1
|
Shao W, Liu X, Gao L, Tian C, Shi Q. αA-Crystallin inhibits optic nerve astrocyte activation induced by oxygen-glucose deprivation in vitro. Life Sci 2021; 278:119533. [PMID: 33887346 DOI: 10.1016/j.lfs.2021.119533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
AIMS A previous study reported that intravitreal injection of αA-crystallin inhibits glial scar formation after optic nerve traumatic injury. The purpose of this study was to investigate the effect of αA-crystallin on optic nerve astrocytes induced by oxygen glucose deprivation (OGD) in vitro. MATERIALS AND METHODS Optic nerve astrocytes from newborn Long Evans rats were cultured with αA-crystallin (10-4 g/l) to detect the effects of αA-crystallin on astrocytes. Using a scratch assay, the effect of αA-crystallin treatment on astrocyte migration was assessed. Astrocytes were exposed to OGD and glucose reintroduction/reoxygenation culture for 24 h and 48 h. The expression of glial fibrillary acidic protein (GFAP) and neurocan were subsequently evaluated via immunocytochemistry and western blot. BMP2/4, BMPRIa/Ib and Smad1/5/8 mRNA expression levels were detected by RT-PCR. KEY FINDINGS The results showed that αA-crystallin slowed the migration of astrocytes in filling the scratch gaps. GFAP and neurocan expression in astrocytes was increased after OGD. However, after treatment with αA-crystallin, GFAP and neurocan expression levels clearly decreased. Furthermore, RT-PCR showed that BMP2 and BMP4 mRNA expression levels decreased significantly. SIGNIFICANCE These results suggest that αA-crystallin inhibits the activation of astrocytes after OGD injury in vitro. Inhibition of the BMP/Smad signaling pathway might be the mechanism underlying this effect.
Collapse
Affiliation(s)
- Weiyang Shao
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lixiong Gao
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Chunyu Tian
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Qian Shi
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
2
|
Zhu Z, Reiser G. The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem Int 2018; 115:69-79. [PMID: 29425965 DOI: 10.1016/j.neuint.2018.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Small heat shock proteins (sHsps) are a group of proteins with molecular mass between 12 and 43 kDa. Currently, 11 members of this family have been classified, namely HspB1 to HspB11. HspB1, HspB2, HspB5, HspB6, HspB7, and HspB8, which are expressed in brain have been observed to be related to the pathology of neurodegenerative diseases, including Parkinson's, Alzheimer's, Alexander's disease, multiple sclerosis, and human immunodeficiency virus-associated dementia. Specifically, sHsps interact with misfolding and damaging protein aggregates, like Glial fibrillary acidic protein in AxD, β-amyloid peptides aggregates in Alzheimer's disease, Superoxide dismutase 1 in Amyotrophic lateral sclerosis and cytosine-adenine-guanine/polyglutamine (CAG/PolyQ) in Huntington's disease, Spinocerebellar ataxia type 3, Spinal-bulbar muscular atrophy, to reduce the toxicity or increase the clearance of these protein aggregates. The degree of HspB4 expression in brain is still debated. For neuroprotective mechanisms, sHsps attenuate mitochondrial dysfunctions, reduce accumulation of misfolded proteins, block oxidative/nitrosative stress, and minimize neuronal apoptosis and neuroinflammation, which are molecular mechanisms commonly accepted to mirror the progression and development of neurodegenerative diseases. The increasing incidence of the neurodegenerative diseases enhanced search for effective approaches to rescue neural tissue from degeneration with minimal side effects. sHsps have been found to exert neuroprotective functions. HspB5 has been emphasized to reduce the paralysis in a mouse model of experimental autoimmune encephalomyelitis, providing a therapeutic basis for the disease. In this review, we discuss the current understanding of the properties and the mechanisms of protection orchestrated by sHsps in the nervous system, highlighting the promising therapeutic role of sHsps in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhihui Zhu
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany; College of Medicine, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany.
