1
|
Bhattacharya A, Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Comparative pangenomic analysis of predominant human vaginal lactobacilli strains towards population-specific adaptation: understanding the role in sustaining a balanced and healthy vaginal microenvironment. BMC Genomics 2023; 24:565. [PMID: 37740204 PMCID: PMC10517566 DOI: 10.1186/s12864-023-09665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023] Open
Abstract
The vaginal microenvironment of healthy women has a predominance of Lactobacillus crispatus, L. iners, L. gasseri, and L. jensenii. The genomic repertoire of the strains of each of the species associated with the key attributes thereby regulating a healthy vaginal environment needs a substantial understanding.We studied all available human strains of the four lactobacilli across different countries, isolated from vaginal and urinal sources through phylogenetic and pangenomic approaches. The findings showed that L. iners has the highest retention of core genes, and L. crispatus has more gene gain in the evolutionary stratum. Interestingly, L. gasseri and L. jensenii demonstrated major population-specific gene-cluster gain/loss associated with bacteriocin synthesis, iron chelating, adherence, zinc and ATP binding proteins, and hydrolase activity. Gene ontology enrichment analysis revealed that L. crispatus strains showed greater enrichment of functions related to plasma membrane integrity, biosurfactant, hydrogen peroxide synthesis, and iron sequestration as an ancestral derived core function, while bacteriocin and organic acid biosynthesis are strain-specific accessory enriched functions. L. jensenii showed greater enrichment of functions related to adherence, aggregation, and exopolysaccharide synthesis. Notably, the key functionalities are heterogeneously enriched in some specific strains of L. iners and L. gasseri.This study shed light on the genomic features and their variability that provides advantageous attributes to predominant vaginal Lactobacillus species maintaining vaginal homeostasis. These findings evoke the need to consider region-specific candidate strains of Lactobacillus to formulate prophylactic measures against vaginal dysbiosis for women's health.
Collapse
Affiliation(s)
- Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Sushmita Das
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Maloyjo Joyraj Bhattacharjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India.
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur Rohman Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
2
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
3
|
Gola L, Bierhansl L, Csatári J, Schroeter CB, Korn L, Narayanan V, Cerina M, Abdolahi S, Speicher A, Hermann AM, König S, Dinkova-Kostova AT, Shekh-Ahmad T, Meuth SG, Wiendl H, Gorji A, Pawlowski M, Kovac S. NOX4-derived ROS are neuroprotective by balancing intracellular calcium stores. Cell Mol Life Sci 2023; 80:127. [PMID: 37081190 PMCID: PMC10119225 DOI: 10.1007/s00018-023-04758-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Hyperexcitability is associated with neuronal dysfunction, cellular death, and consequently neurodegeneration. Redox disbalance can contribute to hyperexcitation and increased reactive oxygen species (ROS) levels are observed in various neurological diseases. NOX4 is an NADPH oxidase known to produce ROS and might have a regulating function during oxidative stress. We, therefore, aimed to determine the role of NOX4 on neuronal firing, hyperexcitability, and hyperexcitability-induced changes in neural network function. Using a multidimensional approach of an in vivo model of hyperexcitability, proteomic analysis, and cellular function analysis of ROS, mitochondrial integrity, and calcium levels, we demonstrate that NOX4 is neuroprotective by regulating ROS and calcium homeostasis and thereby preventing hyperexcitability and consequently neuronal death. These results implicate NOX4 as a potential redox regulator that is beneficial in hyperexcitability and thereby might have an important role in neurodegeneration.
Collapse
Affiliation(s)
- Lukas Gola
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Laura Bierhansl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Júlia Csatári
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Anna Speicher
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Alexander M Hermann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, 48149, Münster, Germany
| | | | - Tawfeeq Shekh-Ahmad
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Matthias Pawlowski
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
4
|
Peng C, Li X, Ao F, Li T, Guo J, Liu J, Zhang X, Gu J, Mao J, Zhou B. Mitochondrial ROS driven by NOX4 upregulation promotes hepatocellular carcinoma cell survival after incomplete radiofrequency ablation by inducing of mitophagy via Nrf2/PINK1. J Transl Med 2023; 21:218. [PMID: 36964576 PMCID: PMC10039571 DOI: 10.1186/s12967-023-04067-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND The recurrence of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA) remains a major clinical problem. Cells that survive the sublethal heat stress that is induced by incomplete RFA are the main source of HCC relapse. Heat stress has long been reported to increase intracellular reactive oxygen species (ROS) generation. Although ROS can induce apoptosis, a pro-survival effect of ROS has also been demonstrated. However, the role of ROS in HCC cells exposed to sublethal heat stress remains unclear. METHODS HepG2 and HuH7 cells were used for this experiment. Insufficient RFA was performed in cells and in a xenograft model. ROS and antioxidant levels were measured. Apoptosis was analyed by Annexin-V/PI staining and flow cytometry. Protein expression was measured using western blotting. Colocalization of lysosomes and mitochondria was analyzed to assess mitophagy. Corresponding activators or inhibitors were applied to verify the function of specific objectives. RESULTS Here,we showed that sublethal heat stress induced a ROS burst, which caused acute oxidative stress. This ROS burst was generated by mitochondria, and it was initiated by upregulated NOX4 expression in the mitochondria. N-acetylcysteine (NAC) decreased HCC cell survival under sublethal heat stress conditions in vivo and in vitro. NOX4 triggers the production of mitochondrial ROS (mtROS), and NOX4 inhibitors or siNOX4 also decreased HCC cell survival under sublethal heat stress conditions in vitro. Increased mtROS trigger PINK1-dependent mitophagy to eliminate the mitochondria that are damaged by sublethal heat stress and to protect cells from apoptosis. Nrf2 expression was elevated in response to this ROS burst and mediated the ROS burst-induced increase in PINK1 expression after sublethal heat stress. CONCLUSION These data confirmed that the ROS burst that occurs after iRFA exerted a pro-survival effect. NOX4 increased the generation of ROS by mitochondria. This short-term ROS burst induced PINK1-dependent mitophagy to eliminate damaged mitochondria by increasing Nrf2 expression.
Collapse
Affiliation(s)
- Chao Peng
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Xi Li
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Feng Ao
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ting Li
- Department of Anesthesiology, Gansu Provincial People's Hospital, Lanzhou, 730000, Gansu, China
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Junfeng Liu
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Xiaoting Zhang
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Jinyan Gu
- Library Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Junjie Mao
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Bin Zhou
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
5
|
Bola S, Subramanian P, Calzia D, Dahl A, Panfoli I, Funk RHW, Roehlecke C. Analysis of Electric Field Stimulation in Blue Light Stressed 661W Cells. Int J Mol Sci 2023; 24:ijms24043433. [PMID: 36834840 PMCID: PMC9965974 DOI: 10.3390/ijms24043433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Though electrical stimulation is used as a therapeutic approach to treat retinal and spinal injuries, many protective mechanisms at cellular level have not been elucidated. We performed a detailed analysis of cellular events in blue light (Li) stressed 661W cells, which were subjected to direct current electric field (EF) stimulation. Our findings revealed that EF stimulation induced protective effects in 661W cells from Li-induced stress by multiple defense mechanisms, such as increase in mitochondrial activity, gain in mitochondrial potential, increase in superoxide levels, and the activation of unfolded protein response (UPR) pathways, all leading to an enhanced cell viability and decreased DNA damage. Here, our genetic screen results revealed the UPR pathway to be a promising target to ameliorate Li-induced stress by EF stimulation. Thus, our study is important for a knowledgeable transfer of EF stimulation into clinical application.
