1
|
Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ. RNA imaging in living cells - methods and applications. RNA Biol 2015; 11:1083-95. [PMID: 25483044 PMCID: PMC4615301 DOI: 10.4161/rna.35506] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numerous types of transcripts perform multiple functions in cells, and these functions are mainly facilitated by the interactions of the RNA with various proteins and other RNAs. Insight into the dynamics of RNA biosynthesis, processing and cellular activities is highly desirable because this knowledge will deepen our understanding of cell physiology and help explain the mechanisms of RNA-mediated pathologies. In this review, we discuss the live RNA imaging systems that have been developed to date. We highlight information on the design of these systems, briefly discuss their advantages and limitations and provide examples of their numerous applications in various organisms and cell types. We present a detailed examination of one application of RNA imaging systems: this application aims to explain the role of mutant transcripts in human disease pathogenesis caused by triplet repeat expansions. Thus, this review introduces live RNA imaging systems and provides a glimpse into their various applications.
Collapse
Affiliation(s)
- Martyna O Urbanek
- a Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences ; Poznan , Poland
| | | | | | | |
Collapse
|
2
|
Inoue K, Okamoto M, Shibato J, Lee MC, Matsui T, Rakwal R, Soya H. Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus. PLoS One 2015; 10:e0128720. [PMID: 26061528 PMCID: PMC4464753 DOI: 10.1371/journal.pone.0128720] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
Our six-week treadmill running training (forced exercise) model has revealed that mild exercise (ME) with an intensity below the lactate threshold (LT) is sufficient to enhance spatial memory, while intense exercise (IE) above the LT negates such benefits. To help understand the unrevealed neuronal and signaling/molecular mechanisms of the intensity-dependent cognitive change, in this rat model, we here investigated plasma corticosterone concentration as a marker of stress, adult hippocampal neurogenesis (AHN) as a potential contributor to this ME-induced spatial memory, and comprehensively delineated the hippocampal transcriptomic profile using a whole-genome DNA microarray analysis approach through comparison with IE. Results showed that only IE had the higher corticosterone concentration than control, and that the less intense exercise (ME) is better suited to improve AHN, especially in regards to the survival and maturation of newborn neurons. DNA microarray analysis using a 4 × 44 K Agilent chip revealed that ME regulated more genes than did IE (ME: 604 genes, IE: 415 genes), and only 41 genes were modified with both exercise intensities. The identified molecular components did not comprise well-known factors related to exercise-induced AHN, such as brain-derived neurotrophic factor. Rather, network analysis of the data using Ingenuity Pathway Analysis algorithms revealed that the ME-influenced genes were principally related to lipid metabolism, protein synthesis and inflammatory response, which are recognized as associated with AHN. In contrast, IE-influenced genes linked to excessive inflammatory immune response, which is a negative regulator of hippocampal neuroadaptation, were identified. Collectively, these results in a treadmill running model demonstrate that long-term ME, but not of IE, with minimizing running stress, has beneficial effects on increasing AHN, and provides an ME-specific gene inventory containing some potential regulators of this positive regulation. This evidence might serve in further elucidating the mechanism behind ME-induced cognitive gain.
Collapse
Affiliation(s)
- Koshiro Inoue
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- School of Rehabilitation Science, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, 061–0293, Japan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
| | - Junko Shibato
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Hatanodai, Tokyo, 142–8555, Japan
| | - Min Chul Lee
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takashi Matsui
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Randeep Rakwal
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Hatanodai, Tokyo, 142–8555, Japan
- Organization for Educational Initiatives, University of Tsukuba, Tsukuba, 305–8577, Ibaraki, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
| |
Collapse
|
3
|
Buxbaum AR, Yoon YJ, Singer RH, Park HY. Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol 2015; 25:468-75. [PMID: 26052005 DOI: 10.1016/j.tcb.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Targeting of mRNAs to neuronal dendrites and axons plays an integral role in intracellular signaling, development, and synaptic plasticity. Single-molecule imaging of mRNAs in neurons and brain tissue has led to enhanced understanding of mRNA dynamics. Here we discuss aspects of mRNA regulation as revealed by single-molecule detection, which has led to quantitative analyses of mRNA diversity, localization, transport, and translation. These exciting new discoveries propel our understanding of the life of an mRNA in a neuron and how its activity is regulated at the single-molecule level.
