1
|
Kanan MK, Sheehan PW, Haines JN, Gomez PG, Dhuler A, Nadarajah CJ, Wargel ZM, Freeberg BM, Nelvagal HR, Izumo M, Takahashi JS, Cooper JD, Davis AA, Musiek ES. Neuronal deletion of the circadian clock gene Bmal1 induces cell-autonomous dopaminergic neurodegeneration. JCI Insight 2024; 9:e162771. [PMID: 38032732 PMCID: PMC10906231 DOI: 10.1172/jci.insight.162771] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hemanth R. Nelvagal
- Departments of Pediatrics, Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Joseph S. Takahashi
- Department of Neuroscience and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Erik S. Musiek
- Department of Neurology and
- Center On Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Pereira LDS, Gobbo DR, Ferreira JGP, Horta-Junior JDADCE, Sá SI, Bittencourt JC. Effects of ovariectomy on inputs from the medial preoptic area to the ventromedial nucleus of the hypothalamus of young adult rats. J Anat 2021; 238:467-479. [PMID: 32914872 PMCID: PMC7812137 DOI: 10.1111/joa.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/03/2023] Open
Abstract
Puberty is an important phase of development when the neural circuit organization is transformed by sexual hormones, inducing sexual dimorphism in adult behavioural responses. The principal brain area responsible for the control of the receptive component of female sexual behaviour is the ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl), which is known for its dependency on ovarian hormones. Inputs to the VMHvl originating from the medial preoptic nucleus (MPN) are responsible for conveying essential information that will trigger such behaviour. Here, we investigated the pattern of the projection of the MPN to the VMHvl in rats ovariectomized at the onset of puberty. Sprague Dawley rats were ovariectomized (OVX) at puberty and then subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MPN once they reached 90 days of age. This study analysed the connectivity pattern established between the MPN and the VMH that is involved in the neuronal circuit responsible for female sexual behaviour in control and OVX rats. The data show the changes in the organization of the connections observed in the OVX adult rats that displayed a reduced axonal length for the MPN fibres reaching the VMHvl, suggesting that peripubertal ovarian hormones are relevant to the organization of MPN connections with structures involved in the promotion of female sexual behaviour.
Collapse
Affiliation(s)
- Laís da Silva Pereira
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Denise Ribeiro Gobbo
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | | | | | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Medicine, CINTESIS, Centre for Health Technology and Services Research, University of Porto, Porto, Portugal
| | - Jackson Cioni Bittencourt
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
- Nucleo de Neurociencias e Comportamento, Instituto de Psicologia, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Srivastava A, Hanig JP. Quantitative neurotoxicology: Potential role of artificial intelligence/deep learning approach. J Appl Toxicol 2020; 41:996-1006. [PMID: 33140470 DOI: 10.1002/jat.4098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
Neurotoxicity studies are important in the preclinical stages of drug development process, because exposure to certain compounds that may enter the brain across a permeable blood brain barrier damages neurons and other supporting cells such as astrocytes. This could, in turn, lead to various neurological disorders such as Parkinson's or Huntington's disease as well as various dementias. Toxicity assessment is often done by pathologists after these exposures by qualitatively or semiquantitatively grading the severity of neurotoxicity in histopathology slides. Quantification of the extent of neurotoxicity supports qualitative histopathological analysis and provides a better understanding of the global extent of brain damage. Stereological techniques such as the utilization of an optical fractionator provide an unbiased quantification of the neuronal damage; however, the process is time-consuming. Advent of whole slide imaging (WSI) introduced digital image analysis which made quantification of neurotoxicity automated, faster and with reduced bias, making statistical comparisons possible. Although automated to a certain level, simple digital image analysis requires manual efforts of experts which is time-consuming and limits analysis of large datasets. Digital image analysis coupled with a deep learning artificial intelligence model provides a good alternative solution to time-consuming stereological and simple digital analysis. Deep learning models could be trained to identify damaged or dead neurons in an automated fashion. This review has focused on and discusses studies demonstrating the role of deep learning in segmentation of brain regions, toxicity detection and quantification of degenerated neurons as well as the estimation of area/volume of degeneration.
