1
|
Leek AN, Quinn JA, Krapf D, Tamkun MM. GLT-1a glutamate transporter nanocluster localization is associated with astrocytic actin and neuronal Kv2 clusters at sites of neuron-astrocyte contact. Front Cell Dev Biol 2024; 12:1334861. [PMID: 38362041 PMCID: PMC10867268 DOI: 10.3389/fcell.2024.1334861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Astrocytic GLT-1 glutamate transporters ensure the fidelity of glutamic neurotransmission by spatially and temporally limiting glutamate signals. The ability to limit neuronal hyperactivity relies on the localization and diffusion of GLT-1 on the astrocytic surface, however, little is known about the underlying mechanisms. We show that two isoforms of GLT-1, GLT-1a and GLT-1b, form nanoclusters on the surface of transfected astrocytes and HEK-293 cells. Methods: We used both fixed and live cell super-resolution imaging of fluorescent protein and epitope tagged proteins in co-cultures of rat astrocytes and neurons. Immunofluorescence techniques were also used. GLT1 diffusion was assessed via single particle tracking and fluorescence recovery after photobleach (FRAP). Results: We found GLT-1a, but not GLT-1b, nanoclusters concentrated adjacent to actin filaments which was maintained after addition of glutamate. GLT-1a nanocluster concentration near actin filaments was prevented by expression of a cytosolic GLT-1a C-terminus, suggesting the C-terminus is involved in the localization adjacent to cortical actin. Using super-resolution imaging, we show that astrocytic GLT-1a and actin co-localize in net-like structures around neuronal Kv2.1 clusters at points of neuron/astrocyte contact. Conclusion: Overall, these data describe a novel relationship between GLT-1a and cortical actin filaments, which localizes GLT-1a near neuronal structures responsive to ischemic insult.
Collapse
Affiliation(s)
- Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
| | - Josiah A. Quinn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Lakosa A, Rahimian A, Tomasi F, Marti F, Reynolds LM, Tochon L, David V, Danckaert A, Canonne C, Tahraoui S, de Chaumont F, Forget B, Maskos U, Besson M. Impact of the gut microbiome on nicotine's motivational effects and glial cells in the ventral tegmental area in male mice. Neuropsychopharmacology 2023; 48:963-974. [PMID: 36932179 PMCID: PMC10156728 DOI: 10.1038/s41386-023-01563-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023]
Abstract
A link between gut dysbiosis and the pathogenesis of brain disorders has been identified. A role for gut bacteria in drug reward and addiction has been suggested but very few studies have investigated their impact on brain and behavioral responses to addictive drugs so far. In particular, their influence on nicotine's addiction-like processes remains unknown. In addition, evidence shows that glial cells shape the neuronal activity of the mesolimbic system but their regulation, within this system, by the gut microbiome is not established. We demonstrate that a lack of gut microbiota in male mice potentiates the nicotine-induced activation of sub-regions of the mesolimbic system. We further show that gut microbiota depletion enhances the response to nicotine of dopaminergic neurons of the posterior ventral tegmental area (pVTA), and alters nicotine's rewarding and aversive effects in an intra-VTA self-administration procedure. These effects were not associated with gross behavioral alterations and the nicotine withdrawal syndrome was not impacted. We further show that depletion of the gut microbiome modulates the glial cells of the mesolimbic system. Notably, it increases the number of astrocytes selectively in the pVTA, and the expression of postsynaptic density protein 95 in both VTA sub-regions, without altering the density of the astrocytic glutamatergic transporter GLT1. Finally, we identify several sub-populations of microglia in the VTA that differ between its anterior and posterior sub-parts, and show that they are re-organized in conditions of gut microbiota depletion. The present study paves the way for refining our understanding of the pathophysiology of nicotine addiction.
Collapse
Affiliation(s)
- Alina Lakosa
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Anaïs Rahimian
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Flavio Tomasi
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
- Neuroscience Paris Seine, Sorbonne Université, INSERM, CNRS, 75005 Paris, France
| | - Fabio Marti
- Plasticité du Cerveau, CNRS UMR 8249, ESPCI Paris, Université PSL, Paris, France
- Neuroscience Paris Seine, Sorbonne Université, INSERM, CNRS, 75005, Paris, France
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR 8249, ESPCI Paris, Université PSL, Paris, France
| | - Léa Tochon
- Université de Bordeaux, Bordeaux, France
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Bordeaux, France
| | - Vincent David
- Université de Bordeaux, Bordeaux, France
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Bordeaux, France
| | - Anne Danckaert
- UTechS Photonics Bioimaging/C2RT, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Candice Canonne
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Sylvana Tahraoui
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Fabrice de Chaumont
- Génétique humaine et fonctions cognitives, CNRS UMR 3571, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Benoît Forget
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
- Génétique humaine et fonctions cognitives, CNRS UMR 3571, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Morgane Besson
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France.