Collapse
Affiliation(s)
- Adina R Buxbaum
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Hye Yoon Park
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
4
|
Molecular cloning and characterization of the promoter region of the porcine apolipoprotein E gene. Mol Biol Rep 2014; 41:3211-7. [PMID: 24464129 DOI: 10.1007/s11033-014-3182-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
Apolipoprotein E (APOE), a component of lipoproteins plays an important role in the transport and metabolism of cholesterol, and is associated with hyperlipoproteinemia and Alzheimer's disease. In order to further understand the characterization of APOE gene, the promoter of APOE gene of Landrace pigs was analyzed in the present study. The genomic structure and amino acid sequence in pigs were analyzed and found to share high similarity in those of human but low similarity in promoter region. Real-time PCR revealed the APOE gene expression pattern of pigs in diverse tissues. The highest expression level was observed in liver, relatively low expression in other tissues, especially in stomach and muscle. Furthermore, the promoter expressing in Hepa 1-6 was significantly better at driving luciferase expression compared with C2C12 cell. After analysis of porcine APOE gene promoter regions, potential transcription factor binding sites were predicted and two GC signals, a TATA box were indicated. Results of promoter activity analysis indicated that one of potential regulatory elements was located in the region -669 to -259, which was essential for a high expression of the APOE gene. Promoter mutation and deletion analysis further suggested that the C/EBPA binding site within the APOE promoter was responsible for the regulation of APOE transcription. Electrophoretic mobility shift assays also showed the binding site of the transcription factor C/EBPA. This study advances our knowledge of the promoter of the porcine APOE gene.
Collapse
|
5
|
Abstract
Brain oxysterol levels, which are enzymatic oxidation products of cholesterol (Chl), have been proposed to reflect the dynamic process of physiological synapse maintenance and repair of nerve terminals within the central nervous system (CNS), due to the turnover of membrane Chl. Modifications of oxysterols have important implications in neurological conditions, especially in neurodegenerative and psychiatric disorders in which alterations of synaptic plasticity or cell signalling are implicated, such as depression. Oxysterols can diffuse across the blood-brain barrier and have been hypothesized to provide a mechanism by which the brain can eliminate excess Chl to maintain a steady state. Relations of 24-hydroxycholesterol (24OH) and 27-hydroxycholesterol (27OH) specifically may provide a depiction of CNS Chl homeostasis. Thus, the objective of this study was to integrate oxysterol measures and gene expression measures in an effort to identify how they may relate to depression and suicide. Using post-mortem human prefrontal cortex tissue, quantification of metabolites by GC-MS and gene expression by qRT-PCR were performed with the aim to provide a characterization of enzymatic oxidative Chl homeostasis. Results show a significant increase in 24OH, which suggests a higher turnover of Chl to 24OH in the prefrontal cortex of suicide cases. An increase in 24OH may, in combination with liver-X receptor activation, explain the observed reduction of low central and peripheral Chl in suicide and would have implications for synapse maintenance and loss in the neuropathology of depression and suicide.
Collapse
|
6
|
Oh JY, Kwon A, Jo A, Kim H, Goo YS, Lee JA, Kim HK. Activity-dependent synaptic localization of processing bodies and their role in dendritic structural plasticity. J Cell Sci 2013; 126:2114-23. [PMID: 23487039 DOI: 10.1242/jcs.125690] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In neurons, transport of a subset of mRNAs to subcellular regions and their translation has a role in synaptic plasticity. Recent studies have suggested a control mechanism of this local translation through mRNA compartmentalization or degradation. Here we report that processing bodies (P-bodies), which are involved in mRNA degradation or storage, are transported to dendrites by conventional kinesin (KIF5A) as a motor protein. Neuronal activation induced by depolarization increased the colocalization of P-bodies with PSD-95 in dendrites. This neuronal activity increased the release of Nd1 and Arp2 mRNA from the P-bodies and, consequently, reversed the decrease of F-actin (induced by overexpression of Dcp1a) in the dendrites. Our data suggest that the activity-induced redistribution of P-bodies and mRNA release from P-bodies might have a role in synaptic structural plasticity by altering levels of mRNAs that are involved in the dynamics of the actin cytoskeleton in dendrites.