Collapse
Affiliation(s)
- Anshul Srivastava
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Subacute administration of both methcathinone and manganese causes basal ganglia damage in mice resembling that in methcathinone abusers. J Neural Transm (Vienna) 2019; 127:707-714. [PMID: 31786692 PMCID: PMC7242255 DOI: 10.1007/s00702-019-02110-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023]
Abstract
An irreversible extrapyramidal syndrome occurs in man after intravenous abuse of “homemade” methcathinone (ephedrone, Mcat) that is contaminated with manganese (Mn) and is accompanied by altered basal ganglia function. Both Mcat and Mn can cause alterations in nigrostriatal function but it remains unknown whether the effects of the ‘homemade’ drug seen in man are due to Mcat or to Mn or to a combination of both. To determine how toxicity occurs, we have investigated the effects of 4-week intraperitoneal administration of Mn (30 mg/kg t.i.d) and Mcat (100 mg/kg t.i.d.) given alone, on the nigrostriatal function in male C57BL6 mice. The effects were compared to those of the ‘homemade’ mixture which contained about 7 mg/kg of Mn and 100 mg/kg of Mcat. Motor function, nigral dopaminergic cell number and markers of pre- and postsynaptic dopaminergic neuronal integrity including SPECT analysis were assessed. All three treatments had similar effects on motor behavior and neuronal markers. All decreased motor activity and induced tyrosine hydroxylase positive cell loss in the substantia nigra. All reduced 123I-epidepride binding to D2 receptors in the striatum. Vesicular monoamine transporter 2 (VMAT2) binding was not altered by any drug treatment. However, Mcat treatment alone decreased levels of the dopamine transporter (DAT) and Mn alone reduced GAD immunoreactivity in the striatum. These data suggest that both Mcat and Mn alone could contribute to the neuronal damage caused by the ‘homemade’ mixture but that both produce additional changes that contribute to the extrapyramidal syndrome seen in man.
Collapse
|
5
|
LaPlaca MC, Lessing MC, Prado GR, Zhou R, Tate CC, Geddes-Klein D, Meaney DF, Zhang L. Mechanoporation is a potential indicator of tissue strain and subsequent degeneration following experimental traumatic brain injury. Clin Biomech (Bristol, Avon) 2019; 64:2-13. [PMID: 29933966 DOI: 10.1016/j.clinbiomech.2018.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND An increases in plasma membrane permeability is part of the acute pathology of traumatic brain injury and may be a function of excessive membrane force. This membrane damage, or mechanoporation, allows non-specific flux of ions and other molecules across the plasma membrane, and may ultimately lead to cell death. The relationships among tissue stress and strain, membrane permeability, and subsequent cell degeneration, however, are not fully understood. METHODS Fluorescent molecules of different sizes were introduced to the cerebrospinal fluid space prior to injury and animals were sacrificed at either 10 min or 24 h after injury. We compared the spatial distribution of plasma membrane damage following controlled cortical impact in the rat to the stress and strain tissue patterns in a 3-D finite element simulation of the injury parameters. FINDINGS Permeable cells were located primarily in the ipsilateral cortex and hippocampus of injured rats at 10 min post-injury; however by 24 h there was also a significant increase in the number of permeable cells. Analysis of colocalization of permeability marker uptake and Fluorojade staining revealed a subset of permeable cells with signs of degeneration at 24 h, but plasma membrane damage was evident in the vast majority of degenerating cells. The regional and subregional distribution patterns of the maximum principal strain and shear stress estimated by the finite element model were comparable to the cell membrane damage profiles following a compressive impact. INTERPRETATION These results indicate that acute membrane permeability is prominent following traumatic brain injury in areas that experience high shear or tensile stress and strain due to differential mechanical properties of the cell and tissue organization, and that this mechanoporation may play a role in the initiation of secondary injury, contributing to cell death.