| |
Collapse
|
3
|
Asah S, Alganem K, McCullumsmith RE, O'Donovan SM. A bioinformatic inquiry of the EAAT2 interactome in postmortem and neuropsychiatric datasets. Schizophr Res 2022; 249:38-46. [PMID: 32197935 PMCID: PMC7494586 DOI: 10.1016/j.schres.2020.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Altered expression and localization of the glutamate transporter EAAT2 is found in schizophrenia and other neuropsychiatric (major depression, MDD) and neurological disorders (amyotrophic lateral sclerosis, ALS). However, the EAAT2 interactome, the network of proteins that physically or functionally interact with EAAT2 to support its activity, has yet to be characterized in severe mental illness. We compiled a list of "core" EAAT2 interacting proteins. Using Kaleidoscope, an R-shiny application, we data mined publically available postmortem transcriptome datasets to determine whether components of the EAAT2 interactome are differentially expressed in schizophrenia and, using Reactome, identify which interactome-associated biological pathways are altered. Overall, these "look up" studies highlight region-specific, primarily frontal cortex (dorsolateral prefrontal cortex and anterior cingulate cortex), changes in the EAAT2 interactome and implicate altered metabolism pathways in schizophrenia. Pathway analyses also suggest that perturbation of components of the EAAT2 interactome in animal models of antipsychotic administration impact metabolism. Similar changes in metabolism pathways are seen in ALS, in addition to altered expression of many components of the EAAT2 interactome. However, although EAAT2 expression is altered in a postmortem MDD dataset, few other components of the EAAT2 interactome are changed. Thus, "look up" studies suggest region- and disease-relevant biological pathways related to the EAAT2 interactome that implicate glutamate reuptake perturbations in schizophrenia, while providing a useful tool to exploit "omics" datasets.
Collapse
Affiliation(s)
- Sophie Asah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
4
|
Hirschberg S, Dvorzhak A, Rasooli-Nejad SMA, Angelov S, Kirchner M, Mertins P, Lättig-Tünnemann G, Harms C, Schmitz D, Grantyn R. Uncoupling the Excitatory Amino Acid Transporter 2 From Its C-Terminal Interactome Restores Synaptic Glutamate Clearance at Corticostriatal Synapses and Alleviates Mutant Huntingtin-Induced Hypokinesia. Front Cell Neurosci 2022; 15:792652. [PMID: 35173582 PMCID: PMC8841566 DOI: 10.3389/fncel.2021.792652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Rapid removal of glutamate from the sites of glutamate release is an essential step in excitatory synaptic transmission. However, despite many years of research, the molecular mechanisms underlying the intracellular regulation of glutamate transport at tripartite synapses have not been fully uncovered. This limits the options for pharmacological treatment of glutamate-related motor disorders, including Huntington’s disease (HD). We therefore investigated the possible binding partners of transgenic EAAT2 and their alterations under the influence of mutant huntingtin (mHTT). Mass spectrometry analysis after pull-down of striatal YFP-EAAT2 from wild-type (WT) mice and heterozygote (HET) Q175 mHTT-knock-in mice identified a total of 148 significant (FDR < 0.05) binders to full-length EAAT2. Of them 58 proteins exhibited mHTT-related differences. Most important, in 26 of the 58 mHTT-sensitive cases, protein abundance changed back toward WT levels when the mice expressed a C-terminal-truncated instead of full-length variant of EAAT2. These findings motivated new attempts to clarify the role of astrocytic EAAT2 regulation in cortico-basal movement control. Striatal astrocytes of Q175 HET mice were targeted by a PHP.B vector encoding EAAT2 with different degree of C-terminal modification, i.e., EAAT2-S506X (truncation at S506), EAAT2-4KR (4 lysine to arginine substitutions) or EAAT2 (full-length). The results were compared to HET and WT injected with a tag-only vector (CTRL). It was found that the presence of a C-terminal-modified EAAT2 transgene (i) increased the level of native EAAT2 protein in striatal lysates and perisynaptic astrocyte processes, (ii) enhanced the glutamate uptake of transduced astrocytes, (iii) stimulated glutamate clearance at individual corticostriatal synapses, (iv) increased the glutamate uptake of striatal astrocytes and (iv) alleviated the mHTT-related hypokinesia (open field indicators of movement initiation). In contrast, over-expression of full-length EAAT2 neither facilitated glutamate uptake nor locomotion. Together, our results support the new hypothesis that preventing abnormal protein-protein interactions at the C-terminal of EAAT2 could eliminate the mHTT-related deficits in corticostriatal synaptic glutamate clearance and movement initiation.