| |
Collapse
|
3
|
Zhu Z, Li R, Stricker R, Reiser G. Extracellular α-crystallin protects astrocytes from cell death through activation of MAPK, PI3K/Akt signaling pathway and blockade of ROS release from mitochondria. Brain Res 2015; 1620:17-28. [DOI: 10.1016/j.brainres.2015.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 12/27/2022]
|
4
|
Crystallins and neuroinflammation: The glial side of the story. Biochim Biophys Acta Gen Subj 2015; 1860:278-86. [PMID: 26049079 DOI: 10.1016/j.bbagen.2015.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is an abundance of evidence to support the association of damaging neuroinflammation and neurodegeneration across a multitude of diseases. One of the links between these pathological phenomena is the role of chaperone proteins as both neuroprotective and immune-regulatory agents. SCOPE OF REVIEW Chaperone proteins are highly expressed at sites of neuroinflammation both in glial cells and in the injured neurons that initiate the immune response. For this reason, the use of chaperones as treatment for various diseases associated with neuroinflammation is a highly active area of investigation. This review explores the various ways that the small heat shock protein chaperones, α-crystallins, can affect glial cell function with a specific focus on their implication in the inflammatory response associated with neurodegenerative disorders, and their potential as therapeutic treatment. MAJOR CONCLUSIONS Although the mechanisms are still under investigation, a clear link has now been established between alpha-crystallins and neuroinflammation, especially through their roles in microglial and macroglial cells. Interestingly, similar to inflammation in itself, crystallins can have a beneficial or detrimental impact on the CNS based on the context and duration of the condition. GENERAL SIGNIFICANCE Overall this review points out the novel roles that chaperones such as alpha-crystallins can play outside of the classical protein folding pathways, and their potential in the development of new therapies for the treatment of neuroinflammatory/neurodegenerative diseases. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
|
5
|
Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, van Horssen J, Eggen BJL, van der Valk P, Amor S, van Noort JM. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 2014; 128:215-29. [PMID: 24997049 DOI: 10.1007/s00401-014-1317-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/08/2023]
Abstract
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.
Collapse
Affiliation(s)
- Malika Bsibsi
- Delta Crystallon, Zernikedreef 9, 2333, CK Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhu Z, Reiser G. PAR-1 activation rescues astrocytes through the PI3K/Akt signaling pathway from chemically induced apoptosis that is exacerbated by gene silencing of β-arrestin 1. Neurochem Int 2014; 67:46-56. [DOI: 10.1016/j.neuint.2013.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
|
7
|
Burda JE, Radulovic M, Yoon H, Scarisbrick IA. Critical role for PAR1 in kallikrein 6-mediated oligodendrogliopathy. Glia 2013; 61:1456-70. [PMID: 23832758 DOI: 10.1002/glia.22534] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 11/10/2022]
Abstract
Kallikrein 6 (KLK6) is a secreted serine protease preferentially expressed by oligodendroglia in CNS white matter. Elevated levels of KLK6 occur in actively demyelinating multiple sclerosis (MS) lesions and in cases of spinal cord injury (SCI), stroke, and glioblastoma. Taken with recent evidence establishing KLK6 as a CNS-endogenous activator of protease-activated receptors (PARs), we hypothesized that KLK6 activates a subset of PARs to regulate oligodendrocyte physiology and potentially pathophysiology. Here, primary oligodendrocyte cultures derived from wild type or PAR1-deficient mice and the murine oligodendrocyte cell line, Oli-neu, were used to demonstrate that Klk6 (rodent form) mediates loss of oligodendrocyte processes and impedes morphological differentiation of oligodendrocyte progenitor cells (OPCs) in a PAR1-dependent fashion. Comparable gliopathy was also elicited by the canonical PAR1 agonist, thrombin, as well as PAR1-activating peptides (PAR1-APs). Klk6 also exacerbated ATP-mediated oligodendrogliopathy in vitro, pointing to a potential role in augmenting excitotoxicity. In addition, Klk6 suppressed the expression of proteolipid protein (PLP) RNA in cultured oligodendrocytes by a mechanism involving PAR1-mediated Erk1/2 signaling. Microinjection of PAR1 agonists, including Klk6 or PAR1-APs, into the dorsal column white matter of PAR1(+/+) but not PAR1(-/-) mice promoted vacuolating myelopathy and a loss of immunoreactivity for myelin basic protein (MBP) and CC-1(+) oligodendrocytes. These results demonstrate a functional role for Klk6-PAR1 signaling in oligodendroglial pathophysiology and suggest that antagonists of PAR1 or its protease agonists may represent new modalities to moderate demyelination and to promote myelin regeneration in cases of CNS white matter injury or disease.