Collapse
Affiliation(s)
- Michelle C LaPlaca
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 030332-0535, USA.
| | - M Christian Lessing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 030332-0535, USA
| | - Gustavo R Prado
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 030332-0535, USA
| | - Runzhou Zhou
- Department of Biomedical Engineering, Wayne State University, 818 W Hancock St., Detroit, MI 48201, USA
| | - Ciara C Tate
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 030332-0535, USA
| | - Donna Geddes-Klein
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd St., Philadelphia, PA 19104-6321, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd St., Philadelphia, PA 19104-6321, USA
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, 818 W Hancock St., Detroit, MI 48201, USA
| |
Collapse
|
6
|
Bentea E, Verbruggen L, Massie A. The Proteasome Inhibition Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2017; 7:31-63. [PMID: 27802243 PMCID: PMC5302045 DOI: 10.3233/jpd-160921] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pathological hallmarks of Parkinson's disease are the progressive loss of nigral dopaminergic neurons and the formation of intracellular inclusion bodies, termed Lewy bodies, in surviving neurons. Accumulation of proteins in large insoluble cytoplasmic aggregates has been proposed to result, partly, from a failure in the function of intracellular protein degradation pathways. Evidence in support for such a hypothesis emerged in the beginning of the years 2000 with studies demonstrating structural and functional deficits in the ubiquitin-proteasome pathway in post-mortem nigral tissue of patients with Parkinson's disease. These fundamental findings have inspired the development of a new generation of animal models based on the use of proteasome inhibitors to disturb protein homeostasis and trigger nigral dopaminergic neurodegeneration. In this review, we provide an updated overview of the current approaches in employing proteasome inhibitors to model Parkinson's disease, with particular emphasis on rodent studies. In addition, the mechanisms underlying proteasome inhibition-induced cell death and the validity criteria (construct, face and predictive validity) of the model will be critically discussed. Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson's disease that might provide novel clues to unravel the complex pathogenesis of this disorder.
Collapse
Affiliation(s)
| | | | - Ann Massie
- Correspondence to: Dr. Ann Massie, Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium. Tel.: +32 2 477 4502; E-mail:
| |
Collapse
|
7
|
Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson's disease. PLoS One 2017; 12:e0180733. [PMID: 28738061 PMCID: PMC5524324 DOI: 10.1371/journal.pone.0180733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics.
Collapse
|
8
|
Pritchard S, Jackson MJ, Hikima A, Lione L, Benham CD, Chaudhuri KR, Rose S, Jenner P, Iravani MM. Altered detrusor contractility in MPTP-treated common marmosets with bladder hyperreflexia. PLoS One 2017; 12:e0175797. [PMID: 28520722 PMCID: PMC5435136 DOI: 10.1371/journal.pone.0175797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Bladder hyperreflexia is a common non-motor feature of Parkinson's disease. We now report on the contractility of the isolated primate detrusor strips devoid of nerve input and show that following MPTP, the amplitude and frequency of spontaneous contraction was increased. These responses were unaffected by dopamine D1 and D2 receptor agonists A77636 and ropinirole respectively. Contractions by exogenous carbachol, histamine or ATP were similar and no differences in the magnitude of noradrenaline-induced relaxation were seen in detrusor strip obtained from normal and MPTP-treated common marmosets (Callithrix jacchus). However, the neurogenic contractions following electrical field stimulation of the intrinsic nerves (EFS) were markedly greater in strips obtained from MPTP treated animals. EFS evoked non-cholinergic contractions following atropine were also greater but the contribution of the cholinergic innervation as a proportion of the overall contraction was smaller in the detrusor strips of MPTP treated animals, suggesting a preferential enhancement of the non-cholinergic transmission. Although dopaminergic mechanism has been proposed to underlie bladder hyperreflexia in MPTP-treated animals with intact bladder, the present data indicates that the increased neurogenically mediated contractions where no extrinsic innervation exists might be due to long-term adaptive changes locally as a result of the loss of the nigrostriatal output.
