperfusion. Nissl staining was used to determine the survival of CA1 pyramidal cells of the hippocampus, while immunohistochemistry was performed to measure neuron-specific enolase (NSE) expression. The expression of autophagy-related proteins, such as microtubule-associated protein l light chain 3 (LC3), Beclin 1, and sequestosome 1 (p62), was assessed by immunoblotting. Nissl staining showed that neuronal damage was reduced in the hippocampal CA1 pyramidal layer in rats that received Ro25-6981. The protective effect of Ro25-6981 was dose-dependent, with a significant effect in the middle-dose range. The expression of NSE increased after Ro25-6981 treatment. Ro25-6981 significantly decreased LC3II (which is membrane bound) and Beclin 1, and increased p62. In addition, Ro25-6981 decreased rapamycin-induced neuronal damage and excessive activation of autophagy after I/R. Taken together, the results suggest that Ro25-6981 could suppress ischemic brain injury by regulating autophagy-related proteins during ischemia/reperfusion.
Collapse
Affiliation(s)
- Fuxing Dong
- Research Center for Neurobiology, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ruiqin Yao
- Research Center for Neurobiology, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Hongli Yu
- Research Center for Neurobiology, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Zhou XY, Luo Y, Zhu YM, Liu ZH, Kent TA, Rong JG, Li W, Qiao SG, Li M, Ni Y, Ishidoh K, Zhang HL. Inhibition of autophagy blocks cathepsins-tBid-mitochondrial apoptotic signaling pathway via stabilization of lysosomal membrane in ischemic astrocytes. Cell Death Dis 2017; 8:e2618. [PMID: 28206988 PMCID: PMC5386481 DOI: 10.1038/cddis.2017.34] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 01/07/2023]
Abstract
Our previous study and others have demonstrated that autophagy is activated in ischemic astrocytes and contributes to astrocytic cell death. However, the mechanisms of ischemia-induced autophagy remain largely unknown. In this study, we established a rat's model of permanent middle cerebral artery occlusion (pMCAO) and an in vitro oxygen and glucose deprivation (OGD) model. Autophagy was inhibited by either pharmacological treatment with 3-methyladenine (3-MA) and wortmannin (Wort) or genetic treatment with knockdown of Atg5 in primary cultured astrocytes and knockout of Atg5 in mouse embryonic fibroblast (MEF) cells, respectively. We found that pharmacological or genetic inhibition of autophagy reversed pMCAO or OGD-induced increase in LC3-II, active cathepsin B and L, tBid, active caspase-3 and cytoplastic cytochrome c (Cyt-c), and suppressed the injury-induced reduction in mitochondrial Cyt-c in ischemic cortex, in injured astrocytes and MEF cells. Immunofluorescence analysis showed that 3-MA or Wort treatment reversed OGD-induced release of cathepsin B and L from the lysosome to the cytoplasm and activation of caspase-3 in the astrocytes. Furthermore, treatment of 3-MA or Wort decreased OGD-induced increase in lysosomal membrane permeability and enhanced OGD-induced upregulation of lysosomal heat shock protein 70.1B (Hsp70.1B) in astrocytes. Inhibition of autophagy by 3-MA or Wort reduced infarction volume in rats and protected OGD-induced astrocytic cell injury. A non-selective caspase inhibitor z-VAD-fmk or a specific caspase-3 inhibitor Q-DEVD-OPh also rescued OGD-induced astrocytic cell injury. In conclusion, our presenting data suggest that inhibition of autophagy blocks cathepsins–tBid–mitochondrial apoptotic signaling pathway via stabilization of lysosomal membranes, possibly due to upregulation of the lysosomal Hsp70.1B in ischemic astrocytes.
Collapse
Affiliation(s)
- Xian-Yong Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yu Luo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Zhi-He Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Thomas A Kent
- Stroke Outcomes Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Jia-Guo Rong
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Wei Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Shi-Gang Qiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong Ni
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Kazumi Ishidoh
- Institute for Health Sciences, Division of Molecular Biology, Tokushima Bumi University, Yamashiro-cho, Tokushima City, Tokushima, Japan
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
30
|
|
31
|
Gómez-Sintes R, Ledesma MD, Boya P. Lysosomal cell death mechanisms in aging. Ageing Res Rev 2016; 32:150-168. [PMID: 26947122 DOI: 10.1016/j.arr.2016.02.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies.