Collapse
Affiliation(s)
- Sharanya Bola
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| | - Pallavi Subramanian
- Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, D-01069 Dresden, Germany
| | - Daniela Calzia
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, TU Dresden, D-01069 Dresden, Germany
| | - Isabella Panfoli
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Richard H. W. Funk
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
- Correspondence:
| | - Cora Roehlecke
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| |
Collapse
|
6
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wurtz M, Ruhland E, Liu X, Namer IJ, Mazzoleni V, Lipsker D, Keller D, Prévost G, Gaucher D. Panton-Valentine Leucocidin of Staphylococcus aureus Induces Oxidative Stress and Neurotransmitter Imbalance in a Retinal Explant Model. Invest Ophthalmol Vis Sci 2021; 62:4. [PMID: 33393970 PMCID: PMC7794257 DOI: 10.1167/iovs.62.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Endophthalmitis models have reported the virulent role of Panton-Valentine leucocidin (PVL) secreted by Staphylococcus aureus on the retina. PVL targets retinal ganglion cells (RGCs), expressing PVL membrane receptor C5aR. Interactions between PVL and retinal cells lead to glial activation, retinal inflammation, and apoptosis. In this study, we explored oxidative stress and retinal neurotransmitters in a rabbit retinal explant model incubated with PVL. Methods Reactive oxygen species (ROS) production in RGCs has been assessed with fluorescent probes and immunohistochemistry. Nuclear magnetic resonance (NMR) spectroscopy quantified retinal concentrations of antioxidant molecules and neurotransmitters, and concentrations of neurotransmitters released in the culture medium. Quantifying the expression of some pro-inflammatory and anti-inflammatory factors was performed using RT-qPCR. Results PVL induced a mitochondrial ROS production in RGCs after four hours’ incubation with the toxin. Enzymatic sources of ROS, involving nicotinamide adenine dinucleotide phosphate–oxidase and xanthine oxidase, were also activated after four hours in PVL-treated retinal explants. Retinal antioxidants defenses, that is, glutathione, ascorbate and taurine, decreased after two hours’ incubation with PVL. Glutamate retinal concentrations and glutamate release in the culture medium remained unaltered in PVL-treated retinas. GABA, glycine, and acetylcholine (Ach) retinal concentrations decreased after PVL treatment. Glycine release in the culture medium decreased, whereas Ach release increased after PVL treatment. Expression of proinflammatory and anti-inflammatory cytokines remained unchanged in PVL-treated explants. Conclusions PVL activates oxidative pathways and alters neurotransmitter retinal concentrations and release, supporting the hypothesis that PVL could induce a neurogenic inflammation in the retina.
Collapse
Affiliation(s)
- Mathieu Wurtz
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Department of Ophthalmology, Nouvel Hôpital Civil, Strasbourg, France
| | - Elisa Ruhland
- MNMS Platform, Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - XuanLi Liu
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France
| | - Izzie-Jacques Namer
- MNMS Platform, Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Viola Mazzoleni
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France
| | - Dan Lipsker
- Hôpitaux Universitaires de Strasbourg, Department of Dermatology, Nouvel Hôpital Civil, Strasbourg, France
| | - Daniel Keller
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France
| | - Gilles Prévost
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France
| | - David Gaucher
- University of Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, UR7290 Virulence Bactérienne Précoce, Institute of Bacteriology, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Department of Ophthalmology, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
8
|
Abstract
The stereotype of ROS produced by NADPH oxidases as cause of malignant diseases persists in a generalized manner. In fact, high levels of ROS formation could be harmful in the context of a disease process. This study demonstrates that loss of the NADPH oxidase Nox4, as a constitutive source of ROS, promotes cancerogen-induced formation of solid tumors. Accordingly, a certain tonic, constitutive low level of Nox4-derived hydrogen peroxide appears to reduce the risk of cancerogen-induced tumor formation. Reactive oxygen species (ROS) can cause cellular damage and promote cancer development. Besides such harmful consequences of overproduction of ROS, all cells utilize ROS for signaling purposes and stabilization of cell homeostasis. In particular, the latter is supported by the NADPH oxidase 4 (Nox4) that constitutively produces low amounts of H2O2. By that mechanism, Nox4 forces differentiation of cells and prevents inflammation. We hypothesize a constitutive low level of H2O2 maintains basal activity of cellular surveillance systems and is unlikely to be cancerogenic. Utilizing two different murine models of cancerogen-induced solid tumors, we found that deletion of Nox4 promotes tumor formation and lowers recognition of DNA damage. Nox4 supports phosphorylation of H2AX (γH2AX), a prerequisite of DNA damage recognition, by retaining a sufficiently low abundance of the phosphatase PP2A in the nucleus. The underlying mechanism is continuous oxidation of AKT by Nox4. Interaction of oxidized AKT and PP2A captures the phosphatase in the cytosol. Absence of Nox4 facilitates nuclear PP2A translocation and dephosphorylation of γH2AX. Simultaneously AKT is left phosphorylated. Thus, in the absence of Nox4, DNA damage is not recognized and the increased activity of AKT supports proliferation. The combination of both events results in genomic instability and promotes tumor formation. By identifying Nox4 as a protective source of ROS in cancerogen-induced cancer, we provide a piece of knowledge for understanding the role of moderate production of ROS in preventing the initiation of malignancies.
Collapse
|
9
|
Wu R, Yun Q, Zhang J, Bao J. RETRACTED: Long non-coding RNA GAS5 retards neural functional recovery in cerebral ischemic stroke through modulation of the microRNA-455-5p/PTEN axis. Brain Res Bull 2021; 167:80-88. [PMID: 33309710 DOI: 10.1016/j.brainresbull.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1C and 4B+J, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China.
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Jianping Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| |
Collapse
|
10
|
Fatima N, Upadhyay T, Ahmad F, Arshad M, Kamal MA, Sharma D, Sharma R. Particulate β-glucan activates early and delayed phagosomal maturation and autophagy within macrophage in a NOX-2 dependent manner. Life Sci 2020; 266:118851. [PMID: 33310032 DOI: 10.1016/j.lfs.2020.118851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
AIMS Macrophage is known to readily engulf any particulate material they encounter, including invading microbes and nano- or micro-particles. While recent studies show that some microparticles (MP) are immunogenic even without drug-cargo, the mechanism underlying this phenomenon is yet unclear. Phagocytosis induces NADPH oxidase-2 (NOX-2) mediated ROS generation that is reported to regulate antibacterial autophagy. We therefore, investigated the role of NOX-2 derived ROS in phagosomal maturation and autophagy induction in response to phagocytic uptake of two kinds of polymeric biodegradable and biocompatible microparticles: yeast-derived β-glucan particles (YDGP) and poly-(D, L-Lactic Acid) microparticles (PMP). MAIN METHODS J774A.1 macrophage wereas exposed to polymeric particles and the immune responses: ROS, phagosomal maturation and autophagy induction, were examined by assays including NBT, DCFH-DA, NADPH-Oxidase activity, Lysotracker and Acridine Orange. Further, the LC3 and NOX-2 expression were validated by RT-PCR, immunofluorescence assay and Western blotting. Antimicrobial activity of both MP was examined by CFU counting after administration to Mycobacterium tuberculosis and Salmonella typhimurium infected macrophage. KEY FINDINGS YDGP induces phagosomal maturation and acidic vesicle accumulation at 30 min and 24 h post-exposure, much more proficiently than that by PMP. YDGP exposure also induced NOX-2 dependent expression of light chain 3 (LC3-II), further confirmed as autophagy activation via autophagic flux assay with autophagolysosome inhibitor bafilomycin A1. Additionally, YDGP displayed superior anti-microbial activity than that by PMP. SIGNIFICANCE The induction of NOX-2-dependent autophagy and antimicrobial activity exhibited by particulate glucans has significant implications in harnessing these drug delivery vehicles as potential 'value-added' autophagy-mediated therapeutics in future.