Collapse
Affiliation(s)
- Joshua E Burda
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
8
|
Liu L, Martin R, Chan C. Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. Neurobiol Aging 2013; 34:540-50. [PMID: 22727944 PMCID: PMC3459302 DOI: 10.1016/j.neurobiolaging.2012.05.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/27/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Astrocytes play a critical role in neurodegenerative diseases, including Alzheimer's disease (AD). Previously, we showed that saturated free fatty acid, palmitic acid (PA), upregulates β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) level and amyloidogenesis in primary rat neurons mediated by astrocytes. However, the molecular mechanisms by which conditioned media from PA-treated astrocytes upregulates BACE1 level in neurons are unknown. This study demonstrates that serine palmitoyltransferase (SPT) in the astrocytes increases ceramide levels, which enhances the release of cytokines that mediate the activation of neural and acidic sphingomyelinase (SMase) in the neurons, to propagate the deleterious effects of PA (i.e., BACE1 upregulation). In support of the relevance of SPT in AD, our laboratory recently measured and found SPT levels to be significantly upregulated in AD brains as compared with controls. Cytokines, namely tumor necrosis factor-α and interleukin-1β, released into the conditioned media of PA-treated astrocytes activate neural and acidic SMase in the neurons. Neutralizing the cytokines in the PA-treated astrocyte conditioned media reduced BACE1 upregulation. However, inhibiting SPT in the astrocytes decreased the levels of both tumor necrosis factor-α and interleukin-1β in the conditioned media, which in turn reduced the SMase activities and BACE1 level in primary neurons. Thus, our results suggest that the activation of the astrocytes by PA is mediated by SPT, and the activated astrocytes increases BACE1 level in the neurons; the latter is mediate by the SMases.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Rebecca Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Christina Chan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
9
|
Abstract
αB-crystallin is a member of the heat shock protein family that exerts cell protection under several stress-related conditions. Recent studies have revealed that αB-crystallin plays a beneficial role in a mouse model of multiple sclerosis, brain ischemia, and Alexander disease. Whether αB-crystallin plays a role in modulating the secondary damage after CNS trauma is not known. We report here that αB-crystallin mediates protective effects after spinal cord injury. The levels of αB-crystallin are reduced in spinal cord tissue following contusion lesion. In addition, administration of recombinant human αB-crystallin for the first week after contusion injury leads to sustained improvement in locomotor skills and amelioration of secondary tissue damage. We also provide evidence that recombinant human αB-crystallin modulates the inflammatory response in the injured spinal cord, leading to increased infiltration of granulocytes and reduced recruitment of inflammatory macrophages. Furthermore, the delivery of recombinant human αB-crystallin promotes greater locomotor recovery even when the treatment is initiated 6 h after spinal cord injury. Our findings suggest that administration of recombinant human αB-crystallin may be a good therapeutic approach for treating acute spinal cord injury, for which there is currently no effective treatment.
Collapse
|
10
|
Neuroprotective effect of protease-activated receptor-2 in the hypoxia-induced apoptosis of rat RGC-5 cells. J Mol Neurosci 2012; 50:98-108. [PMID: 22949040 DOI: 10.1007/s12031-012-9876-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/10/2012] [Indexed: 12/11/2022]
Abstract
Hypoxia-induced apoptosis of retinal ganglion cells (RGCs) is regarded as a pivotal pathological process in various ocular diseases. Protease-activated receptor-2 (PAR-2) is involved in the regulation of cell inflammation, differentiation, and apoptosis in many cell types and tissues, but the role of PAR-2 in RGCs under pathological conditions remains unknown. The purpose of this study was to investigate the role of PAR-2 in the apoptosis of RGCs under hypoxic stress. An immortalized rat RGC line (RGC-5) was exposed to hypoxia (5 % O₂). The expression and location of PAR-2 in RGC-5 cells under hypoxia stress were investigated using real-time PCR, western blotting and immunocytochemistry. Cell viability was determined using the Cell Counting Kit-8 assay. Apoptosis was detected using Hoechst 33342 staining and AnnexinV-FITC/PI assays. The role of Bcl-2, Bax, and the active subunit of caspase-3 was also investigated. The results showed that PAR-2 was functionally expressed in RGC-5 cells and up-regulated at both mRNA and protein levels under hypoxic stress. The PAR-2 selective agonist, SLIGRL, rescued RGC-5 cells from hypoxia-induced apoptosis through up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 activation. This study provides the first evidence that PAR-2 has a protective effect against the hypoxia-induced apoptosis of RGC-5 cells.