Collapse
Affiliation(s)
- Stefan Hirschberg
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anton Dvorzhak
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Seyed M. A. Rasooli-Nejad
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Svilen Angelov
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Marieluise Kirchner
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Gilla Lättig-Tünnemann
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Rosemarie Grantyn
- Synaptic Dysfunction Lab, Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Rosemarie Grantyn,
| |
Collapse
|
5
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
6
|
Gegelashvili G, Bjerrum OJ. Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 2019; 161:107623. [PMID: 31047920 DOI: 10.1016/j.neuropharm.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023]
Abstract
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 2018; 8:51-63. [PMID: 29988908 PMCID: PMC6033743 DOI: 10.5498/wjp.v8.i2.51] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 02/05/2023] Open
Abstract
Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the pre-synaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter (EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders.
Collapse
Affiliation(s)
- Georgia M Parkin
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Andrew Gibbons
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Brian Dean
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
- Research Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Hawthorne VIC 3122, Australia
| |
Collapse
|
8
|
Al Awabdh S, Gupta-Agarwal S, Sheehan DF, Muir J, Norkett R, Twelvetrees AE, Griffin LD, Kittler JT. Neuronal activity mediated regulation of glutamate transporter GLT-1 surface diffusion in rat astrocytes in dissociated and slice cultures. Glia 2018; 64:1252-64. [PMID: 27189737 PMCID: PMC4915597 DOI: 10.1002/glia.22997] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 11/17/2022]
Abstract
The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264
Collapse
Affiliation(s)
- Sana Al Awabdh
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - Swati Gupta-Agarwal
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - David F Sheehan
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - James Muir
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - Rosalind Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - Alison E Twelvetrees
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - Lewis D Griffin
- Department of Computer Science, University College London, United Kingdom
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| |
Collapse
|
9
|
O'Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ SCHIZOPHRENIA 2017; 3:32. [PMID: 28935880 PMCID: PMC5608761 DOI: 10.1038/s41537-017-0037-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
Abstract
Altered glutamate transporter expression is a common feature of many neuropsychiatric conditions, including schizophrenia. Excitatory amino acid transporters (EAATs) are responsible for the reuptake of glutamate, preventing non-physiological spillover from the synapse. Postmortem studies have revealed significant dysregulation of EAAT expression in various brain regions at the cellular and subcellular level. Recent animal studies have also demonstrated a role for glutamate spillover as a mechanism of disease. In this review, we describe current evidence for the role of glutamate transporters in regulating synaptic plasticity and transmission. In neuropsychiatric conditions, EAAT splice variant expression is altered. There are changes in the localization of the transporters and disruption of the metabolic and structural protein network that supports EAAT activity. This results in aberrant neuroplasticity and excitatory signaling, contributing to the symptoms associated with neuropsychiatric disease. Understanding the complex functions of glutamate transporters will clarify the relevance of their role in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Courtney R Sullivan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | |
Collapse
|
10
|
|
11
|
Rose CR, Ziemens D, Untiet V, Fahlke C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 2016; 136:3-16. [PMID: 28040508 DOI: 10.1016/j.brainresbull.2016.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023]
Abstract
Glutamate is the major excitatory transmitter in the vertebrate brain. After its release from presynaptic nerve terminals, it is rapidly taken up by high-affinity sodium-dependent plasma membrane transporters. While both neurons and glial cells express these excitatory amino acid transporters (EAATs), the majority of glutamate uptake is accomplished by astrocytes, which convert synaptically-released glutamate to glutamine or feed it into their own metabolism. Glutamate uptake by astrocytes not only shapes synaptic transmission by regulating the availability of glutamate to postsynaptic neuronal receptors, but also protects neurons from hyper-excitability and subsequent excitotoxic damage. In the present review, we provide an overview of the molecular and cellular characteristics of sodium-dependent glutamate transporters and their associated anion permeation pathways, with a focus on astrocytic glutamate transport. We summarize their functional properties and roles within tripartite synapses under physiological and pathophysiological conditions, exemplifying the intricate interactions and interrelationships between neurons and glial cells in the brain.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Verena Untiet
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| |
Collapse
|
12
|
Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 2016; 98:56-71. [PMID: 27013346 DOI: 10.1016/j.neuint.2016.03.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022]
Abstract
In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or pharmacologic inhibition of glutamate transport impairs neurovascular coupling. Together these studies strongly suggest that glutamate transport not only coordinates excitatory signaling, but also plays a pivotal role in regulating brain energetics.