Collapse
Affiliation(s)
- Nida Fatima
- Immunobiochemistry Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Tarun Upadhyay
- Immunobiochemistry Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India; School of Applied sciences and Agriculture Research, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Firoz Ahmad
- Immunobiochemistry Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Md Arshad
- Zoology Department, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Deepak Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Rolee Sharma
- Immunobiochemistry Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
11
|
Beretta M, Santos CXC, Molenaar C, Hafstad AD, Miller CCJ, Revazian A, Betteridge K, Schröder K, Streckfuß‐Bömeke K, Doroshow JH, Fleck RA, Su T, Belousov VV, Parsons M, Shah AM. Nox4 regulates InsP 3 receptor-dependent Ca 2+ release into mitochondria to promote cell survival. EMBO J 2020; 39:e103530. [PMID: 33001475 PMCID: PMC7527947 DOI: 10.15252/embj.2019103530] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Cells subjected to environmental stresses undergo regulated cell death (RCD) when homeostatic programs fail to maintain viability. A major mechanism of RCD is the excessive calcium loading of mitochondria and consequent triggering of the mitochondrial permeability transition (mPT), which is especially important in post-mitotic cells such as cardiomyocytes and neurons. Here, we show that stress-induced upregulation of the ROS-generating protein Nox4 at the ER-mitochondria contact sites (MAMs) is a pro-survival mechanism that inhibits calcium transfer through InsP3 receptors (InsP3 R). Nox4 mediates redox signaling at the MAM of stressed cells to augment Akt-dependent phosphorylation of InsP3 R, thereby inhibiting calcium flux and mPT-dependent necrosis. In hearts subjected to ischemia-reperfusion, Nox4 limits infarct size through this mechanism. These results uncover a hitherto unrecognized stress pathway, whereby a ROS-generating protein mediates pro-survival effects through spatially confined signaling at the MAM to regulate ER to mitochondria calcium flux and triggering of the mPT.
Collapse
Affiliation(s)
- Matteo Beretta
- School of Cardiovascular Medicine & SciencesKing's College London British Heart Foundation CentreLondonUK
| | - Celio XC Santos
- School of Cardiovascular Medicine & SciencesKing's College London British Heart Foundation CentreLondonUK
| | - Chris Molenaar
- School of Cardiovascular Medicine & SciencesKing's College London British Heart Foundation CentreLondonUK
| | - Anne D Hafstad
- School of Cardiovascular Medicine & SciencesKing's College London British Heart Foundation CentreLondonUK
- Cardiovascular Research GroupDepartment of Medical BiologyUIT‐The Arctic University of NorwayTromsøNorway
| | - Chris CJ Miller
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Aram Revazian
- Institute for Cardiovascular PhysiologyGeorg August University GöttingenGöttingenGermany
| | - Kai Betteridge
- School of Cardiovascular Medicine & SciencesKing's College London British Heart Foundation CentreLondonUK
| | - Katrin Schröder
- Institute for Cardiovascular PhysiologyGoethe‐University FrankfurtFrankfurt am MainGermany
| | | | - James H Doroshow
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteNIHBethesdaMDUSA
| | - Roland A Fleck
- Centre for Ultrastructural ImagingKing's College LondonLondonUK
| | - Tsung‐Ping Su
- Cellular Pathobiology SectionNational Institute on Drug Abuse, NIHBaltimoreMDUSA
| | - Vsevolod V Belousov
- Institute for Cardiovascular PhysiologyGeorg August University GöttingenGöttingenGermany
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
- Pirogov Russian National Research Medical UniversityMoscowRussia
| | - Maddy Parsons
- King's College London British Heart Foundation CentreRandall Centre of Cell and Molecular BiophysicsLondonUK
| | - Ajay M Shah
- School of Cardiovascular Medicine & SciencesKing's College London British Heart Foundation CentreLondonUK
| |
Collapse
|
12
|
Rocco-Machado N, Cosentino-Gomes D, Nascimento MT, Paes-Vieira L, Khan YA, Mittra B, Andrews NW, Meyer-Fernandes JR. Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity. Free Radic Biol Med 2019; 143:341-353. [PMID: 31446054 DOI: 10.1016/j.freeradbiomed.2019.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023]
Abstract
Leishmania amazonensis is one of leishmaniasis' causative agents, a disease that has no cure and leads to the appearance of cutaneous lesions. Recently, our group showed that heme activates a Na+/K+ ATPase in these parasites through a signaling cascade involving hydrogen peroxide (H2O2) generation. Heme has a pro-oxidant activity and signaling capacity, but the mechanism by which this molecule increases H2O2 levels in L. amazonensis has not been elucidated. Here we investigated the source of H2O2 stimulated by heme, ruling out the participation of mitochondria and raising the possibility of a role for a NADPH oxidase (Nox) activity. Despite the absence of a classical Nox sequence in trypanosomatid genomes, L. amazonensis expresses a surface ferric iron reductase (LFR1). Interestingly, Nox enzymes are thought to have evolved from ferric iron reductases because they share same core domain and are very similar in structure. The main difference is that Nox catalyses electron flow from NADPH to oxygen, generating reactive oxygen species (ROS), while ferric iron reductase promotes electron flow to ferric iron, generating ferrous iron. Using L. amazonensis overexpressing or knockout for LFR1 and heterologous expression of LFR1 in mammalian embryonic kidney (HEK 293) cells, we show that this enzyme is bifunctional, being able to generate both ferrous iron and H2O2. It was previously described that protozoans knockout for LFR1 have their differentiation to virulent forms (amastigote and metacyclic promastigote) impaired. In this work, we observed that LFR1 overexpression stimulates protozoan differentiation to amastigote forms, reinforcing the importance of this enzyme in L. amazonensis life cycle regulation. Thus, we not only identified a new source of ROS production in Leishmania, but also described, for the first time, an enzyme with both ferric iron reductase and Nox activities.
Collapse
Affiliation(s)
- N Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - D Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of Chemistry, Department of Biochemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - M T Nascimento
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - L Paes-Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Y A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - B Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - J R Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. Int J Mol Sci 2018; 19:ijms19113362. [PMID: 30373222 PMCID: PMC6274960 DOI: 10.3390/ijms19113362] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
The significance of oxidative stress in the development of chronic neurodegenerative diseases of the retina has become increasingly apparent in recent years. Reactive oxygen species (ROS) are free radicals produced at low levels as a result of normal cellular metabolism that are ultimately metabolized and detoxified by endogenous and exogenous mechanisms. In the presence of oxidative cellular stress, ROS are produced in excess, resulting in cellular injury and death and ultimately leading to tissue and organ dysfunction. Recent studies have investigated the role of excess ROS in the pathogenesis and development of chronic neurodegenerative diseases of the retina including glaucoma, diabetic retinopathy, and age-related macular degeneration. Findings from these studies are promising insofar as they provide clear rationales for innovative treatment and prevention strategies of these prevalent and disabling diseases where currently therapeutic options are limited. Here, we briefly outline recent developments that have contributed to our understanding of the role of ROS in the pathogenesis of chronic neurodegenerative diseases of the retina. We then examine and analyze the peer-reviewed evidence in support of ROS as targets for therapy development in the area of chronic neurodegeneration of the retina.