Collapse
Affiliation(s)
- Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biologicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Dolores Ledesma
- Department of Molecular Neurobiology, Centro Biologia Molecular Severo Ochoa, CSIC-UAM, C/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biologicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
32
|
Kikuta S, Murai Y, Tanaka E. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons. Neurosci Lett 2016; 636:120-126. [PMID: 27818353 DOI: 10.1016/j.neulet.2016.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD.
Collapse
Affiliation(s)
- Shogo Kikuta
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan; Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan.
| | - Yoshinaka Murai
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan.
| | - Eiichiro Tanaka
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
33
|
Liu J, Yang L, Tian H, Ma Q. Cathepsin D is involved in the oxygen and glucose deprivation/reperfusion-induced apoptosis of astrocytes. Int J Mol Med 2016; 38:1257-63. [PMID: 27573911 DOI: 10.3892/ijmm.2016.2709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/12/2016] [Indexed: 01/18/2023] Open
Abstract
The lysosome and its associated protein cathe-psin D (Cat D) play critical roles in the pathological process of secondary damage following ischemia/reperfusion (I/R) injury. However, the roles of Cat D in I/R-exposed astrocytesremain unclear. In this study, we determined the roles of Cat D in the oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis of astrocytes as well as the underlying mechanisms. We found that OGD/R markedly increased cell apoptosis and the production of inflammatory cytokines, namely IL-6, tumor necrosis factor (TNF)-α and FasL in a reperfusion time‑dependent manner and their elevation peaked at 24 h after reperfusion. Moreover, the cytosolic Cat D level and Cat D activity was significantly upregulated in response to OGD/R exposure. Furthermore, OGD/R exposure gradually disrupted the innate acidic conditions of the lysosome. Exogenous TNF-α and FasL administration elevated cytosolic Cat D levels and cell apoptosis whereas TNFR1 and Fas inhibition significantly reversed these effects induced by OGD/R. Cat D overexpression enhanced cell apoptosis and the levels of apoptogenic proteins, including Bax and caspase-3, whereas Cat D siRNA transfection had an inhibitory effect on cell apoptosis and the expression of proapoptotic proteins. In addition, we observed that Cat D upregulation disrupted mitochondrial membrane potential and induced the production of reactive oxygen species. In conclusion, OGD/R injury induced the production of TNF-α, IL-6 and FasL which promoted lysosomal dysfunction and Cat D leakage into the cytoplasm. This eventually resulted in caspase‑dependent apoptosis, mitochondrial membrane potential loss and oxidative stress in astrocytes.
Collapse
Affiliation(s)
- Jianlin Liu
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Yang
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hongyan Tian
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qiang Ma
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
34
|
Yan M, Zhu W, Zheng X, Li Y, Tang L, Lu B, Chen W, Qiu P, Leng T, Lin S, Yan G, Yin W. Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons. Mol Med Rep 2016; 13:2499-505. [PMID: 26821268 PMCID: PMC4768955 DOI: 10.3892/mmr.2016.4819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death in non-human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal membranes as assessed by acridine orange redistribution and immunofluorescence of cathepsin B in the cytoplasm. Inhibition of glutamate excitotoxicity by the NMDA receptor antagonist MK-801 and the calcium chelator ethylene glycolbis (2-aminoethylether)-N, N, N′, N′-tetraacetic acid, rescued lysosomes from permeabilization. The role of calpain and reactive oxygen species (ROS) in inducing LMP was also investigated. Ca2+ overload following glutamate treatment induced the activation of calpain and the production of ROS, which are two major contributors to neuronal death. It has been reported that lysosomal-associated membrane protein 2 (LAMP2) and heat shock protein (HSP)70 are two calpain substrates that promote LMP in cancer cells; however, it was found that calpains were activated by glutamate, but only LAMP2 was subsequently degraded. Furthermore, LMP was not alleviated by treatment with the calpain inhibitors calpeptin and SJA6017, which blocked the cleavage of the calpain substrate α-fodrin. It was demonstrated that LMP was significantly alleviated by treatment with the antioxidant N-Acetyl-L-cysteine, indicating that LMP involvement in early glutamate excitotoxicity may be mediated partly by ROS rather than calpain activation. Overall, these data shed light on the role of ROS-mediated LMP in early glutamate excitotoxicity.