Collapse
|
13
|
Abstract
Transient multienzyme and/or multiprotein complexes (metabolons) direct substrates toward specific pathways and can significantly influence the metabolism of glutamate and glutamine in the brain. Glutamate is the primary excitatory neurotransmitter in brain. This neurotransmitter has essential roles in normal brain function including learning and memory. Metabolism of glutamate involves the coordinated activity of astrocytes and neurons and high affinity transporter proteins that are selectively distributed on these cells. This chapter describes known and possible metabolons that affect the metabolism of glutamate and related compounds in the brain, as well as some factors that can modulate the association and dissociation of such complexes, including protein modifications by acylation reactions (e.g., acetylation, palmitoylation, succinylation, SUMOylation, etc.) of specific residues. Development of strategies to modulate transient multienzyme and/or enzyme-protein interactions may represent a novel and promising therapeutic approach for treatment of diseases involving dysregulation of glutamate metabolism.
Collapse
|
14
|
Rao P, Saternos H, Goodwani S, Sari Y. Effects of ceftriaxone on GLT1 isoforms, xCT and associated signaling pathways in P rats exposed to ethanol. Psychopharmacology (Berl) 2015; 232:2333-42. [PMID: 25619881 PMCID: PMC4465848 DOI: 10.1007/s00213-015-3868-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023]
Abstract
RATIONALE Several studies have demonstrated a correlation between extracellular glutamate concentration in the mesolimbic reward pathway and alcohol craving. Extracellular glutamate concentration is regulated by several glutamate transporters. Glial glutamate transporter 1 (GLT1) is one of them that regulates the majority of extracellular glutamate concentration. In addition, cystine/glutamate antiporter (xCT) is another transporter that regulates extracellular glutamate. OBJECTIVES We focus in this study to determine the effects of ceftriaxone, β-lactam antibiotic, on glial proteins such as GLT1 isoforms, xCT, glutamate aspartate transporter (GLAST), and several associated signaling pathways as well as ethanol intake in P rats. Additionally, to examine the onset of signaling pathways associated with GLT1 upregulation following ceftriaxone treatment, we tested 2- versus 5-day daily dosing of ceftriaxone. RESULTS Ceftriaxone treatment (100 mg/kg), 2 and 5 days, resulted in about five fold reduction in ethanol intake by P rats. The reduction in ethanol intake was associated with significantly enhanced expression of GLT1, GLT1a, GLT1b, and xCT in the nucleus accumbens (NAc) and prefrontal cortex (PFC) of 5-day ceftriaxone-treated P rats. Two-day-treated P rats showed marked changes in expression of these glutamate transporters in the PFC but not in the NAc. Importantly, ceftriaxone-treated P rats (2 and 5 days) demonstrated enhanced phosphorylation of Akt and nuclear translocation of nuclear factor kappaB (NFκB) in the NAc and PFC compared to control animals. CONCLUSIONS These findings demonstrate that ceftriaxone treatment induced upregulation of GLT1, GLT1 isoforms, and xCT in association with activation of the Akt-NFκB signaling pathway.
Collapse
Affiliation(s)
- P.S.S. Rao
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH
| | - Hannah Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH
| | - Sunil Goodwani
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH
| | - Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, HEB282G, Toledo, OH, 43614, USA.