Collapse
|
14
|
Barrasso AP, Wang S, Tong X, Christiansen AE, Larina IV, Poché RA. Live imaging of developing mouse retinal slices. Neural Dev 2018. [PMID: 30219109 DOI: 10.1186/s13064-018-0120-y.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations. To obtain 3-dimensional images with high quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as 2-photon, with a higher level of depth penetrance. Here, we report a retinal live imaging method that is more amenable to a wider array of imaging systems and does not compromise resolution of retinal cross-sectional area. RESULTS Mouse retinal slice cultures were prepared and standard, inverted confocal microscopy was used to generate movies with high quality resolution of retinal cross-sections. To illustrate the ability of this method to capture discrete, physiologically relevant events during retinal development, we imaged the dynamics of the Fucci cell cycle reporter in both wild type and Cyclin D1 mutant retinal progenitor cells (RPCs) undergoing interkinetic nuclear migration (INM). Like previously reported for the zebrafish, mouse RPCs in G1 phase migrated stochastically and exhibited overall basal drift during development. In contrast, mouse RPCs in G2 phase displayed directed, apical migration toward the ventricular zone prior to mitosis. We also determined that Cyclin D1 knockout RPCs in G2 exhibited a slower apical velocity as compared to wild type. These data are consistent with previous IdU/BrdU window labeling experiments on Cyclin D1 knockout RPCs indicating an elongated cell cycle. Finally, to illustrate the ability to monitor retinal neuron differentiation, we imaged early postnatal horizontal cells (HCs). Time lapse movies uncovered specific HC neurite dynamics consistent with previously published data showing an instructive role for transient vertical neurites in HC mosaic formation. CONCLUSIONS We have detailed a straightforward method to image mouse retinal slice culture preparations that, due to its relative ease, extends live retinal imaging capabilities to a more diverse group of scientists. We have also shown that, by using a slice technique, we can achieve excellent lateral resolution, which is advantageous for capturing intracellular dynamics and overall cell movements during retinal development and differentiation.
Collapse
Affiliation(s)
- Anthony P Barrasso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Barrasso AP, Wang S, Tong X, Christiansen AE, Larina IV, Poché RA. Live imaging of developing mouse retinal slices. Neural Dev 2018; 13:23. [PMID: 30219109 PMCID: PMC6139133 DOI: 10.1186/s13064-018-0120-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Background Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations. To obtain 3-dimensional images with high quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as 2-photon, with a higher level of depth penetrance. Here, we report a retinal live imaging method that is more amenable to a wider array of imaging systems and does not compromise resolution of retinal cross-sectional area. Results Mouse retinal slice cultures were prepared and standard, inverted confocal microscopy was used to generate movies with high quality resolution of retinal cross-sections. To illustrate the ability of this method to capture discrete, physiologically relevant events during retinal development, we imaged the dynamics of the Fucci cell cycle reporter in both wild type and Cyclin D1 mutant retinal progenitor cells (RPCs) undergoing interkinetic nuclear migration (INM). Like previously reported for the zebrafish, mouse RPCs in G1 phase migrated stochastically and exhibited overall basal drift during development. In contrast, mouse RPCs in G2 phase displayed directed, apical migration toward the ventricular zone prior to mitosis. We also determined that Cyclin D1 knockout RPCs in G2 exhibited a slower apical velocity as compared to wild type. These data are consistent with previous IdU/BrdU window labeling experiments on Cyclin D1 knockout RPCs indicating an elongated cell cycle. Finally, to illustrate the ability to monitor retinal neuron differentiation, we imaged early postnatal horizontal cells (HCs). Time lapse movies uncovered specific HC neurite dynamics consistent with previously published data showing an instructive role for transient vertical neurites in HC mosaic formation. Conclusions We have detailed a straightforward method to image mouse retinal slice culture preparations that, due to its relative ease, extends live retinal imaging capabilities to a more diverse group of scientists. We have also shown that, by using a slice technique, we can achieve excellent lateral resolution, which is advantageous for capturing intracellular dynamics and overall cell movements during retinal development and differentiation. Electronic supplementary material The online version of this article (10.1186/s13064-018-0120-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony P Barrasso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Ruiz Lopez AM, Roche SL, Wyse Jackson AC, Moloney JN, Byrne AM, Cotter TG. Pro-survival redox signalling in progesterone-mediated retinal neuroprotection. Eur J Neurosci 2017; 46:1663-1672. [PMID: 28493650 DOI: 10.1111/ejn.13604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/05/2023]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary retinal diseases, characterised by photoreceptor cell loss. Despite a substantial understanding of the mechanisms leading to cell death, an effective therapeutic strategy is sought. Our laboratory has previously demonstrated the neuroprotective properties of Norgestrel, a progesterone analogue, in the degenerating retina, mediated in part by the neurotrophic factor basic fibroblast growth factor (bFGF). In other retinal studies, we have also presented a pro-survival role for reactive oxygen species (ROS), downstream of bFGF. Thus, we hypothesized that Norgestrel utilises bFGF-driven ROS production to promote photoreceptor survival. Using the 661W photoreceptor-like cell line, we now show that Norgestrel, working through progesterone receptor membrane complex 1 (PGRMC1); generates an early burst of pro-survival bFGF-induced ROS. Using the rd10 mouse model of RP, we confirm that Norgestrel induces a similar early pro-survival increase in retinal ROS. Norgestrel-driven protection in the rd10 retina was attenuated in the presence of antioxidants. This study therefore presents an essential role for ROS signalling in Norgestrel-mediated neuroprotection in vitro and demonstrates that Norgestrel employs a similar pro-survival mechanism in the degenerating retina.
Collapse
Affiliation(s)
- Ana M Ruiz Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Narayan DS, Chidlow G, Wood JP, Casson RJ. Glucose metabolism in mammalian photoreceptor inner and outer segments. Clin Exp Ophthalmol 2017; 45:730-741. [PMID: 28334493 DOI: 10.1111/ceo.12952] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/25/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
Photoreceptors are the first-order neurons of the visual pathway, converting light into electrical signals. Rods and cones are the two main types of photoreceptors in the mammalian retina. Rods are specialized for sensitivity at the expense of resolution and are responsible for vision in dimly lit conditions. Cones are responsible for high acuity central vision and colour vision. Many human retinal diseases are characterized by a progressive loss of photoreceptors. Photoreceptors consist of four primary regions: outer segments, inner segments, cell bodies and synaptic terminals. Photoreceptors consume large amounts of energy, and therefore, energy metabolism may be a critical juncture that links photoreceptor function and survival. Cones require more energy than rods, and cone degeneration is the main cause of clinically significant vision loss in retinal diseases. Photoreceptor segments are capable of utilizing various energy substrates, including glucose, to meet their large energy demands. The pathways by which photoreceptor segments meet their energy demands remain incompletely understood. Improvements in the understanding of glucose metabolism in photoreceptor segments may provide insight into the reasons why photoreceptors degenerate due to energy failure. This may, in turn, assist in developing bio-energetic therapies aimed at protecting photoreceptors.