Collapse
Affiliation(s)
- Min Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lipeng Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tiandong Leng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Suizhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
35
|
Lysosomal membrane permeabilization is involved in oxidative stress-induced apoptotic cell death in LAMP2-deficient iPSCs-derived cerebral cortical neurons. Biochem Biophys Rep 2016; 5:335-345. [PMID: 28955840 PMCID: PMC5600451 DOI: 10.1016/j.bbrep.2016.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 11/28/2022] Open
Abstract
Patients with Danon disease may suffer from severe cardiomyopathy, skeletal muscle dysfunction as well as varying degrees of mental retardation, in which the primary deficiency of lysosomal membrane-associated protein-2 (LAMP2) is considerably associated. Owing to the scarcity of human neurons, the pathological role of LAMP2 deficiency in neural injury of humans remains largely elusive. However, the application of induced pluripotent stem cells (iPSCs) may shed light on overcoming such scarcity. In this study, we obtained iPSCs derived from a patient carrying a mutated LAMP2 gene that is associated with Danon disease. By differentiating such LAMP2-deficient iPSCs into cerebral cortical neurons and with the aid of various biochemical assays, we demonstrated that the LAMP2-deficient neurons are more susceptible to mild oxidative stress-induced injury. The data from MTT assay and apoptotic analysis demonstrated that there was no notable difference in cellular viability between the normal and LAMP2-deficient neurons under non-stressed condition. When exposed to mild oxidative stress (10 μM H2O2), the LAMP2-deficient neurons exhibited a significant increase in apoptosis. Surprisingly, we did not observe any aberrant accumulation of autophagic materials in the LAMP2-deficient neurons under such stress condition. Our results from cellular fractionation and inhibitor blockade experiments further revealed that oxidative stress-induced apoptosis in the LAMP2-deficient cortical neurons was caused by increased abundance of cytosolic cathepsin L. These results suggest the involvement of lysosomal membrane permeabilization in the LAMP2 deficiency associated neural injury. We generated iPSCs from patients with LAMP2-c.183_184insA mutation. We differentiated the patient specific iPSCs into LAMP2-deficient cortical neurons. The LAMP2-deficient neurons are more susceptible to oxidative stress induced cell death. Cathepsin L inhibitor rescued oxidative stress induced cell death in LAMP2-deficient neurons.
Collapse
|
36
|
Xu Y, Wang J, Song X, Wei R, He F, Peng G, Luo B. Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull 2016; 120:97-105. [PMID: 26562519 DOI: 10.1016/j.brainresbull.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
Many studies have demonstrated the key role of lysosomes in ischemic cell death in the brain and have led to the "lysosomocentric" hypothesis. In this hypothesis, the release of cathepsin-B due to a change of lysosomal membrane permeabilization (LMP) or rupture is critical, and this can be prevented by its inhibitors CA074 and CA074-me. However, the role of CA074-me in neuronal death and its effect on the change of lysosomal membrane integrity after global cerebral ischemia/reperfusion (I/R) injury is not clear, so we investigated this here. Rat hippocampal CA1 neuronal death was evaluated after 20-min global cerebral I/R injury. CA074-me (1 μg, 10 μg) were given intracerebroventricularly 1h before ischemia or 1h post reperfusion. The changes of heat shock protein 70 (Hsp70), cathepsin-B, lysosomal-associated membrane protein 1 (LAMP-1), receptor-interacting protein 3 (RIP3), and the change of lysosomal pH were evaluated respectively. Hippocampal CA1 neuronal programmed necrosis induced by global cerebral I/R injury was prevented by CA074-me both pre-treatment and post-treatment. Diffuse cytoplasmic cathepsin-B and LAMP-1 immunostaining synchronized with the pyknotic nuclear changes 2 days post reperfusion, and a rise of lysosomal pH with the leakage of DND-153, a dye of lysosomes, after oxygen-glucose deprivation (OGD) was detected. Both of these changes demonstrated the rupture of lysosomal membrane and the leakage of cathepsin-B, and this was strongly inhibited by CA074-me pre-treatment. The overexpression and nuclear translocation of RIP3 and the reduction of NAD(+) level after I/R injury were also inhibited, while the upregulation of Hsp70 was strengthened by CA074-me pre-treatment. Delayed fulminant leakage of cathepsin-B due to lysosomal rupture is a critical harmful factor in neuronal programmed necrosis induced by 20-min global I/R injury. In addition to being an inhibitor of cathepsin-B, CA074-me may have an indirect neuroprotective effect by maintaining lysosomal membrane integrity and protecting against lysosomal rupture.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Jingye Wang