| |
Collapse
|
15
|
Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci 2015; 35:5260-70. [PMID: 25834051 DOI: 10.1523/jneurosci.4365-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gene for EAAT2, the major astrocytic glutamate transporter, generates two carrier isoforms (EAAT2a and EAAT2b) that vary at their C termini as a consequence of alternative RNA splicing. The EAAT2b cytoplasmic C terminus contains a postsynaptic density-95/Discs large/zona occludens-1 (PDZ) ligand, which is absent in EAAT2a. To understand how the distinct C termini might affect transporter trafficking and surface localization, we generated Madin-Darby canine kidney (MDCK) cells that stably express EGFP-EAAT2a or EGFP-EAAT2b and found robust basolateral membrane expression of the EAAT2b isoform. In contrast, EAAT2a displayed a predominant distribution within intracellular vesicle compartments, constitutively cycling to and from the membrane. Addition of the PDZ ligand to EAAT2a as well as its deletion from EAAT2b confirmed the importance of the motif for cell-surface localization. Using EAAT2 constructs with an extracellular biotin acceptor tag to directly assess surface proteins, we observed significant PDZ ligand-dependent EAAT2b surface expression in cultured astrocytes, consistent with observations in cell lines. Discs large homolog 1 (DLG1; SAP97), a PDZ protein prominent in both astrocytes and MDCK cells, colocalized and coimmunoprecipitated with EAAT2b. shRNA knockdown of DLG1 expression decreased surface EAAT2b in both MDCK cells and cultured astrocytes, suggesting that the DLG scaffolding protein stabilizes EAAT2b at the surface. DLG1 can be phosphorylated by Ca(2+)/calmodulin-dependent protein kinase (CaMKII), resulting in disruption of its PDZ-mediated interaction. In murine astrocytes and acute brain slices, activation of CaMKII decreases EAAT2b surface expression but does not alter the distribution of EAAT2a. These data indicate that the surface expression and function of EAAT2b can be rapidly modulated through the disruption of its interaction with DLG1 by CaMKII activation.
Collapse
|
16
|
Focant MC, Goursaud S, Boucherie C, Dumont AO, Hermans E. PICK1 expression in reactive astrocytes within the spinal cord of amyotrophic lateral sclerosis (ALS) rats. Neuropathol Appl Neurobiol 2013; 39:231-42. [PMID: 22624977 DOI: 10.1111/j.1365-2990.2012.01282.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS The protein interacting with C kinase 1 (PICK1), a PDZ domain-containing protein mainly expressed in the central nervous system, interacts with the glutamate receptor subunit GluR2, with the glutamate transporter GLT-1b and with the enzyme serine racemase. These three proteins appear as key actors in the glutamate-mediated excitotoxicity associated with amyotrophic lateral sclerosis (ALS), in both patients and animal models of the disease. In this study, we examined the expression of PICK1 in the spinal cord of transgenic rats expressing a mutated form of the human superoxide dismutase 1 (hSOD1(G93A) ) during the progression of the disease. METHODS Expression of PICK1 was examined by real-time qPCR at presymptomatic and symptomatic stages as well as at end-stage. The expression of PICK1 in the different cell types of the spinal cord was examined by immunohistochemistry. RESULTS The overall expression of PICK1 is not modified in cervical and lumbar spinal cord of transgenic (hSOD1(G93A) ) rats during the progression of the disease. Nonetheless, immunohistochemical studies of lumbar ventral horns revealed a shift of PICK1 expression from motor neurones in healthy rats to activated astrocytes in end-stage hSOD1(G93A) animals. CONCLUSIONS Considering the documented influence of PICK1 expression on d-serine release and glutamate transport in astrocytes, these findings point to a potential implication of PICK1 in the progression of ALS.
Collapse
Affiliation(s)
- M C Focant
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
17
|
Dumont AO, Hermans E, Goursaud S. Differential regulation of the glutamate transporter variants GLT-1a and GLT-1b in the cortex and spinal cord of transgenic rats expressing hSOD1(G93A). Neurochem Int 2013; 63:61-8. [PMID: 23665075 DOI: 10.1016/j.neuint.2013.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
Altered expression and activity of GLT-1 have been characterized in amyotrophic lateral sclerosis (ALS) patients and in animal models of the disease. Data suggest that the expression of two C-terminus splice variants of GLT-1 (namely GLT-1a and GLT-1b) can be differentially regulated in this pathological context. We herein characterized the expression of GLT-1a and GLT-1b mRNA and the glutamate uptake activity in the fronto-temporal cortex and the lumbar spinal cord of transgenic rats expressing hSOD1(G93A) at various stages of the disease. We also investigated the expression and activity of the other key glutamate transporters GLAST and EAAC1. While the progression of the disease was associated with a reduction of the overall GLT-1 activity in both cortex and spinal cord, the regulation of GLT-1a and GLT-1b transcripts showed different profiles. In the cortex, GLT-1a mRNA which appears as the most abundant isoform at a pre-symptomatic stage was strongly decreased during the progression of the disease while GLT-1b mRNA increased to reach a similar level as GLT-1a at end-stage. In the lumbar spinal cord of transgenic rats, both GLT-1a and GLT-1b mRNAs, expressed at the same levels before the symptom onset, were strongly decreased in the ventral horns. While no modification of GLAST was detected, EAAC1 mRNA was highly increased at a pre-symptomatic stage in transgenic animals, explaining a higher activity of glutamate transporters at this age. These results demonstrate that glutamate transporters are differentially expressed in nervous structures of wild-type and transgenic animals although the total GLT-1 activity was constantly decreased during the disease progression.
