1
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
2
|
Miller JA, Drouet DE, Yermakov LM, Elbasiouny MS, Bensabeur FZ, Bottomley M, Susuki K. Distinct Changes in Calpain and Calpastatin during PNS Myelination and Demyelination in Rodent Models. Int J Mol Sci 2022; 23:15443. [PMID: 36499770 PMCID: PMC9737575 DOI: 10.3390/ijms232315443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin forming around axons provides electrical insulation and ensures rapid and efficient transmission of electrical impulses. Disruptions to myelinated nerves often result in nerve conduction failure along with neurological symptoms and long-term disability. In the central nervous system, calpains, a family of calcium dependent cysteine proteases, have been shown to have a role in developmental myelination and in demyelinating diseases. The roles of calpains in myelination and demyelination in the peripheral nervous system remain unclear. Here, we show a transient increase of activated CAPN1, a major calpain isoform, in postnatal rat sciatic nerves when myelin is actively formed. Expression of the endogenous calpain inhibitor, calpastatin, showed a steady decrease throughout the period of peripheral nerve development. In the sciatic nerves of Trembler-J mice characterized by dysmyelination, expression levels of CAPN1 and calpastatin and calpain activity were significantly increased. In lysolecithin-induced acute demyelination in adult rat sciatic nerves, we show an increase of CAPN1 and decrease of calpastatin expression. These changes in the calpain-calpastatin system are distinct from those during central nervous system development or in acute axonal degeneration in peripheral nerves. Our results suggest that the calpain-calpastatin system has putative roles in myelination and demyelinating diseases of peripheral nerves.
Collapse
Affiliation(s)
- John A. Miller
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Domenica E. Drouet
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Leonid M. Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Mahmoud S. Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Fatima Z. Bensabeur
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
3
|
Wang Y, Zhang J, Huang L, Mo Y, Wang C, Li Y, Zhang Y, Zhang Z. The LPA-CDK5-tau pathway mediates neuronal injury in an in vitro model of ischemia-reperfusion insult. BMC Neurol 2022; 22:166. [PMID: 35501719 PMCID: PMC9059403 DOI: 10.1186/s12883-022-02694-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a common glycerol phospholipid and an important extracellular signaling molecule. LPA binds to its receptors and mediates a variety of biological effects, including the pathophysiological process underlying ischemic brain damage and traumatic brain injury. However, the molecular mechanisms mediating the pathological role of LPA are not clear. Here, we found that LPA activates cyclin-dependent kinase 5 (CDK5). CDK5 phosphorylates tau, which leads to neuronal cell death. Inhibition of LPA production or blocking its receptors reduced the abnormal activation of CDK5 and phosphorylation of tau, thus reversing the death of neurons. Our data indicate that the LPA-CDK5-Tau pathway plays an important role in the pathophysiological process after ischemic stroke. Inhibiting the LPA pathway may be a potential therapeutic target for treating ischemic brain injury.
Collapse
Affiliation(s)
- Yaya Wang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Zhang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Liqin Huang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Yanhong Mo
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Changyu Wang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Yangyang Zhang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Feng X, Xiong D, Li J, Xiao L, Xie W, Qiu Y. Direct Inhibition of Microglia Activation by Pretreatment With Botulinum Neurotoxin A for the Prevention of Neuropathic Pain. Front Neurosci 2021; 15:760403. [PMID: 34949981 PMCID: PMC8688716 DOI: 10.3389/fnins.2021.760403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Peripheral injection of botulinum neurotoxin A (BoNT/A) has been demonstrated to have a long-term analgesic effect in treating neuropathic pain. Around peripheral nerves, BoNT/A is taken up by primary afferent neurons and inhibits neuropeptide release. Moreover, BoNT/A could also be retrogradely transported to the spinal cord. Recent studies have suggested that BoNT/A could attenuates neuropathic pain by inhibiting the activation of spinal glial cells. However, it remains unclear whether BoNT/A directly interacts with these glial cells or via their interaction with neurons. Our aim here is to determine the direct effect of BoNT/A on primary microglia and astrocytes. We show that BoNT/A pretreatment significantly inhibits lipopolysaccharide (LPS) -induced activation and pro-inflammatory cytokine release in primary microglia (1 U/mL BoNT/A in medium), while it has no effect on the activation of astrocytes (2 U/mL BoNT/A in medium). Moreover, a single intrathecal pre-administration of a low dose of BoNT/A (1 U/kg) significantly prohibited the partial sciatic nerve ligation (PSNL)- induced upregulation of pro-inflammatory cytokines in both the spinal cord dorsal horn and dorsal root ganglions (DRGs), which in turn prevented the PSNL-induced mechanical allodynia and thermal hyperalgesia. In conclusion, our results indicate that BoNT/A pretreatment prevents PSNL-induced neuropathic pain by direct inhibition of spinal microglia activation.