- Department of Neurology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Xinghui Song
- Core Facilities, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ruili Wei
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Guoping Peng
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Benyan Luo
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
37
|
Gu WW, Lu SQ, Ni Y, Liu ZH, Zhou XY, Zhu YM, Luo Y, Li X, Li LS, Sun WZ, Zhang HL, Ao GZ. 2-(3',5'-Dimethoxybenzylidene) cyclopentanone, a novel synthetic small-molecule compound, provides neuroprotective effects against ischemic stroke. Neuroscience 2015; 316:26-40. [PMID: 26656221 DOI: 10.1016/j.neuroscience.2015.11.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/22/2015] [Accepted: 11/22/2015] [Indexed: 11/25/2022]
Abstract
2-(3',5'-Dimethoxybenzylidene) cyclopentanone (DMBC) is a novel small-molecule compound synthesized by our group. Here, we found that in rat models of permanent middle cerebral artery occlusion (pMCAO), intraperitoneal injection (ip) of DMBC at 1h after ischemia reduced infarct volume, improved neurological deficits and increased the protein levels of microtubule-associated protein 2 (MAP 2) and glial fibrillary acid protein (GFAP) in the ischemic cortex. Post-treatment of DMBC still produced neuroprotective effects even when administered at 6h after ischemia. In the oxygen-glucose deprivation (OGD)-induced astrocytes or HT22 cell injury, DMBC treatment decreased the OGD-induced lactate dehydrogenase (LDH) leakage and increased the GFAP levels in astrocytes. In addition, Annexin-V-Fluos staining analysis revealed that DMBC treatment attenuated both OGD-induced apoptosis and necrosis in astrocytes. Western blotting analysis showed DMBC treatment inhibited the ischemia or OGD-induced increases in active cathepsin B in the ischemic cortex or in astrocytes or HT22 cells. Immunofluorescence analysis demonstrated that DMBC treatment blocked the ischemia or OGD-induced release of cathepsin B from the lysosomes into the cytoplasm in the ischemic cortex or in astrocytes or HT22 cells. Taken together, our results indicate that DMBC can offer neuroprotective effects against cerebral ischemia with an extended therapeutic window and its mechanism might be associated with inhibition of the cathepsin B activation.
Collapse
Affiliation(s)
- W W Gu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - S Q Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Y Ni
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Z H Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China
| | - X Y Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Y M Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Y Luo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - X Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - L S Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - W Z Sun
- The Second High School Attached to Beijing Normal University, Beijing 100091, China
| | - H L Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
| | - G Z Ao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
| |
Collapse
|
38
|
Wei R, Wang J, Xu Y, Yin B, He F, Du Y, Peng G, Luo B. Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience 2015; 301:168-77. [PMID: 26047730 DOI: 10.1016/j.neuroscience.2015.05.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/14/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Probenecid has been used for decades to treat gout, and recent studies have revealed it is also a specific inhibitor of the pannexin-1 channel. It has been reported that the pannexin-1 channel is involved in ischemic injury. Here, we investigated the neuroprotective effect and the possible mechanisms of action of probenecid in global cerebral ischemia/reperfusion (I/R) injury in rats. Twenty minutes of transient global cerebral I/R injury was induced using the four-vessel occlusion (4-VO) method in male Sprague-Dawley rats. Different doses of probenecid were administered intravenously, intraperitoneally, or by gavage before or after reperfusion. Probenecid via all three routes protected against CA1 neuronal death when given before reperfusion. This protective effect continued when probenecid was given at 2h after reperfusion, but not at 6h. Interestingly, the protective effect regained if probenecid was given continuously for 7days after reperfusion. The release of cathepsin B and overexpression of calpain-1 after reperfusion were inhibited, while the upregulation of Hsp70 was strengthened by probenecid pre-treatment. Furthermore, the activation and proliferation of microglia and astrocytes after I/R injury were suppressed by continuous given for 7days, but only partly by a single dose at 6h of reperfusion. Thus, our data indicate that probenecid protects against transient global cerebral I/R injury probably by inhibiting calpain-cathepsin pathway and the inflammatory reaction.