Collapse
Affiliation(s)
- Sara Pritchard
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, United Kingdom
| | - Michael J. Jackson
- Neurodegenerative Disease Research Group, Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Atsuko Hikima
- Neurodegenerative Disease Research Group, Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Lisa Lione
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, United Kingdom
| | - Christopher D. Benham
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, United Kingdom
| | | | - Sarah Rose
- Neurodegenerative Disease Research Group, Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Peter Jenner
- Neurodegenerative Disease Research Group, Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Mahmoud M. Iravani
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
9
|
Selective brain penetrable Nurr1 transactivator for treating Parkinson's disease. Oncotarget 2016; 7:7469-79. [PMID: 26862735 PMCID: PMC4884932 DOI: 10.18632/oncotarget.7191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/23/2016] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common movement disorders, and currently there is no effective treatment that can slow disease progression. Preserving and enhancing DA neuron survival is increasingly regarded as the most promising therapeutic strategy for treating PD. IRX4204 is a second generation retinoid X receptor (RXR) agonist that has no cross reactivity with retinoic acid receptors, farnesoid X receptor, liver X receptors or peroxisome proliferator-activated receptor PPARγ. We found that IRX4204 promotes the survival and maintenance of nigral dopaminergic (DA) neurons in a dose-dependent manner in primary mesencephalic cultures. Brain bioavailability studies demonstrate that IRX4204 can cross the blood brain barrier and reach the brain at nM concentration. Oral administration of IRX4204 can activate nuclear receptor Nurr1 downstream signaling in the substantia nigra (SN) andattenuate neurochemical and motor deficits in a rat model of PD. Our study suggests that IRX4204 represents a novel, potent and selective pharmacological means to activate cellular RXR-Nurr1 signaling and promote SN DA neuron survival in PD prevention and/or treatment.
Collapse
|
10
|
Loss of locus coeruleus noradrenergic neurons alters the inflammatory response to LPS in substantia nigra but does not affect nigral cell loss. J Neural Transm (Vienna) 2014; 121:1493-505. [DOI: 10.1007/s00702-014-1223-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/12/2014] [Indexed: 10/25/2022]
|
11
|
Xiong R, Siegel D, Ross D. The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chem Biol Interact 2013; 204:116-24. [PMID: 23684743 PMCID: PMC3784407 DOI: 10.1016/j.cbi.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/17/2013] [Accepted: 04/26/2013] [Indexed: 01/09/2023]
Abstract
Dysfunction of protein handling has been implicated in many neurodegenerative diseases and inhibition of the ubiquitin-proteasome system (UPS) has been linked to the formation of protein aggregates and proteinopathies in such diseases. While proteasomal inhibition could trigger an array of downstream protein handling changes including up-regulation of heat shock proteins (HSPs), induction of molecular chaperones, activation of the ER stress/unfolded protein response (UPR), autophagy and aggresome formation, little is known of the relationship of proteasomal inhibition to the sequence of activation of these diverse protein handling systems. In this study we utilized the reversible proteasome inhibitor MG132 and examined the activity of several major protein handling systems in the immortalized dopaminergic neuronal N27 cell line. In the early phase (up to 6h after proteasomal inhibition), MG132 induced time-dependent proteasomal inhibition which resulted in stimulation of the UPR, increased autophagic flux and stimulated heat shock protein response as determined by increased levels of phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α), C/EBP homologous protein (CHOP)/GADD153, turnover of autophagy related microtubule-associated protein 1 light chain 3 (LC3) and increased levels of Hsp70 respectively. After