1
|
Ruiqi L, Ming P, Qihang S, Yangyang L, Junli C, Wei L, Chao G, Xinyue L, Kang Y, Hongtao Y. Saikosaponin D Inhibits Peritoneal Fibrosis in Rats With Renal Failure by Regulation of TGFβ1/ BMP7 / Gremlin1/ Smad Pathway. Front Pharmacol 2021; 12:628671. [PMID: 34721005 PMCID: PMC8555629 DOI: 10.3389/fphar.2021.628671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Peritoneal dialysis (PD) can improve the quality of life of patients with kidney disease and prolong survival. However, peritoneal fibrosis can often occur and lead to PD withdrawal. Therefore, it is imperative to better understand how to inhibit and slow down progression of peritoneal fibrosis. This study aimed to investigate the regulatory effect of Saikosaponin d (SSD), a monomer extracted from the plant Bupleurum, on peritoneal fibrosis and the contribution of TGFβ1/BMP7/Gremlin1 pathway cross-talk in this process. To this aim, we used a model 5/6 nephrectomy and peritoneal fibrosis in rats. Rats were divided into four groups, namely a control group (saline administration); a model group (dialysate administration; group M); a SSD group (dialysate and SSD administration); and a positive drug group (dialysate and Benazepril Hydrochloride administration; group M + A). Histological analysis indicated that peritoneal fibrosis occurred in all groups. WB, ELISA, and PCR essays suggested that TGFβ1 and Gremlin1 levels in group M were significantly higher than those in group C, whereas BMP7 expression was significantly lower. TGFβ1, Gremlin1 and BMP7 levels were significantly lower in the group where SSD was administered than in the other groups. The expression of BMP7 in SSD group was significantly increased. In addition, levels of Smad1/5/8 as assessed by PCR, and levels of p-Smad1/5/8 expression as assessed by WB were also significantly higher in the SSD group than in the M group. Expression of vimentin and α-SMA, two important markers of fibrosis, was also significantly decreased. Our study suggests a role for the TGFβ1/BMP7/Gremlin1/Smad pathway in peritoneal fibrosis with potential therapeutic implications. Finally, our results also suggest that the monomer SSD may be able to reverse peritoneal fibrosis via regulation of the TGFβ1/BMP7/Gremlin1/Smad pathway.
Collapse
Affiliation(s)
- Liu Ruiqi
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Pei Ming
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Su Qihang
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Yangyang
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chen Junli
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lin Wei
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Gao Chao
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Liu Xinyue
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Kang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Hongtao
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
2
|
Pandey R, Rai V, Mishra J, Mandrah K, Kumar Roy S, Bandyopadhyay S. From the Cover: Arsenic Induces Hippocampal Neuronal Apoptosis and Cognitive Impairments via an Up-Regulated BMP2/Smad-Dependent Reduced BDNF/TrkB Signaling in Rats. Toxicol Sci 2017; 159:137-158. [DOI: 10.1093/toxsci/kfx124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
3
|
Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, Foster BK, Rosen V, Zhou XF, Xu J, Xian CJ. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats. J Bone Miner Res 2016; 31:1258-74. [PMID: 26763079 DOI: 10.1002/jbmr.2786] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Vincent Kuek
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Prem P Dwivedi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, Australia
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
4
|
Wang Y, Schachner M. The intracellular domain of L1CAM binds to casein kinase 2α and is neuroprotective via inhibition of the tumor suppressors PTEN and p53. J Neurochem 2015; 133:828-43. [PMID: 25727698 DOI: 10.1111/jnc.13083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Cell adhesion molecule L1 promotes neuritogenesis and neuronal survival through triggering MAPK pathways. Based on the findings that L1 is associated with casein kinase 2 (CK2), and that deficiency in PTEN promotes neuritogenesis in vitro and regeneration after trauma, we examined the functional relationship between L1 and PTEN. In parallel, we investigated the tumor suppressor p53, which also regulates neuritogenesis. Here, we report that the intracellular domain of L1 binds to the subunit CK2α, and that knockdown of L1 leads to CK2 dephosphorylation and an increase in PTEN and p53 levels. Overexpression of L1, but not the L1 mutants L1 (S1181N, E1184V), which reduced binding between L1 and CK2, reduced expression levels of PTEN and p53 proteins, and enhanced levels of phosphorylated CK2α and mammalian target of rapamycin, which is a downstream effector of PTEN and p53. Treatment of neurons with a CK2 inhibitor or transfection with CK2α siRNA increased levels of PTEN and p53, and inhibited neuritogenesis. The combined observations indicate that L1 downregulates expression of PTEN and p53 via direct binding to CK2α. We suggest that L1 stimulates neuritogenesis by activating CK2α leading to decreased levels of PTEN and p53 via a novel, L1-triggered and CK2α-mediated signal transduction pathway. L1CAM (L1 cell adhesion molecule) is implicated in neural functions through the cognate src/MAP kinase signaling pathway. We now describe a novel signaling platform operating via the alpha subunit of casein kinase 2 which binds to the intracellular domain of L1. Knockdown of L1CAM leads to increased levels of tumor suppressor PTEN (phosphatase and tensin homolog) and p53, known to inhibit neuritogenesis in vitro and recovery from trauma in vivo. By activating this enzyme, L1CAM adds to its beneficial functions by decreasing the levels of PTEN and p53.