Collapse
Affiliation(s)
- R Wei
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - J Wang
- Department of Neurology, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Y Xu
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - B Yin
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430000, China
| | - F He
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Y Du
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - G Peng
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - B Luo
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
39
|
Activation of NMDA receptors thickens the postsynaptic density via proteolysis. Neurosci Res 2015; 101:6-14. [PMID: 26188126 DOI: 10.1016/j.neures.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 01/25/2023]
Abstract
The postsynaptic density (PSD) is a protein complex that is critical for synaptic transmission. Ultrastructural changes in the PSD are therefore likely to modify synaptic functions. In this study, we investigated the ultrastructural changes in the PSD in the hippocampal CA1 stratum radiatum following neuronal excitation. Oxygen-glucose deprivation-induced PSD thickening in hippocampal slice cultures was blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist MK801. To gain more insight into the mechanisms underlying NMDA receptor-mediated PSD thickening, we assessed the area, length, and thickness of the PSD after NMDA treatment. The PSDs thickened with just 2 min of NMDA receptor stimulation, and this treatment was considered sublethal. When N-acetyl-leucyl-leucyl-norleucinal, an inhibitor of calpain, cathepsins, and the proteasome, was applied, NMDA-induced PSD thickening was abolished. Furthermore, the calcium-induced calcium release inhibitor, ryanodine, reduced NMDA receptor-mediated PSD thickening. These results suggest that NMDA receptor activation induces PSD thickening by proteolysis through intracellular calcium increase, including that induced by calcium.
Collapse
|
40
|
Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations. Sci Rep 2014; 4:7129. [PMID: 25410636 PMCID: PMC4238021 DOI: 10.1038/srep07129] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022] Open
Abstract
Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications.
Collapse
|
41
|
Kim HY, Kim SJ, Lee SM. Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J 2014; 282:259-70. [PMID: 25327779 DOI: 10.1111/febs.13123] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/26/2014] [Accepted: 10/17/2014] [Indexed: 12/13/2022]
Abstract
Inflammasome activation by danger signals in ischemia/reperfusion (I/R) injury is responsible for the sterile inflammatory response. Signals triggering formation and activation of the inflammasome involve the generation of oxidative stress. The aim of this study was to examine the molecular mechanisms of inflammasome activation and the involvement of reactive oxygen species in hepatic I/R. I/R induced the formation of nucleotide-binding domain leucine-rich repeat containing family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes and the subsequent serum release of interleukin 1β. Pannexin-1 inhibitor and anti-cathepsin B antibody attenuated I/R-induced inflammasome activation and hepatic injury. The expression of the thioredoxin-interacting protein gene and the interaction between NLRP3 and the thioredoxin-interacting protein increased after I/R. Treatment with the antioxidant N-acetylcysteine significantly attenuated protein conversion of interleukin 1β after hepatic I/R. Moreover, pannexin-1 protein expression and cathepsin B release were strongly attenuated by N-acetylcysteine. The depletion of Kupffer cells with gadolinium chloride markedly decreased NLRP3 and AIM2 inflammasome expression and activation of their signaling pathways, and also reduced the level of caspase-1 protein in F4/80-positive cells. Our findings suggest that reactive-oxygen-species-mediated activation of NLRP3 and AIM2 inflammasomes leads to I/R-induced inflammatory responses in which Kupffer cells play a crucial role.