Collapse
Affiliation(s)
- Xiaona Feng
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Donglin Xiong
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jie Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lizu Xiao
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Weijiao Xie
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yunhai Qiu
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
5
|
Isensee J, van Cann M, Despang P, Araldi D, Moeller K, Petersen J, Schmidtko A, Matthes J, Levine JD, Hucho T. Depolarization induces nociceptor sensitization by CaV1.2-mediated PKA-II activation. J Cell Biol 2021; 220:212600. [PMID: 34431981 PMCID: PMC8404467 DOI: 10.1083/jcb.202002083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Patrick Despang
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Dioneia Araldi
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Katharina Moeller
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jonas Petersen
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan Matthes
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jon D Levine
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
McDougall JJ, McConnell M, Reid AR. Intracellular versus extracellular inhibition of calpain I causes differential effects on pain in a rat model of joint inflammation. Mol Pain 2021; 17:17448069211016141. [PMID: 34006144 PMCID: PMC8138287 DOI: 10.1177/17448069211016141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Calpain I is a calcium-dependent cysteine protease which has dual effects
on tissue inflammation depending on its cellular location.
Intracellularly, calpain I has pro-inflammatory properties but becomes
anti-inflammatory when exteriorised into the extracellular space. In
this study, the effect of calpain I on joint pain was investigated
using the kaolin/carrageenan model of acute synovitis. Evoked pain
behaviour was determined by von Frey hair algesiometry and non-evoked
pain was measured using dynamic hindlimb weight bearing. Local
administration of calpain I reduced secondary allodynia in the acute
inflammation model and this effect was blocked by the cell impermeable
calpain inhibitor E-64c. Calpain I also blocked the algesic effect of
the protease activated receptor-2 (PAR-2) cleaving enzyme mast cell
tryptase. The cell permeable calpain blocker E-64d also produced
analgesia in arthritic joints. These data suggest that calpain I
produces disparate effects on joint pain viz.
analgesia when present extracellularly by disarming PAR-2, and
pro-algesic when the enzyme is inside the cell.
Collapse
Affiliation(s)
- Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Miranda McConnell
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allison R Reid
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
8
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
9
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Affiliation(s)
- Hiroshi Ueda
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
11
|
Targeting the Nav1.8 ion channel engenders sex-specific responses in lysophosphatidic acid-induced joint neuropathy. Pain 2019; 160:269-278. [PMID: 30211781 DOI: 10.1097/j.pain.0000000000001399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Joint neuropathic pain occurs in a subset of arthritis patients, and lysophosphatidic acid (LPA) has been implicated as a mediator of joint neuropathy. The mechanism by which LPA promotes neuropathic pain is unknown but may be related to altered signalling of the voltage-gated sodium channel Nav1.8 located on nociceptors. Because arthritis and neuropathic pain are more prevalent in females, this study aimed to explore potential sex differences in the development of LPA-induced joint neuropathy and whether Nav1.8 played a role in the associated neuropathic pain. Joint neuropathy was induced in male and female Wistar rats (179-284 g) by intra-articular injection of 50-µg LPA. Pain behaviour was assessed over 21 days using von Frey hair algesiometry. On day 21, electrophysiological recordings of joint primary afferents were conducted to measure peripheral sensitisation. Saphenous nerve morphology and expression of the nerve-damage marker ATF3 and Nav1.8 in ipsilateral dorsal root ganglions were compared on the basis of sex. The analgesic properties of the selective Nav1.8 antagonist A-803467 was determined in pain behaviour and electrophysiology experiments. Females developed more severe mechanical allodynia than males after LPA treatment. Lysophosphatidic acid caused more pronounced demyelination of the saphenous nerve in females, but no sex differences were observed in the expression of ATF3 or Nav1.8 in dorsal root ganglion neurones. Blockade of Nav1.8 channels with A-803467 resulted in a decrease in joint mechanosensitivity and secondary allodynia with females exhibiting a greater response. These findings suggest that LPA has sex-specific effects on joint neuropathy and Nav1.8 gating, which should be considered when treating neuropathic arthritis patients.