Collapse
|
11
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
12
|
Li R, Zhu Z, Reiser G. Specific phosphorylation of αA-crystallin is required for the αA-crystallin-induced protection of astrocytes against staurosporine and C2-ceramide toxicity. Neurochem Int 2012; 60:652-8. [PMID: 22414529 DOI: 10.1016/j.neuint.2012.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/13/2012] [Accepted: 02/24/2012] [Indexed: 12/17/2022]
Abstract
We previously reported that αA-crystallin and protease-activated receptor are involved in protection of astrocytes against C2-ceramide- and staurosporine-induced cell death (Li et al., 2009). Here, we investigated the molecular mechanism of αA-crystallin-mediated cytoprotection. We found that the expression of mutants mimicking specific phosphorylation of αA-crystallin increases the protection of astrocytes. However, the expression of mutants mimicking unphosphorylation of αA-crystallin results in loss of protection. These data revealed that the phosphorylation of αA-crystallin at Ser122 and Ser148 is required for protection. Furthermore, we explored the mechanism of cytoprotection of astrocytes by αA-crystallin. Application of specific inhibitors of p38 and ERK abrogates the protection of astrocytes by over-expression of αA-crystallin. Thus, p38 and ERK contribute to protective processes by αA-crystallin. This is comparable to our previous results which demonstrated that p38 and ERK regulated protease-activated receptor-2 (PAR-2)/αB-crystallin-mediated cytoprotection. Furthermore, we found that PAR-2 activation increases the expression of αA-crystallin. Thus, endogenous αA-crystallin protects astrocytes via mechanisms, which regulate the expression and/or phosphorylation status of αA-crystallin.
Collapse
Affiliation(s)
- Rongyu Li
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
13
|
Sokolova E, Aleshin S, Reiser G. Expression of protease-activated receptor (PAR)-2, but not other PARs, is regulated by inflammatory cytokines in rat astrocytes. Neurochem Int 2012; 60:276-85. [PMID: 22227167 DOI: 10.1016/j.neuint.2011.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/23/2011] [Accepted: 12/23/2011] [Indexed: 01/09/2023]
Abstract
Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS) and are believed to play an important role in normal brain functioning as well as in development of various inflammatory and neurodegenerative disorders. Pathological conditions cause altered expression of PARs in brain cells and therefore altered responsiveness to PAR activation. The exact mechanisms of regulation of PAR expression are not well studied. Here, we evaluated in rat astrocytes the influence of LPS, pro-inflammatory cytokines TNFα and IL-1β and continuous PAR activation by PAR agonists on the expression levels of PARs. These stimuli are important in inflammatory and neurological disorders, where their levels are increased. We report that LPS as well as cytokines TNFα and IL-1β affected only the PAR-2 level, but their effects were opposite. LPS and TNFα increased the functional expression of PAR-2, whereas IL-1β down-regulated the functional response of PAR-2. Agonists of PAR-1 specifically increased mRNA level of PAR-2, but not protein level. Transcript levels of other PARs were not changed after PAR-1 activation. Stimulation of the cells with PAR-2 or PAR-4 agonists did not alter PAR levels. We found that up-regulation of PAR-2 is dependent on PKC activity, mostly via its Ca²⁺-sensitive isoforms. Two transcription factors, NFκB and AP-1, are involved in up-regulation of PAR-2. These findings provide new information about the regulation of expression of PAR subtypes in brain cells. This is of importance for targeting PARs, especially PAR-2, for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Elena Sokolova
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | | | | |
Collapse
|
14
|
Zündorf G, Reiser G. The phosphorylation status of extracellular-regulated kinase 1/2 in astrocytes and neurons from rat hippocampus determines the thrombin-induced calcium release and ROS generation. J Neurochem 2011; 119:1194-204. [PMID: 21988180 DOI: 10.1111/j.1471-4159.2011.07527.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (•-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration.