Collapse
Affiliation(s)
- Hyo-Yeon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | | | |
Collapse
|
42
|
Xu M, Yang L, Rong JG, Ni Y, Gu WW, Luo Y, Ishidoh K, Katunuma N, Li ZS, Zhang HL. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia 2014; 62:855-80. [PMID: 24616078 DOI: 10.1002/glia.22645] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 11/08/2022]
Abstract
The roles of cathepsins in the ischemic astrocytic injury remain unclear. Here, we test the hypothesis that activation of cathepsin B and L contributes to the ischemic astrocyte injury via the tBid-mitochondrial apoptotic signaling pathways. In the rat models of pMCAO, CA-074Me or Clik148, a selective inhibitor of cathepsin B or cathepsin L, reduced the infarct volume, improved the neurological deficits and increased the MAP2 and GFAP levels. In OGD-induced astrocyte injury, CA-074Me or Clik148 decreased the LDH leakage and increased the GFAP levels. In the ischemic cortex or OGD-induced astrocytes injury, Clik148 or CA-074Me reversed pMCAO or OGD-induced increase in active cathepsin L or cathepsin B at 3 h or 6 h, increase in tBid, reduction in mitochondrial cytochrome-c (Cyt-c) and increase in cytoplastic Cyt-c and active caspase-3 at 12-24 h of the late stage of pMCAO or OGD. CA-074Me or Clik148 also reduced cytosolic and mitochondrial tBid, increased mitochondrial Cyt-c and decreased cytoplastic Cyt-c and active caspase-3 at 6 h of the early stage of Bid activation. CA-074Me or Clik148 blocked the pMCAO-induced release of cathepsin B or L from the lysosomes into the cytoplasm and activation of caspase-3 in ischemic astrocytes at 12 h after ischemia. Concurrent inhibition of cathepsin B and cathepsin L provided better protection on the OGD-induced astrocytic apoptosis than obtained with separate use of each inhibitor. These results suggest that inhibition of the cysteine cathepsin B and cathepsin L activation in ischemic astrocytes contributes to neuroprotection via blocking the tBid-mitochondrial apoptotic signaling pathway.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lipton P. Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a "lysosomocentric" hypothesis for ischemic brain damage. Transl Stroke Res 2013; 4:672-84. [PMID: 24323421 DOI: 10.1007/s12975-013-0301-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
This is a speculative review of the role of the lysosome in ischemic cell death in the mammalian brain. In particular, it focuses on the role of the permeabilization of the lysosomal membrane to proteins (LMP) as a major mechanism of cell death in mild, but lethal, ischemic insults. The first section of the review outlines the evidence that this is the case, using the relatively few extant studies of mammalian brain. In the second section of the review, the mechanism by which an ischemic insult might lead to LMP is discussed. A metabolic sequence including NMDA receptor activation, activation of phospholipase A2 and production of free radicals, and also the activation of calpain are shown to be critical. The remainder of the section speculates on the actual agent(s) which may be causing the lysosomal membrane change, based on extensive literature references. There is currently no knowledge of the actual mechanism. The third section considers potential targets of the released lysosomal proteases and other proteins that might mediate the lethal effects of LMP, focusing largely on the mitochondria as the target. Again, this is speculative as the targets are not known. Finally, the fourth section addresses the level of importance that LMP has in the process of ischemic cell death and concludes that it may well play the major role during mild but lethal ischemic insults. This novel, so-called "lysosomocentric," hypothesis is briefly critiqued. The therapeutic potential of this conclusion is then discussed.
Collapse
Affiliation(s)
- Peter Lipton
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA,
| |
Collapse
|
44
|
Abstract
Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sonja Aits
- Danish Cancer Society Research Center, Cell Death and Metabolism, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
45
|
Tishkina A, Rukhlenko A, Stepanichev M, Levshina I, Pasikova N, Onufriev M, Moiseeva Y, Piskunov A, Gulyaeva N. Region-specific changes in activities of cell death-related proteases and nitric oxide metabolism in rat brain in a chronic unpredictable stress model. Metab Brain Dis 2012; 27:431-41. [PMID: 23010934 DOI: 10.1007/s11011-012-9328-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022]
Abstract
Effects of a chronic combined unpredictable stress on activities of two cell death-related proteases, calpain and cathepsin B, were studied along with indices of nitrergic system in rat brain structures. Male Wistar rats were subjected to a 2-week-long combined stress (combination of unpaired flash light and moderate footshock associated with a white noise session). Stress resulted in a significant loss in the body and thymus weight and increased defecation in the open field test, though neither motor and exploratory activity, nor plasma corticosterone differed from the respective control levels. Decreased calpain activity and increased cathepsin B activity were demonstrated in the hippocampus of stressed rats (previously we have shown that caspase-3 activity was significantly suppressed in the brain of rats subjected to same type of stress). A significant reduction in the number of NOS-containing neurons was accompanied by a chronic stressinduced decline in NOS activity in the neocortex. Similar changes were observed in the hippocampus. However, levels of NO metabolites were elevated in both structures. Thus, stress-induced structural modifications in the brain may be mediated by disturbances in the nitrergic system and increased lysosomal proteolysis.