Collapse
Affiliation(s)
- Daniel S Narayan
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - John Pm Wood
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| |
Collapse
|
18
|
Tao Y, Chen T, Yang GQ, Peng GH, Yan ZJ, Huang YF. Anthocyanin can arrest the cone photoreceptor degeneration and act as a novel treatment for retinitis pigmentosa. Int J Ophthalmol 2016; 9:153-8. [PMID: 26949626 DOI: 10.18240/ijo.2016.01.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of heterogeneous inherited retinal diseases that is characterized by primary death rod photoreceptors and the secondary loss of cones. The degeneration of cones causes gradual constriction of visual fields, leaving the central islands that are eventually snuffed out. Studies indicate that the hyperoxia causes oxidative damage in the retina and contributes to the cone death of RP. Moreover, abundant reactive oxidative species (ROS) which are generated in cones may result in mitochondria membrane depolarization, which has been ascribed a central role in the apoptotic process and has been proposed to act as a forward feeding loop for the activation of downstream cascades. Anthocyanin is a potent antioxidant which has been evidenced to be able to counteract oxidative damages, scavenge surplus ROS, and rectify abnormities in the apoptotic cascade. Taken together with its ability to attenuate inflammation which also contributes to the etiology of RP, it is reasonable to hypothesize that the anthocyanin could act as a novel therapeutic strategy to retard or prevent cone degeneration in RP retinas, particularly if the treatment is timed appropriately and delivered efficiently. Future pharmacological investigations will identify the anthocyanin as an effective candidate for PR therapy and refinements of that knowledge would ignite the hope of restoring the visual function in RP patients.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guo-Qing Yang
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guang-Hua Peng
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| | - Zhong-Jun Yan
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Yi-Fei Huang
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
19
|
Abstract
Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. Proteins undergo reversible and irreversible redox modifications. Oxidized proteins are cleared mainly through the 20S proteasome and autophagy. The proteolytic systems exhibit a dynamic crosstalk to adapt to redox alterations. Protein oxidation together with impaired degradation are linked to neurodegeneration.
Collapse
|
20
|
German OL, Agnolazza DL, Politi LE, Rotstein NP. Light, lipids and photoreceptor survival: live or let die? Photochem Photobiol Sci 2015. [PMID: 26204250 DOI: 10.1039/c5pp00194c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to its constant exposure to light and its high oxygen consumption the retina is highly sensitive to oxidative damage, which is a common factor in inducing the death of photoreceptors after light damage or in inherited retinal degenerations. The high content of docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, has been suggested to contribute to this sensitivity. DHA is crucial for developing and preserving normal visual function. However, further roles of DHA in the retina are still controversial. Current data support that it can tilt the scale either towards degeneration or survival of retinal cells. DHA peroxidation products can be deleterious to the retina and might lead to retinal degeneration. However, DHA has also been shown to act as, or to be the source of, a survival molecule that protects photoreceptors and retinal pigment epithelium cells from oxidative damage. We have established that DHA protects photoreceptors from oxidative stress-induced apoptosis and promotes their differentiation in vitro. DHA activates the retinoid X receptor (RXR) and the ERK/MAPK pathway, thus regulating the expression of anti and pro-apoptotic proteins. It also orchestrates a diversity of signaling pathways, modulating enzymatic pathways that control the sphingolipid metabolism and activate antioxidant defense mechanisms to promote photoreceptor survival and development. A deeper comprehension of DHA signaling pathways and context-dependent behavior is required to understand its dual functions in retinal physiology.
Collapse
Affiliation(s)
- Olga Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
21
|
Rocco-Machado N, Cosentino-Gomes D, Meyer-Fernandes JR. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis. PLoS One 2015; 10:e0129604. [PMID: 26070143 PMCID: PMC4466535 DOI: 10.1371/journal.pone.0129604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/11/2015] [Indexed: 01/02/2023] Open
Abstract
Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.
Collapse
Affiliation(s)
- Nathália Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- * E-mail: (JRMF); (NRM)
| | - Daniela Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- * E-mail: (JRMF); (NRM)
| |
Collapse
|
22
|
Agca C, Boldt K, Gubler A, Meneau I, Corpet A, Samardzija M, Stucki M, Ueffing M, Grimm C. Expression of leukemia inhibitory factor in Müller glia cells is regulated by a redox-dependent mRNA stability mechanism. BMC Biol 2015; 13:30. [PMID: 25907681 PMCID: PMC4462110 DOI: 10.1186/s12915-015-0137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Background Photoreceptor degeneration is a main hallmark of many blinding diseases making protection of photoreceptors crucial to prevent vision loss. Thus, regulation of endogenous neuroprotective factors may be key for cell survival and attenuation of disease progression. Important neuroprotective factors in the retina include H2O2 generated by injured photoreceptors, and leukemia inhibitory factor (LIF) expressed in Müller glia cells in response to photoreceptor damage. Results We present evidence that H2O2 connects to the LIF response by inducing stabilization of Lif transcripts in Müller cells. This process was independent of active gene transcription and p38 MAPK, but relied on AU-rich elements (AREs), which we identified within the highly conserved Lif 3′UTR. Affinity purification combined with quantitative mass spectrometry identified several proteins that bound to these AREs. Among those, interleukin enhancer binding factor 3 (ILF3) was confirmed to participate in the redox-dependent Lif mRNA stabilization. Additionally we show that KH-type splicing regulatory protein (KHSRP) was crucial for maintaining basal Lif expression levels in non-stressed Müller cells. Conclusions Our results suggest that H2O2-induced redox signaling increases Lif transcript levels through ILF3 mediated mRNA stabilization. Generation of H2O2 by injured photoreceptors may thus enhance stability of Lif mRNA and therefore augment neuroprotective LIF signaling during degenerative conditions in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cavit Agca
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Present address: Department of Biomedicine, University Hospital Basel, Basel, 4031, Switzerland.
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Andrea Gubler
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Isabelle Meneau
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Armelle Corpet
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland. .,Present address: Center for Molecular and Cellular Physiology and Genetics, University Lyon I, Villeurbanne, France.
| | - Marijana Samardzija
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland.
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, 8091, Switzerland. .,Neuroscience Center (ZNZ), University of Zurich, Zurich, 8091, Switzerland.
| |
Collapse
|
23
|
Agca C, Grimm C. Leukemia inhibitory factor signaling in degenerating retinas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:389-94. [PMID: 24664722 DOI: 10.1007/978-1-4614-3209-8_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Degeneration of cells in the retina is a hallmark of various inherited and acquired blinding diseases in humans. One of the most challenging problems to establish successful treatments for these diseases is to understand the molecular mechanisms that result in retinal degeneration and to identify endogenous rescue pathways which support cell survival. In many mouse models for retinal degeneration, expression of LIF in glial cells in response to a disease condition is crucial for the activation of an elaborate protective system. This mini review will summarize the findings that are related to LIF signaling and discuss the neuroprotective effects of LIF in different animal models.