Collapse
|
12
|
Roza C, Campos-Sandoval JA, Gómez-García MC, Peñalver A, Márquez J. Lysophosphatidic Acid and Glutamatergic Transmission. Front Mol Neurosci 2019; 12:138. [PMID: 31191247 PMCID: PMC6546900 DOI: 10.3389/fnmol.2019.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
Signaling through bioactive lipids regulates nervous system development and functions. Lysophosphatidic acid (LPA), a membrane-derived lipid mediator particularly enriched in brain, is able to induce many responses in neurons and glial cells by affecting key processes like synaptic plasticity, neurogenesis, differentiation and proliferation. Early studies noted sustained elevations of neuronal intracellular calcium, a primary response to LPA exposure, suggesting functional modifications of NMDA and AMPA glutamate receptors. However, the crosstalk between LPA signaling and glutamatergic transmission has only recently been shown. For example, stimulation of presynaptic LPA receptors in hippocampal neurons regulates glutamate release from the presynaptic terminal, and excess of LPA induce seizures. Further evidence indicating a role of LPA in the modulation of neuronal transmission has been inferred from animal models with deficits on LPA receptors, mainly LPA1 which is the most prevalent receptor in human and mouse brain tissue. LPA1 null-mice exhibit cognitive and attention deficits characteristic of schizophrenia which are related with altered glutamatergic transmission and reduced neuropathic pain. Furthermore, silencing of LPA1 receptor in mice induced a severe down-regulation of the main glutaminase isoform (GLS) in cerebral cortex and hippocampus, along with a parallel sharp decrease on active matrix-metalloproteinase 9. The downregulation of both enzymes correlated with an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature phenotype, indicating important implications of LPA in synaptic excitatory plasticity which may contribute to the cognitive and memory deficits shown by LPA1-deficient mice. In this review, we present an updated account of current evidence pointing to important implications of LPA in the modulation of synaptic excitatory transmission.
Collapse
Affiliation(s)
- Carolina Roza
- Departamento de Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Spain
| | - José A Campos-Sandoval
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - María C Gómez-García
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Ana Peñalver
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Javier Márquez
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
13
|
He WY, Zhang B, Zhao WC, He J, Zhang L, Xiong QM, Wang J, Wang HB. Contributions of mTOR Activation-Mediated Upregulation of Synapsin II and Neurite Outgrowth to Hyperalgesia in STZ-Induced Diabetic Rats. ACS Chem Neurosci 2019; 10:2385-2396. [PMID: 30785256 DOI: 10.1021/acschemneuro.8b00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is among the common complications in diabetes mellitus (DM), with its underlying mechanisms largely unknown. Synapsin II is primarily expressed in the spinal dorsal horn, and its upregulation mediates a superfluous release of glutamate and a deficiency of GABAergic interneuron synaptic transmission, which is directly implicated in the facilitation of pain signals in the hyperalgesic nociceptive response. Recently, synapsin II has been revealed to be associated with the modulation of neurite outgrowth, whereas the process of this neuronal structural neuroplasticity following neuronal hyperexcitability still remains unclear. In this study, we found that under conditions of elevated glucose, TNF-α induced the activation of mTOR, mediating the upregulation of synapsin II and neurite outgrowth in dorsal horn neurons. In vivo, we demonstrated that mTOR and synapsin II were upregulated and coexpressed in the spinal dorsal horn neurons in rats with streptozotocin (STZ)-induced diabetes. Furthermore, the intrathecal administration of the mTOR inhibitor rapamycin or synapsin II shRNA significantly diminished the expression of synapsin II, effectively mitigating hyperalgesia in PDN rats. We are the first to discover that in STZ-induced diabetic rats the activation of mTOR mediates the upregulation of synapsin II and neurite outgrowth, both contributing to hyperalgesia. These findings may benefit the clinical therapy of PDN by provision of a novel target.
Collapse
Affiliation(s)
- Wan-you He
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Bin Zhang
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Wei-cheng Zhao
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Jian He
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Lei Zhang
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Qing-ming Xiong
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Jing Wang
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Han-bing Wang
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| |
Collapse
|
14
|
Yuan XC, Wu CH, Gao F, Li HP, Xiang HC, Zhu H, Pan XL, Lin LX, Liu YS, Yu W, Tian B, Meng XF, Li M. Activation and expression of μ-calpain in dorsal root contributes to RTX-induced mechanical allodynia. Mol Pain 2018; 13:1744806917719169. [PMID: 28714350 PMCID: PMC5548329 DOI: 10.1177/1744806917719169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Calpain is a calcium-dependent cysteine protease, and inhibition of calpain by pre-treatment with MDL28170 attenuated the rat mechanical allodynia in a variety of pain models. Postherpetic neuralgia (Shingles) is a neuropathic pain conditioned with the presence of profound mechanical allodynia. Systemic injection of resiniferatoxin can reproduce the clinical symptoms of postherpetic neuralgia. In this study, we determined to study whether activation of calpain contributes to cleave the myelin basic protein of dorsal root and is involved in resiniferatoxin-induced mechanical allodynia of postherpetic neuralgia animal model. Results Resiniferatoxin up-regulated the expression and activation of µ-calpain in dorsal root. The expression of µ-calpain was located in Schwann cell of dorsal root, and resiniferatoxin increased the expression of µ-calpain in Schwann cell in L4–L6 dorsal root at six weeks after injection. Resiniferatoxin also induced myelin basic protein degradation in L4–L6 dorsal root at six weeks after injection. Moreover, intraperitoneal injection of calpain inhibitor MDL28170 prevented the degradation of myelin basic protein and then reduced the sprouting of myelinated afferent fibers into spinal lamina II, thus relieving resiniferatoxin-induced mechanical allodynia. Conclusions Up-regulation and activation of µ-calpain located in Schwann cell may be the mechanism underlying resiniferatoxin-mediated proteolysis of myelin basic protein in dorsal root. Calpain inhibitor MDL28170 prevents resiniferatoxin-induced sprouting of myelinated afferent fibers and mechanical allodynia through inhibition of degradation of the myelin basic protein in dorsal root. Our results indicate that inhibition of pathological µ-calpain activation may present an interesting novel drug target in the treatment of postherpetic neuralgia.