Collapse
Affiliation(s)
- Gregor Zündorf
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
15
|
Ma L, Dorling A. The roles of thrombin and protease-activated receptors in inflammation. Semin Immunopathol 2011; 34:63-72. [PMID: 21809138 DOI: 10.1007/s00281-011-0281-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/11/2022]
Abstract
Inflammation and coagulation constitute two host defence systems with complementary physiological roles in limiting tissue damage, restoring homeostasis and eliminating invading pathogens, functions reliant on effective regulation of both processes at a variety of levels. Dysfunctional activation or regulation of either pathway may lead to pathology and contribute to human diseases as diverse as myocardial infarction and septic shock. The serine protease thrombin, a key protein in the coagulation pathway, can activate cellular signalling directly via proteolytic cleavage of the N-terminal domain of a family of G protein-coupled receptors or indirectly through the generation of molecules such as activated protein C. These events transmit signals to many cell types and can elicit the production of various pro-inflammatory mediators such as cytokines, chemokines and growth factors, thereby influencing cell activation, differentiation, survival and migration. This review discusses recent progress in understanding how thrombin and protease-activated receptors influence biological processes, highlighting the detrimental and protective cellular effects of thrombin and its signalling pathways.
Collapse
Affiliation(s)
- Liang Ma
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, UK
| | | |
Collapse
|
16
|
Li R, Reiser G. Phosphorylation of Ser45 and Ser59 of αB-crystallin and p38/extracellular regulated kinase activity determine αB-crystallin-mediated protection of rat brain astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 2011; 118:354-64. [DOI: 10.1111/j.1471-4159.2011.07317.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Kirbach BB, Golenhofen N. Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons. J Neurosci Res 2010; 89:162-75. [DOI: 10.1002/jnr.22536] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/08/2010] [Indexed: 11/08/2022]
|
18
|
Increased αB-crystallin in hypothalamic paraventricular nucleus of rats with myocardial infarction. Neurosci Lett 2010; 484:123-7. [PMID: 20723582 DOI: 10.1016/j.neulet.2010.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/27/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
Abstract
The hypothalamus plays an important role in maintaining a homeostasis of the body against stress response. In particular, the paraventricular nucleus of the hypothalamus is a critical region for disorders related to the autonomic nervous system, such as congestive heart failure and hypertension. αB-crystallin is a family of heat shock proteins that are widely expressed in the brain, including in glial cells, astrocytes, oligodendrocytes, and neurons. Many studies have demonstrated that expression level of αB-crystallin is up-regulated and involved in protecting cells from pathological conditions. In the present study, we examined the expression and potential role of αB-crystallin in the paraventricular nucleus (PVN) regions of rats with myocardial infarction (MI). Our results demonstrate that mRNA encoding αB-crystallin and protein for both native and phosphorylate forms (Ser-59) of αB-crystallin was significantly increased in the PVN during MI.
Collapse
|
19
|
Gonçalves SA, Matos JE, Outeiro TF. Zooming into protein oligomerization in neurodegeneration using BiFC. Trends Biochem Sci 2010; 35:643-51. [PMID: 20561791 DOI: 10.1016/j.tibs.2010.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/10/2010] [Accepted: 05/13/2010] [Indexed: 11/25/2022]
Abstract
Several neurodegenerative diseases are characterized by the accumulation of misfolded and aggregated proteins, which lead to neurotoxicity. However, the nature of those toxic species is controversial. Developments in optical microscopy and live-cell imaging are essential in providing crucial insight into the molecular mechanisms involved. In particular, the technique of bimolecular fluorescence complementation (BiFC) represents a remarkable improvement for observing protein-protein interactions within living cells. Unlike other techniques, BiFC provides spatial and temporal resolution and can be carried out in a physiological environment. Among other applications, BiFC has been used to study molecular determinants of oligomerization in neurodegenerative disorders, thereby promising to unveil novel targets for therapeutics. We review the applicability of BiFC for investigating the molecular basis of neurodegenerative diseases associated with protein misfolding and aggregation.
Collapse
Affiliation(s)
- Susana A Gonçalves
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|