Collapse
Affiliation(s)
- Cavit Agca
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland,
| | | |
Collapse
|
24
|
Agca C, Gubler A, Traber G, Beck C, Imsand C, Ail D, Caprara C, Grimm C. p38 MAPK signaling acts upstream of LIF-dependent neuroprotection during photoreceptor degeneration. Cell Death Dis 2013; 4:e785. [PMID: 24008729 PMCID: PMC3789181 DOI: 10.1038/cddis.2013.323] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
In many blinding diseases of the retina, loss of function and thus severe visual impairment results from apoptotic cell death of damaged photoreceptors. In an attempt to survive, injured photoreceptors generate survival signals to induce intercellular protective mechanisms that eventually may rescue photoreceptors from entering an apoptotic death pathway. One such endogenous survival pathway is controlled by leukemia inhibitory factor (LIF), which is produced by a subset of Muller glia cells in response to photoreceptor injury. In the absence of LIF, survival components are not activated and photoreceptor degeneration is accelerated. Although LIF is a crucial factor for photoreceptor survival, the detailed mechanism of its induction in the retina has not been elucidated. Here, we show that administration of tumor necrosis factor-alpha (TNF) was sufficient to fully upregulate Lif expression in Muller cells in vitro and the retina in vivo. Increased Lif expression depended on p38 mitogen-activated protein kinase (MAPK) since inhibition of its activity abolished Lif expression in vitro and in vivo. Inhibition of p38 MAPK activity reduced the Lif expression also in the model of light-induced retinal degeneration and resulted in increased cell death in the light-exposed retina. Thus, expression of Lif in the injured retina and activation of the endogenous survival pathway involve signaling through p38 MAPK.
Collapse
Affiliation(s)
- C Agca
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich 8091, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Aranda J, Motiejunaite R, Silva P, Aiello LP, Kazlauskas A. Regression activity that is naturally present in vitreous becomes ineffective as patients develop proliferative diabetic retinopathy. Diabetologia 2013; 56:1444-53. [PMID: 23508305 PMCID: PMC3744872 DOI: 10.1007/s00125-013-2884-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS The realisation that targeting agents in the vitreous is an effective approach to treating patients with diabetic retinopathy (DR) has increased awareness that changes in the composition/bioactivity of the vitreous is a contributor to the pathogenesis of DR. The overall goal of this study was to test the hypothesis that the vitreous has regression activity, and that lysophosphatidic acid (LPA) contributes to such activity. LPA is a bioactive phospholipid present in many biological fluids, and has been recently appreciated for its ability to promote regression of blood vessels. METHODS Vitreous-mediated regression was monitored on tubes organised from primary retinal endothelial cells or neovessels that sprouted from retinal explants. LPA was quantified radioenzymatically. RESULTS Bovine and human vitreous promoted regression of retinal explant vessels and of tubes organised from primary retinal endothelial cells. LPA was a substantial component of this regression activity. Comparing the regression activities of vitreous from patients with different stages of DR revealed that, as patients developed proliferative diabetic retinopathy (PDR), vitreous lost its ability to promote regression, even though the amount of LPA did not change. The underlying mechanism was a PDR-vitreous-mediated insensitivity to LPA, which could be overcome pharmacologically. CONCLUSIONS/INTERPRETATION Our findings suggest that a decline in the responsiveness to regression factors such as LPA, which are naturally present in the vitreous, contributes to the pathogenesis of PDR.
Collapse
Affiliation(s)
- J. Aranda
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA
| | - R. Motiejunaite
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA
- Department of Biochemistry and Biophysics, Vilnius University, Vilnius, Lithuania
| | - P. Silva
- Joslin Diabetes Center, Boston, MA, USA
| | | | - A. Kazlauskas
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA
| |
Collapse
|
26
|
|
27
|
Abstract
Oxidative stress has emerged as a key deleterious factor in brain ischemia and reperfusion. Malfunction of the oxidative respiratory chain in mitochondria combines with the activation of cytoplasmic oxidases to generate a burst of reactive oxygen species that cannot be neutralised by the cell's antioxidant mechanisms. As a result, oxidative stress contributes directly to necrosis and apoptosis through a number of pathways in ischemic tissue. Pharmacological intervention with antioxidants or enhancers of endogenous antioxidant molecules is proving to be difficult due to the speed and scope of the oxidative impact. Additionally, the knowledge that neuronal fate in ischemic stroke is tightly linked to other brain cells like endothelial cells and astrocytes has shifted the focus of study from isolated neurons to the neurovascular unit. For this reason, recent efforts have been directed towards understanding the sources of oxidative stress in ischemic stroke and attempting to block the generation of oxygen radicals.
Collapse
|
28
|
Nair D, Ramesh V, Gozal D. Adverse cognitive effects of high-fat diet in a murine model of sleep apnea are mediated by NADPH oxidase activity. Neuroscience 2012; 227:361-9. [PMID: 23064009 DOI: 10.1016/j.neuroscience.2012.09.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 01/14/2023]
Abstract
Intermittent hypoxia (IH) during sleep, such as occurs in sleep apnea (SA), induces increased NADPH oxidase activation and deficits in hippocampal learning and memory. Similar to IH, high fat-refined carbohydrate diet (HFD), a frequent occurrence in patients with SA, can also induce similar oxidative stress and cognitive deficits under normoxic conditions, suggesting that excessive NADPH oxidase activity may underlie CNS dysfunction in both conditions. The effect of HFD and IH during the light period on two forms of spatial learning in the water maze as well as on markers of oxidative stress was assessed in male mice lacking NADPH oxidase activity (gp91phox⁻/Y) and wild-type littermates fed on HFD. On a standard place training task, gp91phox⁻/Y displayed normal learning, and was protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to HFD and IH as compared to controls, while no changes emerged in gp91phox⁻/Y mice. Additionally, wild-type mice, but not gp91phox⁻/Y mice, had significantly elevated levels of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) in hippocampal lysates following IH-HFD exposures. The cognitive deficits of obesity and westernized diets and those of sleep disorders that are characterized by IH during sleep are both mediated, at least in part, by excessive NADPH oxidase activity.
Collapse
Affiliation(s)
- D Nair
- Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
29
|
Altenhöfer S, Kleikers PWM, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K, Schmidt HHHW. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 2012; 69:2327-43. [PMID: 22648375 PMCID: PMC3383958 DOI: 10.1007/s00018-012-1010-9] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Pamela W. M. Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Kim A. Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | | | - J. J. Rob Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Paul Schiffers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Heidi Ho
- National Stroke Research Institute, Melbourne, VIC Australia
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Harald H. H. W. Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
30
|
Dong SQ, Xu HZ, Xia XB, Wang S, Zhang LX, Liu SZ. Activation of the ERK 1/2 and STAT3 signaling pathways is required for 661W cell survival following oxidant injury. Int J Ophthalmol 2012; 5:138-42. [PMID: 22762037 DOI: 10.3980/j.issn.2222-3959.2012.02.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/16/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To evaluate the influence of hydrogen peroxide (H(2)O(2)) on mouse photoreceptor-derived 661W cell survival and to determine the effect of PD98059, an inhibitor for MEK1 (the direct upstream activator of ERK1/2), and S3I201, a STAT3- specific inhibitor on 661W cell survival after H(2)O(2) exposure. METHODS The mouse photoreceptor-derived 661W cells were cultured. 661W cells were treated for 12 hours with different concentrations (0, 0.25, 0.50, 0.75, 1mmol/L) of H(2)O(2) and cell viability was determined by 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide ) (MTT) assay. 661W cells were treated with different concentrations H(2)O(2) (0, 5, 10, 50, 500, 1000 µmol/L) for 15 minutes or 1mmol/L H(2)O(2) for different time points (0,5,10,15,30 minutes), and p-Tyr705-STAT3, STAT3, Phospho-p44/42 MAPK (Thr202/Tyr204), ERK1/2 were surveyed by immunoblot analysis. After treatment with 50µmol/L PD98059, or S3I201 for 1 hour, the inhibition efficiency of cell signal pathways was analyzed by immunoblot analysis and the effects of inhibitors on cell viability were determined by MTT. RESULTS After treating with different concentrations of H(2)O(2) for 12 hours, the cell viability of 661W cells decreased in concentration-dependent manner (P<0.05). Moreover, H(2)O(2) induced phosphorylation of ERK1/2 and STAT3 in 661W cells (P<0.05). After pretreatment with 50µmol/L PD98059 or S3I201 for 1 hour, H(2)O(2)-induced phosphorylation of ERK1/2 or STAT3 was suppressed separately (P<0.05). Using PD98059 or S3I201 to inhibit ERK1/2 or STAT3 signal pathway, the cell viability of 661W cells decreased significantly (P<0.05). CONCLUSION We demonstrated that the exposure of 661W cells to H(2)O(2) increased the activation of ERK1/2 and STAT3 signal pathways. Activation of these pathways is required for 661W cell survival following oxidant injury.