Collapse
Affiliation(s)
- Yan Wang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
5
|
Foka P, Dimitriadis A, Kyratzopoulou E, Giannimaras DA, Sarno S, Simos G, Georgopoulou U, Mamalaki A. A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression. Cell Mol Life Sci 2014; 71:4243-58. [PMID: 24718935 PMCID: PMC11114079 DOI: 10.1007/s00018-014-1621-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) infection is associated with hepatic iron overload and elevated serum iron that correlate to poor antiviral responses. Hepcidin (HAMP), a 25-aa cysteine-rich liver-specific peptide, controls iron homeostasis. Its expression is up-regulated in inflammation and iron excess. HCV-mediated hepcidin regulation remains controversial. Chronic HCV patients possess relatively low hepcidin levels; however, elevated HAMP mRNA has been reported in HCV core transgenic mice and HCV replicon-expressing cells. We investigated the effect of HCV core protein on HAMP gene expression and delineated the complex interplay of molecular mechanisms involved. HCV core protein up-regulated HAMP promoter activity, mRNA, and secreted protein levels. Enhanced promoter activity was abolished by co-transfections of core with HAMP promoter constructs containing mutated/deleted BMP and STAT binding sites. Dominant negative constructs, pharmacological inhibitors, and silencing experiments against STAT3 and SMAD4 confirmed the participation of both pathways in HAMP gene regulation by core protein. STAT3 and SMAD4 expression levels were found increased in the presence of HCV core, which orchestrated SMAD4 translocation into the nucleus and STAT3 phosphorylation. To further understand the mechanisms governing the core effect, the role of the JAK/STAT-activating kinase CK2 was investigated. A CK2-dominant negative construct, a CK2-specific inhibitor, and RNAi interference abrogated the core-induced increase on HAMP promoter activity, mRNA, and protein levels, while CK2 acted in synergy with core to significantly enhance HAMP gene expression. Therefore, HCV core up-regulates HAMP gene transcription via a complex signaling network that requires both SMAD/BMP and STAT3 pathways and CK2 involvement.
Collapse
Affiliation(s)
- Pelagia Foka
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Eleni Kyratzopoulou
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Dionysios A. Giannimaras
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
6
|
Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes. J Cell Commun Signal 2013; 7:265-78. [PMID: 23637019 DOI: 10.1007/s12079-013-0199-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/12/2013] [Indexed: 01/01/2023] Open
Abstract
BMP2 is a growth factor that regulates the cell fate of mesenchymal stem cells into osteoblast and adipocytes. However, the detailed signaling pathways and mechanism are unknown. We previously reported a new interaction of Casein kinase II (CK2) with the BMP receptor type-Ia (BMPRIa) and demonstrated using mimetic peptides CK2.1, CK2.2 and CK2.3 that the release of CK2 from BMPRIa activates Smad signaling and osteogenesis. Previously, we showed that mutation of these CK2 sites on BMPRIa (MCK2.1 (476S-A), MCK2.2 (324S-A) and MCK2.3 (214S-A)) induced osteogenesis. However, one mutant MCK2.1 induced osteogenesis similar to overexpression of wild type BMPRIa, suggesting that the effect of this mutant on mineralization was due to overexpression. In this paper we investigated the signaling pathways involved in the CK2-BMPRIa mediated osteogenesis and identified a new signaling pathway activating adipogenesis dependent on the BMPRIa and CK2 association. Further the mechanism for adipogenesis and osteogenesis is specific to the CK2 interaction site on BMPRIa. In detail our data show that overexpression of MCK2.2 induced osteogenesis was dependent on Caveolin-1 (Cav1) and the activation of the Smad and mTor pathways, while overexpression of MCK2.3 induced osteogenesis was independent of Caveolin-1 without activation of Smad pathway. However, MCK2.3 induced osteogenesis via the MEK pathway. The adipogenesis induced by the overexpression of MCK2.2 in C2C12 cells was dependent on the p38 and ERK pathways as well as Caveolin-1. These data suggest that signaling through BMPRIa used two different signaling pathways to induce osteogenesis dependent on CK2. Additionally the data supports a signaling pathway initiated in caveolae and one outside of caveolae to induce mineralization. Moreover, they reveal the signaling pathway of BMPRIa mediated adipogenesis.