Collapse
Affiliation(s)
- Xiao-Cui Yuan
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai-Hua Wu
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 Department of Acupuncture, Wuhan First Hospital, Wuhan, China
| | - Fang Gao
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Ping Li
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Chun Xiang
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Li Pan
- 3 Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Xue Lin
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Shen Liu
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yu
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Fang Meng
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- 1 Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Calpain-2 Regulates TNF-α Expression Associated with Neuropathic Pain Following Motor Nerve Injury. Neuroscience 2018; 376:142-151. [DOI: 10.1016/j.neuroscience.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
|
16
|
Fujisawa H, Numazawa T, Kawamura M, Naiki M. Neurotropin ® inhibits calpain activity upregulated by specific alternation of rhythm in temperature in the mesencephalon of rats. Life Sci 2017; 171:39-44. [DOI: 10.1016/j.lfs.2016.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/15/2016] [Accepted: 12/25/2016] [Indexed: 10/20/2022]
|
17
|
Lysophosphatidic acid signaling is the definitive mechanism underlying neuropathic pain. Pain 2017; 158 Suppl 1:S55-S65. [DOI: 10.1097/j.pain.0000000000000813] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Velasco M, O'Sullivan C, Sheridan GK. Lysophosphatidic acid receptors (LPARs): Potential targets for the treatment of neuropathic pain. Neuropharmacology 2016; 113:608-617. [PMID: 27059127 DOI: 10.1016/j.neuropharm.2016.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/15/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Neuropathic pain can arise from lesions to peripheral or central nerve fibres leading to spontaneous action potential generation and a lowering of the nociceptive threshold. Clinically, neuropathic pain can manifest in many chronic disease states such as cancer, diabetes or multiple sclerosis (MS). The bioactive lipid, lysophosphatidic acid (LPA), via activation of its receptors (LPARs), is thought to play a central role in both triggering and maintaining neuropathic pain. In particular, following an acute nerve injury, the excitatory neurotransmitters glutamate and substance P are released from primary afferent neurons leading to upregulated synthesis of lysophosphatidylcholine (LPC), the precursor for LPA production. LPC is converted to LPA by autotaxin (ATX), which can then activate macrophages/microglia and modulate neuronal functioning. A ubiquitous feature of animal models of neuropathic pain is demyelination of damaged nerves. It is thought that LPA contributes to demyelination through several different mechanisms. Firstly, high levels of LPA are produced following macrophage/microglial activation that triggers a self-sustaining feed-forward loop of de novo LPA synthesis. Secondly, macrophage/microglial activation contributes to inflammation-mediated demyelination of axons, thus initiating neuropathic pain. Therefore, targeting LPA production and/or the family of LPA-activated G protein-coupled receptors (GPCRs) may prove to be fruitful clinical approaches to treating demyelination and the accompanying neuropathic pain. This review discusses our current understanding of the role of LPA/LPAR signalling in the initiation of neuropathic pain and suggests potential targeted strategies for its treatment. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- María Velasco
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | | - Graham K Sheridan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
19
|
Xu JY, Jiang Y, Liu W, Huang YG. Calpain inhibitor reduces cancer-induced bone pain possibly through inhibition of osteoclastogenesis in rat cancer-induced bone pain model. Chin Med J (Engl) 2015; 128:1102-7. [PMID: 25881607 PMCID: PMC4832953 DOI: 10.4103/0366-6999.155109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Calpain, a calcium-dependent cysteine protease, has been demonstrated to regulate osteoclastogenesis, which is considered one of the major reasons for cancer-induced bone pain (CIBP). In the present study, calpain inhibitor was applied in a rat CIBP model to determine whether it could reduce CIBP through regulation of osteoclastogenesis activity. Methods: A rat CIBP model was established with intratibial injection of Walker 256 cells. Then, the efficacy of intraperitoneal administered calpain inhibitor III (MDL28170, 1 mg/kg) on mechanical withdrawal threshold (MWT) of bilateral hind paws was examined on postoperative days (PODs) 2, 5, 8, 11, and 14. On POD 14, the calpain inhibitor's effect on tumor bone tartrate-resistant acid phosphatase (TRAP) stain and radiology was also carefully investigated. Results: Pain behavioral tests in rats showed that the calpain inhibitor effectively attenuated MWTs of both the surgical side and contralateral side hind paws on POD 5, 8, and 11 (P < 0.05). TRAP-positive cell count of the surgical side bone was significantly decreased in the calpain inhibitor group compared with the vehicle group (P < 0.05). However, bone resorption and destruction measured by radiographs showed no difference between the two groups. Conclusions: Calpain inhibitor can effectively reduce CIBP of both the surgical side and nonsurgical side after tumor injection in a rat CIBP model. It may be due to the inhibition of receptor activator of nuclear factor-kappa B ligand-induced osteoclastogenesis. Whether a calpain inhibitor could be a novel therapeutic target to treat CIBP needs further investigation.