Collapse
Affiliation(s)
- Shu-Qian Dong
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha 410006, Hunan Province, China
| | | | | | | | | | | |
Collapse
|
31
|
Yao Y, Li R, Ma Y, Wang X, Li C, Zhang X, Ma R, Ding Z, Liu L. α-Lipoic acid increases tolerance of cardiomyoblasts to glucose/glucose oxidase-induced injury via ROS-dependent ERK1/2 activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:920-9. [DOI: 10.1016/j.bbamcr.2012.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/19/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022]
|
32
|
Doonan F, Groeger G, Cotter TG. Preventing retinal apoptosis--is there a common therapeutic theme? Exp Cell Res 2012; 318:1278-84. [PMID: 22366479 DOI: 10.1016/j.yexcr.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
There is an urgent need for therapies for retinal diseases; retinitis pigmentosa sufferers have no treatment options available and those targeted at other retinopathies have shown limited effectiveness. The process of programmed cell death or apoptosis although complex, remains a possible target for the treatment of retinal diseases. Having identified apoptosis in the vertebrate retina in populations of immature neurons as an essential part of development it was proposed that re-activation of these developmental cell death pathways might provide insight into the death mechanisms operating in retinal diseases. However, the discovery that numerous factors initiate and mediate the apoptotic cascade in mature photoreceptors has resulted in a relatively untargeted approach to examining and arresting apoptosis in the retina. In the last 5 years, mouse models have been treated with a diverse range of drugs or factors including anti-oxidants, growth factors, steroid hormones, calcium/calpain inhibitors and tetracycline antibiotics. Therefore to draw a unifying theme from these broad research areas is challenging. However, this review focusses on two targets which are currently under investigation, reactive oxygen species and mammalian target of rapamycin, drawing together the common themes of these research areas.
Collapse
Affiliation(s)
- Francesca Doonan
- Biochemistry Department, Biosciences Research Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
33
|
Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa MC, Ramirez-Tortosa CL, Granados-Principal S, Lorente JA, Quiles JL. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit Rev Oncol Hematol 2011; 80:347-68. [DOI: 10.1016/j.critrevonc.2011.01.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/15/2010] [Accepted: 01/11/2011] [Indexed: 12/30/2022] Open
|
34
|
Chertov AO, Holzhausen L, Kuok IT, Couron D, Parker E, Linton JD, Sadilek M, Sweet IR, Hurley JB. Roles of glucose in photoreceptor survival. J Biol Chem 2011; 286:34700-11. [PMID: 21840997 PMCID: PMC3186402 DOI: 10.1074/jbc.m111.279752] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/04/2011] [Indexed: 11/06/2022] Open
Abstract
Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.
Collapse
Affiliation(s)
| | | | | | - Drew Couron
- Medicine, Diabetes, Obesity Center of Excellence
| | | | | | - Martin Sadilek
- Chemistry, University of Washington, Seattle, Washington 98195
| | - Ian R. Sweet
- Medicine, Diabetes, Obesity Center of Excellence
| | | |
Collapse
|
35
|
Mataftsi A, Dimitrakos SA, Adams GGW. Mediators involved in retinopathy of prematurity and emerging therapeutic targets. Early Hum Dev 2011; 87:683-90. [PMID: 21700404 DOI: 10.1016/j.earlhumdev.2011.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/30/2022]
Abstract
Retinopathy of prematurity (ROP) is a potentially blinding disease of premature infants and despite timely treatment some infants develop retinal detachment and sight loss. Current treatment utilises laser therapy which causes destruction of treated retinal tissue resulting in field loss. There is considerable research work ongoing on neovascular eye disease which is likely to result in antiangiogenic approaches that will arrest the development of ROP by specifically targeting the involved molecular mediators. Some of these new therapeutic interventions have entered clinical trials. This article reviews new information available on the molecular pathogenesis of ROP which may result in novel treatments for ROP; it does not discuss the well-known role of oxygen in the development of ROP.
Collapse
Affiliation(s)
- A Mataftsi
- Great Ormond Street Hospital, London, United Kingdom.
| | | | | |
Collapse
|
36
|
Emery M, Schorderet DF, Roduit R. Acute hypoglycemia induces retinal cell death in mouse. PLoS One 2011; 6:e21586. [PMID: 21738719 PMCID: PMC3124528 DOI: 10.1371/journal.pone.0021586] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/06/2011] [Indexed: 12/30/2022] Open
Abstract
Background Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. A vast body of literature exists on hyperglycemia namely in the field of diabetic retinopathy, but very little is known about the deleterious effect of hypoglycemia. Therefore, we decided to study the role of acute hypoglycemia in mouse retina. Methodology/Principal Findings To test effects of hypoglycemia, we performed a 5-hour hyperinsulinemic/hypoglycemic clamp; to exclude an effect of insulin, we made a hyperinsulinemic/euglycemic clamp as control. We then isolated retinas from each group at different time-points after the clamp to analyze cells apoptosis and genes regulation. In parallel, we used 661W photoreceptor cells to confirm in vivo results. We showed herein that hypoglycemia induced retinal cell death in mouse via caspase 3 activation. We then tested the mRNA expression of glutathione transferase omega 1 (Gsto1) and glutathione peroxidase 3 (Gpx3), two genes involved in glutathione (GSH) homeostasis. The expression of both genes was up-regulated by low glucose, leading to a decrease of reduced glutathione (GSH). In vitro experiments confirmed the low-glucose induction of 661W cell death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. Moreover, decrease of GSH content by inhibition with buthionine sulphoximine (BSO) at high glucose induced apoptosis, while complementation with extracellular glutathione ethyl ester (GSHee) at low glucose restored GSH level and reduced apoptosis. Conclusions/Significance We showed, for the first time, that acute insulin-induced hypoglycemia leads to caspase 3-dependant retinal cell death with a predominant role of GSH content.
Collapse
Affiliation(s)
- Martine Emery
- Institute for Research in Ophthalmology (IRO), Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Daniel F. Schorderet
- Institute for Research in Ophthalmology (IRO), Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Raphaël Roduit
- Institute for Research in Ophthalmology (IRO), Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Nair D, Dayyat EA, Zhang SX, Wang Y, Gozal D. Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS One 2011; 6:e19847. [PMID: 21625437 PMCID: PMC3100309 DOI: 10.1371/journal.pone.0019847] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/18/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress and inflammation. Excessive NADPH oxidase activity may play a role in IH-induced CNS dysfunction. METHODS AND FINDINGS The effect of IH during light period on two forms of spatial learning in the water maze and well as markers of oxidative stress was assessed in mice lacking NADPH oxidase activity (gp91phox(_/Y)) and wild-type littermates. On a standard place training task, gp91phox(_/Y) displayed normal learning, and were protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to IH as compared to room air (RA) controls, while no changes emerged in gp91phox(_/Y) mice. Additionally, wild-type mice, but not gp91phox(_/Y) mice had significantly elevated levels of NADPH oxidase expression and activity, as well as MDA and 8-OHDG in cortical and hippocampal lysates following IH exposures. CONCLUSIONS The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at least in part, by excessive NADPH oxidase activity, and thus pharmacological agents targeting NADPH oxidase may provide a therapeutic strategy in sleep-disordered breathing.