prolonged proteasomal inhibition induced by MG132, we observed the formation of vimentin-caged aggresome-like inclusion bodies. A recovery study after MG132-induced proteasomal inhibition indicated that the autophagy-lysosomal pathway participated in the clearance of aggresomes. Our data characterizes the relationship between proteasome inhibition and activation of other protein handling systems. These data also indicated that the induction of alternate protein handling systems and their temporal relationships may be important factors that determine the extent of accumulation of misfolded proteins in cells as a result of proteasome inhibition.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, United States
| | | | | |
Collapse
|
12
|
Recovery from experimental parkinsonism by semaphorin-guided axonal growth of grafted dopamine neurons. Mol Ther 2013; 21:1579-91. [PMID: 23732989 DOI: 10.1038/mt.2013.78] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/24/2013] [Indexed: 12/20/2022] Open
Abstract
Cell therapy in animal models of Parkinson's disease (PD) is effective after intrastriatal grafting of dopamine (DA) neurons, whereas intranigral transplantation of dopaminergic cells does not cause consistent behavioral recovery. One strategy to promote axonal growth of dopaminergic neurons from the substantia nigra (SN) to the striatum is degradation of inhibitory components such as chondroitin sulphate proteoglycans (CSPG). An alternative is the guidance of DA axons by chemotropic agents. Semaphorins 3A and 3C enhance axonal growth of embryonic stem (ES) cell-derived dopaminergic neurons in vitro, while Semaphorin 3C also attracts them. We asked whether intranigral transplantation of DA neurons, combined with either degradation of CSPG or with grafts of Semaphorin 3-expressing cells, towards the striatum, is effective in establishing a new nigrostriatal dopaminergic pathway in rats with unilateral depletion of DA neurons. We found depolarization-induced DA release in dorsal striatum, DA axonal projections from SN to striatum, and concomitant behavioral improvement in Semaphorin 3-treated animals. These effects were absent in animals that received intranigral transplants combined with Chondroitinase ABC treatment, although partial degradation of CSPG was observed. These results are evidence that Semaphorin 3-directed long-distance axonal growth of dopaminergic neurons, resulting in behavioral improvement, is possible in adult diseased brains.
Collapse
|
13
|
Sanchez-Betancourt J, Anaya-Martínez V, Gutierrez-Valdez AL, Ordoñez-Librado JL, Montiel-Flores E, Espinosa-Villanueva J, Reynoso-Erazo L, Avila-Costa MR. Manganese mixture inhalation is a reliable Parkinson disease model in rats. Neurotoxicology 2012; 33:1346-55. [PMID: 22975423 DOI: 10.1016/j.neuro.2012.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/16/2012] [Accepted: 08/26/2012] [Indexed: 01/16/2023]
Abstract
Manganese (Mn) is an essential trace metal. Regardless of its essentiality, it has been reported that the overexposure causes neurotoxicity manifested as extrapyramidal symptoms similar to those observed in Parkinson disease (PD). Recently, our group reported that mice that inhaled for 5 months the mixture of manganese chloride (MnCl(2)) and manganese acetate Mn(OAc)(3) developed movement abnormalities, significant loss of substantia nigra compacta (SNc) dopaminergic neurons, dopamine depletion and improved behavior with l-DOPA treatment. However, this model has only been characterized in mice. In order to have a well-supported and generalizable model in rodents, we used male Wistar rats that inhaled a mixture of 0.04 M MnCl(2) and 0.02 M Mn(OAc)(3), 1h three times a week for 6 months. Before Mn exposure, animals were trained to perform motor tests (Beam-walking and Single-pellet reaching tasks) and were evaluated each week after the exposure. The mixture of MnCl(2)/Mn(OAc)(3) caused alterations in the motor tests, 75.95% loss of SNc dopaminergic neurons, and no cell alterations in Globus Pallidus or striatum. With these results we conclude that the inhalation of the mixture of Mn compounds is a useful model in rodents for the study of PD.