Collapse
Affiliation(s)
| | | | - Wei Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | |
Collapse
|
20
|
Zang Y, Chen SX, Liao GJ, Zhu HQ, Wei XH, Cui Y, Na XD, Pang RP, Xin WJ, Zhou LJ, Liu XG. Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain Behav Immun 2015; 44:37-47. [PMID: 25150005 DOI: 10.1016/j.bbi.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 01/09/2023] Open
Abstract
Motor nerve injury by L5 ventral root transection (L5-VRT) initiates interleukin-6 (IL-6) up-regulation in primary afferent system contributing to neuropathic pain. However, the early upstream regulatory mechanisms of IL-6 after L5-VRT are still unknown. Here, we monitored both the activity of calpain, a calcium-dependent protease suggested as one of the earliest mediators for cytokine regulation, and the expression of IL-6 in bilateral L4-L6 dorsal root ganglias (DRGs) soon after L5-VRT. We found that the protein level of calpain-2 in DRGs, but not calpain-1 was increased transiently in the first 10 min(-1)h ipsilaterally and 20 min(-1)h contralaterally after L5-VRT, long before mechanical allodynia was initiated (5-15 h ipsilaterally and 15 h(-1)d contralaterally). The early activation of calpain evaluated by the generation of spectrin breakdown products (SBDP) correlated well with IL-6 up-regulation in bilateral DRGs. Double immunofluorescence staining revealed that almost all the calpain-2 positive neurons expressed IL-6, indicating an association between calpain-2 and IL-6. Inhibition of calpain by pre-treatment with MDL28170 (25mg/kg, i.p.) attenuated the rat mechanical allodynia and prevented the early up-regulation of IL-6 following L5-VRT. Addition of exogenous calpain-2 onto the surface of left L5 DRG triggered a temporal allodynia and increased IL-6 in bilateral DRGs simultaneously. Taken together, the early increase of calpain-2 in L5-VRT rats might be responsible for the induction of allodynia via up-regulating IL-6 in DRG neurons.
Collapse
Affiliation(s)
- Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| | - Shao-Xia Chen
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Guang-Jie Liao
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Department of Pathology, The Red Cross Hospital of Yulin, 1 Jinwang Rd., Yulin 537000, China
| | - He-Quan Zhu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yu Cui
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xiao-Dong Na
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Department of Pathophysiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Wen-Jun Xin
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Li-Jun Zhou
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| |
Collapse
|
21
|
Uchida H, Nagai J, Ueda H. Lysophosphatidic acid and its receptors LPA1 and LPA3 mediate paclitaxel-induced neuropathic pain in mice. Mol Pain 2014; 10:71. [PMID: 25411045 PMCID: PMC4246549 DOI: 10.1186/1744-8069-10-71] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022] Open
Abstract
Background Paclitaxel, which is widely used for the treatment of solid tumors, causes neuropathic pain via poorly understood mechanisms. Previously, we have demonstrated that lysophosphatidic acid (LPA) and its receptors (LPA1 and LPA3) are required for the initiation of peripheral nerve injury-induced neuropathic pain. The present study aimed to clarify whether LPA and its receptors could mediate paclitaxel-induced neuropathic pain. Results Intraperitoneal administration of paclitaxel triggered a marked increase in production of LPA species (18:1-, 16:0-, and 18:0-LPA) in the spinal dorsal horn. Also, we found significant activations of spinal cytosolic phospholipase A2 and calcium-independent phospholipase A2 after the paclitaxel treatment. The paclitaxel-induced LPA production was completely abolished not only by intrathecal pretreatment with neurokinin 1 (NK1) or N-methyl-D-aspartate (NMDA) receptor antagonist, but also in LPA1 receptor-deficient (Lpar1−/−) and LPA3 receptor-deficient (Lpar3−/−) mice. In addition, the pharmacological blockade of NK1 or NMDA receptor prevented a reduction in the paw withdrawal threshold against mechanical stimulation after paclitaxel treatments. Importantly, the paclitaxel-induced mechanical allodynia was absent in Lpar1−/− and Lpar3−/− mice. Conclusions These results suggest that LPA1 and LPA3 receptors-mediated amplification of spinal LPA production is required for the development of paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
| | | | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
22
|
Lysophosphatidic acid and signaling in sensory neurons. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:61-5. [PMID: 25218302 DOI: 10.1016/j.bbalip.2014.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