Collapse
Affiliation(s)
- Deepti Nair
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Ehab A. Dayyat
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Shelley X. Zhang
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yang Wang
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
38
|
Wang X, Wang Z, Yao Y, Li J, Zhang X, Li C, Cheng Y, Ding G, Liu L, Ding Z. Essential role of ERK activation in neurite outgrowth induced by α-lipoic acid. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:827-38. [DOI: 10.1016/j.bbamcr.2011.01.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 01/29/2023]
|
39
|
Goettsch C, Goettsch W, Brux M, Haschke C, Brunssen C, Muller G, Bornstein SR, Duerrschmidt N, Wagner AH, Morawietz H. Arterial flow reduces oxidative stress via an antioxidant response element and Oct-1 binding site within the NADPH oxidase 4 promoter in endothelial cells. Basic Res Cardiol 2011; 106:551-61. [PMID: 21399967 DOI: 10.1007/s00395-011-0170-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 02/15/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
The main sources of oxidative stress in the vessel wall are nicotine adenine dinucleotide phosphate (NADPH) oxidase (Nox) complexes. The endothelium mainly expresses the Nox4-containing complex; however, the mechanism by which shear stress in endothelial cells regulates Nox4 is not well understood. This study demonstrates that long-term application of arterial laminar shear stress using a cone-and-plate viscometer reduces endothelial superoxide anion formation and Nox4 expression. In primary human endothelial cells, we identified a 47 bp 5'-untranslated region of Nox4 mRNA by 5'-rapid amplification of cDNA ends (5'-RACE) PCR. Cloning and functional analysis of human Nox4 promoter revealed a range between -1,490 and -1,310 bp responsible for flow-dependent downregulation. Mutation of an overlapping antioxidative response element (ARE)-like and Oct-1 binding site at -1,376 bp eliminated shear stress-dependent Nox4 downregulation. Consistent with these observations, electrophoretic mobility shift assays (EMSA) demonstrated an enhanced shear stress-dependent binding of Nox4 oligonucleotide containing the ARE-like/Oct-1 binding site, which could be inhibited by specific antibodies against the transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and octamer transcription factor 1 (Oct-1). Furthermore, shear stress caused the translocation of Nrf2 and Oct-1 from the cytoplasm to the nucleus. Knockdown of Nrf2 by short hairpin RNA (shRNA) increased Nox4 expression twofold, indicating a direct cross-talk between Nrf2 and Nox4. In conclusion, an ARE-like/Oct-1 binding site was noticed to be essential for shear stress-dependent downregulation of Nox4. This novel mechanism may be involved in the flow-dependent downregulation of endothelial superoxide anion formation.
Collapse
Affiliation(s)
- Claudia Goettsch
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University of Technology Dresden, Fetscherstrasse 74, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Farrell SMJ, Groeger G, Bhatt L, Finnegan S, O’Brien CJ, Cotter TG. bFGF-mediated redox activation of the PI3K/Akt pathway in retinal photoreceptor cells. Eur J Neurosci 2011; 33:632-41. [DOI: 10.1111/j.1460-9568.2010.07559.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Sharma RD, Petare S, Shinde GB, Kalyan G, Reddy MVR. Novel drug designing rationale against Brugia malayi microfilariae using herbal extracts. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60204-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
42
|
Graham KA, Kulawiec M, Owens KM, Li X, Desouki MM, Chandra D, Singh KK. NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther 2010; 10:223-31. [PMID: 20523116 DOI: 10.4161/cbt.10.3.12207] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are known to be involved in many physiological and pathological processes. Initially ROS-producing NADPH oxidase (NOX) proteins were thought to be present in phagocytes. However, recent studies have demonstrated that NOX proteins are expressed in many other cell types and tissues. NOX family members' expression and function seems to vary from tissue to tissue. We determined the expression of the NOX family of proteins (NOX1-5) in normal breast tissue and breast tumors. Our study revealed that normal breast tissues express NOX1, 4 and 5 genes. Similar pattern of expression was revealed in a breast epithelial cell line. We found that NOX4 was overexpressed in the majority of breast cancer cell lines and primary breast tumors. NOX4 was also overexpressed in ovarian tumors. Overexpression of NOX4 in normal breast epithelial cells resulted in cellular senescence, resistance to apoptosis, and tumorigenic transformation. Overexpression of NOX4 in already transformed breast tumor cells also showed increased tumorigenicity. Strong evidence suggests that regulation of these processes occurs through NOX4 generation of ROS in the mitochondria. We demonstrate that the NOX4 protein contains a 73 amino acid long mitochondrial localization signal at the N-terminus that is capable of transporting a passenger protein GFP into the mitochondria. Treatment of NOX4 overexpressing cells with catalase resulted in decreased tumorigenic characteristics. Together, this study provides evidence for an oncogenic function for NOX4 protein localized to mitochondria and suggests that NOX4 is a novel source of ROS produced in the mitochondria. This study also identifies a possible treatment of NOX4-induced breast cancer by antioxidant treatment.
Collapse
Affiliation(s)
- Kelly A Graham
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. Blood 2009; 115:1238-46. [PMID: 20007804 DOI: 10.1182/blood-2009-06-222869] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Excessive production of reactive oxygen species (ROS) is a feature of human malignancy and is often triggered by activation of oncogenes such as activated Ras. ROS act as second messengers and can influence a variety of cellular process including growth factor responses and cell survival. We have examined the contribution of ROS production to the effects of N-Ras(G12D) and H-Ras(G12V) on normal human CD34(+) progenitor cells. Activated Ras strongly up-regulated the production of both superoxide and hydrogen peroxide through the stimulation of NADPH oxidase (NOX) activity, without affecting the expression of endogenous antioxidants or the production of mitochondrially derived ROS. Activated Ras also promoted both the survival and the growth factor-independent proliferation of CD34(+) cells. Using oxidase inhibitors and antioxidants, we found that excessive ROS production by these cells did not contribute to their enhanced survival; rather, ROS promoted their growth factor-independent proliferation. Although Ras-induced ROS production specifically activated the p38(MAPK) oxidative stress response, this failed to induce expression of the cell-cycle inhibitor, p16(INK4A); instead, ROS promoted the expression of D cyclins. These data are the first to show that excessive ROS production in the context of oncogene activation can promote proliferative responses in normal human hematopoietic progenitor cells.
Collapse
|
44
|
Clement HW, Vazquez JF, Sommer O, Heiser P, Morawietz H, Hopt U, Schulz E, von Dobschütz E. Lipopolysaccharide-induced radical formation in the striatum is abolished in Nox2 gp91phox-deficient mice. J Neural Transm (Vienna) 2009; 117:13-22. [DOI: 10.1007/s00702-009-0327-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/20/2009] [Indexed: 11/24/2022]
|