Collapse
Affiliation(s)
- Amélie O Dumont
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
18
|
Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-maze in C57BL/6J mice. Brain Struct Funct 2011; 217:363-78. [PMID: 22113856 DOI: 10.1007/s00429-011-0362-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/08/2011] [Indexed: 12/25/2022]
Abstract
The glutamate transporter 1 (GLT-1) is essential for glutamate uptake in the brain and associated with various psychiatric and neurological disorders. Pharmacological inhibition of GLT-1 results in memory deficits, but no study linking native GLT-1 complexes was published so far. It was therefore the aim of the study to associate this highly hydrophobic, eight transmembrane spanning domains containing transporter to memory training in the Multiple T-maze (MTM). C57BL/6J mice were used for the spatial memory training experiments, and trained mice were compared to untrained (yoked) animals. Mouse hippocampi were dissected out 6 h after training on day 4, and a total enriched membrane fraction was prepared by ultracentrifugation. Membrane proteins were separated by blue native polyacrylamide gel electrophoresis (BN-PAGE) with subsequent Western blotting against GLT-1 on these native gels. Moreover, GLT-1 complexes were identified by mass spectrometry (nano-LC-ESI-MS/MS). Animals learned the MTM task and multiple GLT-1 complexes were detected at apparent molecular weights of 242, 480 and 720 kDa on BN-PAGE Western blotting. GLT-1 complex levels were significantly higher in the trained group as compared to yoked controls, and antibody specificity was verified by immunoblotting on multidimensional gels. Hippocampal GLT-1 was unambiguously identified by mass spectrometry with high sequence coverage, and glycosylation was observed. It is revealed that increased GLT-1 complex levels are paralleling and are linked to spatial memory training. We provide evidence that signal termination, represented by the excitatory amino acid transporter GLT-1 complexes, is involved in spatial memory mechanisms.
Collapse
|
19
|
Focant MC, Goursaud S, Nizet Y, Hermans E. Differential regulation of C-terminal splice variants of the glutamate transporter GLT-1 by tumor necrosis factor-alpha in primary cultures of astrocytes. Neurochem Int 2011; 58:751-8. [PMID: 21371514 DOI: 10.1016/j.neuint.2011.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/16/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
The high-affinity glutamate transporter GLT-1 plays a key role in the control of the glutamate homeostasis in the central nervous system and protects neurons against excitotoxicity. Splice variants of the original transcript have been identified and their involvement in neurodegenerative disorders has been proposed. However, the functions and the regulations of these isoforms remain unclear. In this study, we focused our interest on the expression of two C-terminal splice variants of GLT-1 (GLT-1a and b) in primary astrocyte cultures exposed to distinct chemical environments. While GLT-1a and GLT-1b mRNAs were both increased in response to treatment with N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dBcAMP), the culture supplement G5 or tumor necrosis factor-alpha (TNF-α), the regulation of GLT-1b appeared quicker and was more pronounced. Besides, using validated antibodies, we evidenced a differential regulation of the two proteins in cells exposed to TNF-α. Thus, while dBcAMP and the G5 supplement stimulated the expression of both isoforms at 3 and 7 days, a transient upregulation of GLT-1a was induced by TNF-α, which contrasts with the sustained induction of the GLT-1b isoform. These results shed light on the complex influence of the pro-inflammatory cytokine TNF-α on GLT-1a mRNA and protein expression and on the necessity to distinctly consider the GLT-1 isoforms with appropriate tools in studies addressing the regulation of glutamate transporters.
Collapse
Affiliation(s)
- Marylène C Focant
- Neuropharmacology Group, Institute of Neuroscience, Université catholique de Louvain, Av. Hippocrate 54.10, 1200 Brussels, Belgium
| | | | | | | |
Collapse
|