Lysophosphatidic acid is a potent signaling lipid molecule that has initially been characterized as a growth factor. However, later studies have revealed many more functions such as modulation of cell shape, cell migration, prevention of apoptosis, platelet aggregation, wound healing, osteoclast differentiation, vasopressor activity, embryo implantation, angiogenesis, lung fibrosis, hair growth and more. The molecule mainly acts through the activation of a set of at least 6 G-protein-coupled receptors (LPA1-6), but intracellular LPA was also shown to signal through the activation of the nuclear receptor PPARγ. In this short review we discuss the recent observations which suggest that in pathological conditions LPA also modulates signaling in sensory neurons. Thus, LPA has been shown to play a role in the initiation of neuropathic pain and, more recently, a relation was observed between increased LPA levels in the circulation and cholestatic itch. The mechanism by which this occurs remains to be elucidated. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
|
23
|
Spatial elucidation of spinal cord lipid- and metabolite- regulations in amyotrophic lateral sclerosis. Sci Rep 2014; 4:5266. [PMID: 24919836 PMCID: PMC4053717 DOI: 10.1038/srep05266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressing disease of the central nervous system that is characterized by motor neuron degeneration in the brain stem and the spinal cord. We employed time of flight secondary ion mass spectrometry (ToF-SIMS) to profile spatial lipid- and metabolite- regulations in post mortem human spinal cord tissue from ALS patients to investigate chemical markers of ALS pathogenesis. ToF-SIMS scans and multivariate analysis of image and spectral data were performed on thoracic human spinal cord sections. Multivariate statistics of the image data allowed delineation of anatomical regions of interest based on their chemical identity. Spectral data extracted from these regions were compared using two different approaches for multivariate statistics, for investigating ALS related lipid and metabolite changes. The results show a significant decrease for cholesterol, triglycerides, and vitamin E in the ventral horn of ALS samples, which is presumably a consequence of motor neuron degeneration. Conversely, the biogenic mediator lipid lysophosphatidylcholine and its fragments were increased in ALS ventral spinal cord, pointing towards neuroinflammatory mechanisms associated with neuronal cell death. ToF-SIMS imaging is a promising approach for chemical histology and pathology for investigating the subcellular mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis.
Collapse
|
24
|
Bali KK, Venkataramani V, Satagopam VP, Gupta P, Schneider R, Kuner R. Transcriptional mechanisms underlying sensitization of peripheral sensory neurons by granulocyte-/granulocyte-macrophage colony stimulating factors. Mol Pain 2013; 9:48. [PMID: 24067145 PMCID: PMC3852053 DOI: 10.1186/1744-8069-9-48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/25/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cancer-associated pain is a major cause of poor quality of life in cancer patients and is frequently resistant to conventional therapy. Recent studies indicate that some hematopoietic growth factors, namely granulocyte macrophage colony stimulating factor (GMCSF) and granulocyte colony stimulating factor (GCSF), are abundantly released in the tumor microenvironment and play a key role in regulating tumor-nerve interactions and tumor-associated pain by activating receptors on dorsal root ganglion (DRG) neurons. Moreover, these hematopoietic factors have been highly implicated in postsurgical pain, inflammatory pain and osteoarthritic pain. However, the molecular mechanisms via which G-/GMCSF bring about nociceptive sensitization and elicit pain are not known. RESULTS In order to elucidate G-/GMCSF mediated transcriptional changes in the sensory neurons, we performed a comprehensive, genome-wide analysis of changes in the transcriptome of DRG neurons brought about by exposure to GMCSF or GCSF. We present complete information on regulated genes and validated profiling analyses and report novel regulatory networks and interaction maps revealed by detailed bioinformatics analyses. Amongst these, we validate calpain 2, matrix metalloproteinase 9 (MMP9) and a RhoGTPase Rac1 as well as Tumor necrosis factor alpha (TNFα) as transcriptional targets of G-/GMCSF and demonstrate the importance of MMP9 and Rac1 in GMCSF-induced nociceptor sensitization. CONCLUSION With integrative approach of bioinformatics, in vivo pharmacology and behavioral analyses, our results not only indicate that transcriptional control by G-/GMCSF signaling regulates a variety of established pain modulators, but also uncover a large number of novel targets, paving the way for translational analyses in the context of pain disorders.