Collapse
Affiliation(s)
- Javier Sanchez-Betancourt
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The past 25 years have seen a major expansion of knowledge concerning the cause of Parkinson's disease provided by an understanding of environmental and genetic factors that underlie the loss of nigral dopaminergic neurons. Based on the actions of toxins, postmortem investigations, and gene defects responsible for familial Parkinson's disease, there is now a general consensus about the mechanisms of cell death that contribute to neuronal loss in Parkinson's disease. Mitochondrial dysfunction, oxidative stress, altered protein handling, and inflammatory change are considered to lead to cell dysfunction and death by apoptosis or autophagy. Ageing is the single most important risk factor for Parkinson's disease, and the biochemical changes that are a consequence of aging amplify these abnormalities in Parkinson's disease brain. What remains to be determined is the combination and sequence of events leading to cell death and whether this is identical in all brain regions where pathology occurs and in all individuals with Parkinson's disease. Focusing on those events that characterize Parkinson's disease, namely, mitochondrial dysfunction and Lewy body formation, may be the key to further advancing the understanding of pathogenesis and to taking these mechanisms forward as a means of defining targets for neuroprotection.
Collapse
Affiliation(s)
- Anthony H Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College, London, United Kingdom.
| | | |
Collapse
|
15
|
Bukhatwa S, Zeng BY, Rose S, Jenner P. The effects of dose and route of administration of PSI on behavioural and biochemical indices of neuronal degeneration in the rat brain. Brain Res 2010; 1354:236-42. [DOI: 10.1016/j.brainres.2010.07.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 01/01/2023]
|
16
|
Chan H, Paur H, Vernon AC, Zabarsky V, Datla KP, Croucher MJ, Dexter DT. Neuroprotection and Functional Recovery Associated with Decreased Microglial Activation Following Selective Activation of mGluR2/3 Receptors in a Rodent Model of Parkinson's Disease. PARKINSONS DISEASE 2010; 2010. [PMID: 20948891 PMCID: PMC2951138 DOI: 10.4061/2010/190450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/24/2010] [Accepted: 03/08/2010] [Indexed: 12/21/2022]
Abstract
Clinical trials have demonstrated positive proof of efficacy of dual metabotropic glutamate receptor 2/3 (mGluR2/3) agonists in both anxiety and schizophrenia. Importantly, evidence suggests that these drugs may also be neuroprotective against glutamate excitotoxicity, implicated in the pathogenesis of Parkinson's disease (PD). However, whether this neuroprotection also translates into functional recovery is unclear. In the current study, we examined the neuroprotective efficacy of the dual mGluR2/3 agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), and whether this is accompanied by behavioral recovery in a rodent 6-hydroxydopamine (6-OHDA) model of PD. We now report that delayed post lesion treatment with 2R,4R-APDC (10 nmol), results in robust neuroprotection of the nigrostriatal system, which translated into functional recovery as measured by improved forelimb use asymmetry and reduced (+)-amphetamine-induced rotation compared to vehicle treated animals. Interestingly, these beneficial effects were associated with a decrease in microglial markers in the SNc, which may suggest an antiinflammatory action of this drug.
Collapse
Affiliation(s)
- Hugh Chan
- Parkinson's Disease Research Group, Faculty of Medicine, Imperial College London, 4th Floor, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, W12 0NN London, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Rogers N, Paine S, Bedford L, Layfield R. Review: the ubiquitin-proteasome system: contributions to cell death or survival in neurodegeneration. Neuropathol Appl Neurobiol 2010; 36:113-24. [PMID: 20202119 DOI: 10.1111/j.1365-2990.2010.01063.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The significance of the accumulation of ubiquitin-positive intraneuronal inclusions in the brains of those affected with different neurodegenerative diseases is currently unclear. While one interpretation is that the disease mechanism(s) involves dysfunction of an ubiquitin-mediated process, such as the ubiquitin-proteasome system, the inclusions are also found in surviving neurones, suggesting a possible neuroprotective role. Here we review recent evidence in support of these seemingly opposing notions gleaned from cell and animal models as well as investigations of patient samples, with particular emphasis on studies relevant to Parkinson's disease.
Collapse
Affiliation(s)
- N Rogers
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | | | | | | |
Collapse
|