Collapse
|
7
|
Al Quobaili F, Montenarh M. CK2 and the regulation of the carbohydrate metabolism. Metabolism 2012; 61:1512-7. [PMID: 22917893 DOI: 10.1016/j.metabol.2012.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
Protein kinase CK2 was originally identified by analyzing carbohydrate metabolism. Now it is clear that life without CK2 is impossible. Moreover, CK2 activity was found elevated in rapidly proliferating cells when compared to slowly proliferating or resting cells. Proliferating cells have an elevated need for energy which is generated from an elevated carbohydrate metabolism. From early observations and the emerging role of CK2 in cellular regulation, it is not surprising that CK2 plays a role in hormonal regulation of carbohydrate metabolism as well as modulating activities of enzymes directly involved in carbohydrate storage and metabolism. The aim of the present review is to summarize the knowledge about the role of CK2 in the regulation of the carbohydrate metabolism.
Collapse
Affiliation(s)
- Faizeh Al Quobaili
- Department of Biochemistry and Microbiology, Damascus University, 6735 Damascus, Syria
| | | |
Collapse
|
8
|
Chao CC, Ma YL, Lee EHY. Brain-derived neurotrophic factor enhances Bcl-xL expression through protein kinase casein kinase 2-activated and nuclear factor kappa B-mediated pathway in rat hippocampus. Brain Pathol 2011; 21:150-62. [PMID: 20731656 DOI: 10.1111/j.1750-3639.2010.00431.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) was shown to produce its neuroprotective effect through extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol-3 kinase (PI3-K) signaling. But whether other pathways also mediate the neuroprotective effect of BDNF is less known. In this study, we found that direct administration of BDNF to rat hippocampal CA1 area dose-dependently increased the mRNA and protein levels of Bcl-xL. BDNF also increased protein kinase casein kinase II (CK2) activity and NF-κB phosphorylation at Ser529 dose-dependently. Further, transfection of the wild-type CK2α DNA to CA1 neurons increased nuclear factor kappa B (NF-κB) phosphorylation and Bcl-xL mRNA expression, whereas transfection of CK2α156A, the catalytically inactive mutant of CK2α, decreased these measures. Moreover, transfection of CK2α small interfering RNA (siRNA) blocked the enhancing effect of BDNF on NF-κB phosphorylation and Bcl-xL expression. These results were further confirmed by treatment of 4,5,6,7-tetrabromobenzotriazole (TBB), a specific CK2 inhibitor. Transfection of NF-κBS529A, the dominant negative mutant of NF-κB, prevented the enhancing effect of BDNF on Bcl-xL expression. More importantly, BDNF activation of CK2 is not affected by co-administration of the ERK1/2 inhibitor, PD98059, and the PI3-K inhibitor, LY294002. These results demonstrate a novel BDNF signaling pathway and provide an alternative therapeutic strategy for the protective effect of BDNF on hippocampal neurons in vivo.
Collapse
Affiliation(s)
- Chih C Chao
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
9
|
Perez DI, Gil C, Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev 2010; 31:924-54. [DOI: 10.1002/med.20207] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
de Rivero Vaccari JP, Marcillo A, Nonner D, Dietrich WD, Keane RW. Neuroprotective effects of bone morphogenetic protein 7 (BMP7) treatment after spinal cord injury. Neurosci Lett 2009; 465:226-9. [PMID: 19765637 DOI: 10.1016/j.neulet.2009.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/31/2009] [Accepted: 09/11/2009] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic protein 7 (BMP7) has been shown to ameliorate reduced dendritic growth induced by glutamate excitotoxicity in neuronal tissue cultures and/or provide an enhancement of functional recovery in central nervous system (CNS) injury. BMP7 expression is modulated by spinal cord injury (SCI), but the molecular mechanisms involved in neuroprotection have not been clearly defined. Here, we show that BMP7 treatment of rats subjected to mild cervical SCI significantly increased the pro-survival mitogen-activated protein kinase-38 (MAPK-38) pathway and levels of N-methyl-D-aspartate receptor 1 (NMDAR-1) resulting in a significant increase in neuronal sparing in the ventral horn of the spinal cord. Moreover, BMP7 was neuroprotective against glutamate-mediated excitotoxicity in cultured cortical neurons. These studies show that BMP7 administration may be used as a therapeutic strategy to reduce the damaging excitotoxic effects following SCI.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | | | | | | | | |
Collapse
|