Collapse
Affiliation(s)
- Kiran Kumar Bali
- Institute for Pharmacology and Molecular Medicine Partnership Unit, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Varun Venkataramani
- Institute for Pharmacology and Molecular Medicine Partnership Unit, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, House of Biomedicine, 7 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- European Molecular Biology Laboratory, Meyerhofstrasse. 1, D-69117 Heidelberg, Germany
| | - Pooja Gupta
- Institute for Pharmacology and Molecular Medicine Partnership Unit, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, House of Biomedicine, 7 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- European Molecular Biology Laboratory, Meyerhofstrasse. 1, D-69117 Heidelberg, Germany
| | - Rohini Kuner
- Institute for Pharmacology and Molecular Medicine Partnership Unit, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Ma L, Nagai J, Chun J, Ueda H. An LPA species (18:1 LPA) plays key roles in the self-amplification of spinal LPA production in the peripheral neuropathic pain model. Mol Pain 2013; 9:29. [PMID: 23773289 PMCID: PMC3691926 DOI: 10.1186/1744-8069-9-29] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that nerve injury-induced neuropathic pain is initiated by newly produced lysophosphatidic acid (LPA). RESULTS In this study, we developed a quantitative mass spectrometry for detecting LPA species by using Phos-tag. Following nerve injury, the levels of 18:1, 16:0 and 18:0 LPA in the spinal dorsal horn significantly increased at 3 h and declined at 6 h. Among them, 18:1 LPA level was the most abundant. In the same preparation, there were significant elevations in the activities of cytosolic phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2), key enzymes for LPA synthesis, at 1 h, while there was no significant change in phospholipase A1 activity. Pharmacological studies revealed that NMDA and neurokinin 1 receptors, cPLA2, iPLA2 and microglial activation, as well as LPA1 and LPA3 receptors were all involved in the nerve injury-induced LPA production, and underlying cPLA2 and iPLA2 activations. In the cells expressing LPA1 or LPA3 receptor, the receptor-mediated calcium mobilization was most potent with 18:1 LPA, compared with 16:0 or 18:0 LPA. Moreover, the intrathecal injection of 18:1 LPA, but not 16:0 or 18:0 LPA, caused a spinal LPA production and neuropathic pain-like behavior. CONCLUSION These results suggest that 18:1 LPA is the predominant ligand responsible for LPA1 and LPA3 receptors-mediated amplification of LPA production through microglial activation.
Collapse
|
26
|
Ueda H, Matsunaga H, Olaposi OI, Nagai J. Lysophosphatidic acid: Chemical signature of neuropathic pain. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:61-73. [DOI: 10.1016/j.bbalip.2012.08.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023]
|
27
|
Kashimoto R, Yamanaka H, Kobayashi K, Okubo M, Yagi H, Mimura O, Noguchi K. Phosphorylation of ezrin/radixin/moesin (ERM) protein in spinal microglia following peripheral nerve injury and lysophosphatidic acid administration. Glia 2012; 61:338-48. [PMID: 23065679 DOI: 10.1002/glia.22436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/18/2012] [Indexed: 11/09/2022]
Abstract
Peripheral nerve injury activates spinal glial cells, which may contribute to the development of pain behavioral hypersensitivity. There is growing evidence that activated microglia show dynamic changes in cell morphology; however, the molecular mechanisms that underlie the modification of the membrane and cytoskeleton of microglia are not known. Here, we investigated the phosphorylation of ezrin, radixin, and moesin (ERM) proteins in the spinal cord after peripheral nerve injury. ERM is known to function as membrane-cytoskeletal linkers and be localized at filopodia- and microvilli-like structures. ERM proteins must be phosphorylated at a specific C-terminal threonine residue to be in the active state. The nature of ERM proteins in the spinal cord of animals in a neuropathic pain model has not been investigated and characterized. In the present study, we observed an increase in the phosphorylated ERM in the spinal microglia following spared nerve injury. The intrathecal administration of lysophosphatidic acid induced the phosphorylation of ERM proteins in microglia along with the development of mechanical pain hypersensitivity. Intrathecal administration of ERM antisense locked nucleic acid suppressed nerve injury-induced tactile allodynia and decreased the phosphorylation of ERM, but not the Iba1 staining pattern, in spinal glial cells. These findings suggest that lysophosphatidic acid induced the phosphorylation of ERM proteins in spinal microglia and may be involved in the emergence of neuropathic pain. These findings may underlie the pathological mechanisms of nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Ryosuke Kashimoto
- Department of Ophthalmology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang HH, Zhang XQ, Wang WY, Xue QS, Lu H, Huang JL, Gui T, Yu BW. Increased synaptophysin is involved in inflammation-induced heat hyperalgesia mediated by cyclin-dependent kinase 5 in rats. PLoS One 2012; 7:e46666. [PMID: 23056393 PMCID: PMC3462774 DOI: 10.1371/journal.pone.0046666] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 09/02/2012] [Indexed: 01/05/2023] Open
Abstract