Collapse
Affiliation(s)
- Anna Tishkina
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova str., 5A, Moscow, 117485, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Posadas I, Santos P, Ceña V. Acetaminophen induces human neuroblastoma cell death through NFKB activation. PLoS One 2012; 7:e50160. [PMID: 23166834 PMCID: PMC3500330 DOI: 10.1371/journal.pone.0050160] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/19/2012] [Indexed: 01/10/2023] Open
Abstract
Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.
Collapse
Affiliation(s)
- Inmaculada Posadas
- Unidad Asociada Neurodeath, UCLM-CSIC, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBER de Enfermedades Neurodegenerativas Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Santos
- Unidad Asociada Neurodeath, UCLM-CSIC, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, UCLM-CSIC, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBER de Enfermedades Neurodegenerativas Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Zhou Y, Qu ZQ, Zeng YS, Lin YK, Li Y, Chung P, Wong R, Hägg U. Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus. ACTA ACUST UNITED AC 2012; 64:673-80. [DOI: 10.1016/j.etp.2010.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 12/08/2010] [Accepted: 12/15/2010] [Indexed: 12/30/2022]
|
48
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
49
|
Amaral FA, Costa VV, Tavares LD, Sachs D, Coelho FM, Fagundes CT, Soriani FM, Silveira TN, Cunha LD, Zamboni DS, Quesniaux V, Peres RS, Cunha TM, Cunha FQ, Ryffel B, Souza DG, Teixeira MM. NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B(4) in a murine model of gout. ACTA ACUST UNITED AC 2012; 64:474-84. [PMID: 21952942 DOI: 10.1002/art.33355] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)-derived leukotriene B(4) (LTB(4) ) in driving tissue inflammation and hypernociception in a murine model of gout. METHODS Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1β (IL-1β), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB(4) activity, cytokine (IL-1β, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. RESULTS Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophil-dependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1β/MyD88-dependent manner. LTB(4) was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1β production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB(4) after MSU crystal injection, and LTB(4) was relevant in the MSU crystal-induced maturation of IL-1β. Mechanistically, LTB(4) drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. CONCLUSION These results reveal the role of the NLRP3 inflammasome in mediating MSU crystal-induced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB(4) in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.
Collapse
|
50
|
Saini N, Singh D, Sandhir R. Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem Res 2012; 37:1928-37. [PMID: 22700087 DOI: 10.1007/s11064-012-0811-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/11/2012] [Accepted: 05/26/2012] [Indexed: 12/20/2022]
Abstract
Alzheimer disease (AD) is characterized by dementia that begins as mild short term memory deficit and culminates in total loss of cognitive and executive functions. The present study was conducted to evaluate the neuroprotective potential of Bacopa monnieri (BM), an Indian traditional medicinal plant effective against cognitive impairment, in colchicine-induced dementia. Intracerebroventricular administration of colchicine (15 μg/5 μl) induced cognitive impairment in rats as assessed by elevated plus maze. This was accompanied by a significant increase in oxidative stress in term of enhanced levels of lipid peroxidation and protein carbonyls. Concomitantly, decrease in activity of antioxidant enzymes was observed in colchicine treated animals. BM (50 mg/kg body weight) supplementation reversed memory impairment observed in the colchicine treated rats. BM administration attenuated oxidative damage, as evident by decreased LPO and protein carbonyl levels and restoration in activities of the antioxidant enzymes. The activity of membrane bound enzymes (Na(+)K(+) ATPase and AChE) was altered in colchicine treated brain regions and BM supplementation was able to restore the activity of enzymes to comparable values observed in controls. The results suggest therapeutic potential of BM in the treatment of AD associated cognitive decline.
Collapse
Affiliation(s)
- Neetu Saini
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | | | | |
Collapse
|