Mechanisms associated with cyclin-dependent kinase 5 (Cdk5)-mediated heat hyperalgesia induced by inflammation remain undefined. This study was designed to examine whether Cdk5 mediates heat hyperalgesia resulting from peripheral injection of complete Freund's adjuvant (CFA) in the spinal dorsal horns of rats by interacting with synaptophysin, a well known membrane protein mediating the endocytosis-exocytosis cycle of synaptic vesicles as a molecular marker associated with presynaptic vesicle membranes. The role of Cdk5 in mediating synaptophysin was examined through the combined use of behavioral approaches, imaging studies, and immunoprecipitation following CFA-induced inflammatory pain. Results showed that Cdk5 colocalized with both synaptophysin and soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs) consisting of VAMP-2, SNAP-25, and syntaxin 1A in spinal dorsal horn of rats. Increased synaptophysin expression of spinal cord horn neurons post intraplantar injection of CFA coincided with increased duration of heat hyperalgesia lasting from 6 h to 3 d. Intrathecal administration of roscovitine, a Cdk5 specific inhibitor, significantly depressed synaptophysin expression during peak heat hyperalgesia and heat hyperalgesia induced by peripheral injection of CFA. Data presented in this report indicated that calpain activity was transiently upregulated 6 h post CFA-treatment despite previous reports suggesting that calpain was capable of cleaving p35 into p25. Results from previous studies obtained by other laboratories demonstrated that significant changes in p35 expression levels within spinal cord horn neurons were not observed in the CFA-treated inflammatory pain model although significant upregulation of Cdk5 kinase was observed between 2 h to 7 d. Therefore, generation of p25 occurred in a calpain-independent fashion in a CFA-treated inflammatory pain model. Our results demonstrated that increased synaptophysin levels were involved in heat hyperalgesia mediated by Cdk5 in spinal cord dorsal horns of CFA-treated rats, suggesting that inhibiting abnormal activation of Cdk5-synaptophysin may present a novel target for diminishing inflammatory pain.
Collapse
Affiliation(s)
- Hong-Hai Zhang
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xiao-Qin Zhang
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Wen-Yuan Wang
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Qing-Sheng Xue
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Han Lu
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jin-Lu Huang
- Department of Pharmacy, the Sixth Affiliated Hospital of Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Ting Gui
- Department of Anatomy, Institutes of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Bu-Wei Yu
- Department of Anesthesiology Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
29
|
Ueda H, Ueda M. Lysophosphatidic acid as an initiator of neuropathic pain: biosynthesis and demyelination. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.10.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Affiliation(s)
- Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
31
|
Nagai J, Uchida H, Matsushita Y, Yano R, Ueda M, Niwa M, Aoki J, Chun J, Ueda H. Autotaxin and lysophosphatidic acid1 receptor-mediated demyelination of dorsal root fibers by sciatic nerve injury and intrathecal lysophosphatidylcholine. Mol Pain 2010; 6:78. [PMID: 21062487 PMCID: PMC2989310 DOI: 10.1186/1744-8069-6-78] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/09/2010] [Indexed: 12/15/2022] Open
Abstract
Background Although neuropathic pain is frequently observed in demyelinating diseases such as Guillain-Barré syndrome and multiple sclerosis, the molecular basis for the relationship between demyelination and neuropathic pain behaviors is poorly understood. Previously, we found that lysophosphatidic acid receptor (LPA1) signaling initiates sciatic nerve injury-induced neuropathic pain and demyelination. Results In the present study, we have demonstrated that sciatic nerve injury induces marked demyelination accompanied by myelin-associated glycoprotein (MAG) down-regulation and damage of Schwann cell partitioning of C-fiber-containing Remak bundles in the sciatic nerve and dorsal root, but not in the spinal nerve. Demyelination, MAG down-regulation and Remak bundle damage in the dorsal root were abolished in LPA1 receptor-deficient (Lpar1-/-) mice, but these alterations were not observed in sciatic nerve. However, LPA-induced demyelination in ex vivo experiments was observed in the sciatic nerve, spinal nerve and dorsal root, all which express LPA1 transcript and protein. Nerve injury-induced dorsal root demyelination was markedly attenuated in mice heterozygous for autotaxin (atx+/-), which converts lysophosphatidylcholine (LPC) to LPA. Although the addition of LPC to ex vivo cultures of dorsal root fibers in the presence of recombinant ATX caused potent demyelination, it had no significant effect in the absence of ATX. On the other hand, intrathecal injection of LPC caused potent dorsal root demyelination, which was markedly attenuated or abolished in atx+/- or Lpar1-/- mice. Conclusions These results suggest that LPA, which is converted from LPC by ATX, activates LPA1 receptors and induces dorsal root demyelination following nerve injury, which causes neuropathic pain.
Collapse
Affiliation(s)
- Jun Nagai
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|