Collapse
Affiliation(s)
- Jun-Young Oh
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju, 361-763, The Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Yin C, Zhou S, Jiang L, Sun X. Mechanical injured neurons stimulate astrocytes to express apolipoprotein E through ERK pathway. Neurosci Lett 2012; 515:77-81. [PMID: 22450050 DOI: 10.1016/j.neulet.2012.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/15/2022]
Abstract
To explore the possible cellular source and mechanism of apolipoprotein E (apoE) expression in mechanical injured neuronal cultures. Primary cultured mouse cortical neurons were subjected into mechanical injury by needle scratching. The conditioned medium of wild type (WT) primary mouse astrocytes was collected and added into cultured injured apoE knockout (KO) neurons. Separately, the conditioned medium of injured apoE KO neurons was collected and added into cultured WT astrocytes. We used a specific inhibitor of extracellular signal-regulated kinase (ERK) to block the possible apoE-associated pathway between injured neurons and astrocytes. The apoE expression levels of the cells and secreted into medium were measured by Western blot, respectively. The apoE expression was increased in neurons after mechanically injury, and the injured neurons uptook the astrocyte-secreted apoE, as well. Furthermore, the injured neurons stimulated astrocytes to express more apoE through the ERK signaling pathway. Mechanical injury triggered the neurons to increasingly synthesized apoE and uptook exogenous apoE, while stimulators released from injured neurons elevated astrocytes in apoE expression and secretion.
Collapse
Affiliation(s)
- Cheng Yin
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | | | | | | |
Collapse
|
8
|
Jo A, Kim HK. Up-regulation of dendritic Kv4.2 mRNA by activation of the NMDA receptor. Neurosci Lett 2011; 496:129-34. [PMID: 21511008 DOI: 10.1016/j.neulet.2011.03.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/03/2011] [Accepted: 03/31/2011] [Indexed: 11/25/2022]
Abstract
The localization of Kv4.2 mRNAs in dendritic regions suggests that Kv4.2 channels, which originate from on-site protein synthesis in the dendrites, might play a role in synaptic function. In this study, we determined the molecular mechanisms of dendritic transport of Kv4.2 mRNA. Three hours of incubation following a brief depolarization resulted in significant increases in Kv4.2 mRNA levels in both cell bodies and dendrites. The increase in the mRNA in the dendrites was mediated by transcription- and translation-independent mechanisms. In order to further clarify the molecular mechanism of dendritic transport of Kv4.2 mRNA, we used the GFP-MS2 reporting system. Consistent with the in situ data, depolarization resulted in significant increases in dendritic levels of Kv4.2 mRNA at the maximal length at which Kv4.2 mRNA could be detected. These increases were mediated in a synaptic NMDA receptor- and Ca(2+)-dependent fashion. Collectively, these results indicate that Kv4.2 mRNA levels are regulated in response to synaptic activity, and this phenomenon may be the mechanism underlying the homeostasis of Kv4.2 protein on dendritic surfaces.
Collapse
Affiliation(s)
- Anna Jo
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | |
Collapse
|
9
|
Rolyan H, Feike AC, Upadhaya AR, Waha A, Van Dooren T, Haass C, Birkenmeier G, Pietrzik CU, Van Leuven F, Thal DR. Amyloid-β protein modulates the perivascular clearance of neuronal apolipoprotein E in mouse models of Alzheimer's disease. J Neural Transm (Vienna) 2011; 118:699-712. [PMID: 21210284 DOI: 10.1007/s00702-010-0572-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/17/2010] [Indexed: 12/30/2022]
Abstract
The deposition of amyloid-β protein (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). Apolipoprotein E (apoE) is involved in the clearance of Aβ from brain and the APOE ε4 allele is a major risk factor for sporadic AD. We have recently shown that apoE is drained into the perivascular space (PVS), where it co-localizes with Aβ. To further clarify the role of apoE in perivascular clearance of Aβ, we studied apoE-transgenic mice over-expressing human apoE4 either in astrocytes (GE4) or in neurons (TE4). These animals were crossbred with amyloid precursor protein (APP)-transgenic mice and with APP-presenilin-1 (APP-PS1) double transgenic mice. Using an antibody that specifically detects human apoE (h-apoE), we observed that astroglial expression of h-apoE in GE4 mice leads to its perivascular drainage, whereas neuronal expression in TE4 mice does not, indicating that neuron-derived apoE is usually not the subject of perivascular drainage. However, h-apoE was observed not only in the PVS of APP-GE4 and APP-PS1-GE4 mice, but also in that of APP-TE4 and APP-PS1-TE4 mice. In all these mouse lines, we found co-localization of neuron-derived h-apoE and Aβ in the PVS. Aβ and h-apoE were also found in the cytoplasm of perivascular astrocytes indicating that astrocytes take up the neuron-derived apoE bound to Aβ, presumably prior to its clearance into the PVS. The uptake of apoE-Aβ complexes into glial cells was further investigated in glioblastoma cells. It was mediated by α(2)macroglobulin receptor/low density lipoprotein receptor-related protein (LRP-1) and inhibited by adding receptor-associated protein (RAP). It results in endosomal Aβ accumulation within these cells. These results suggest that neuronal apoE-Aβ complexes, but not neuronal apoE alone, are substrates for LRP-1-mediated astroglial uptake, transcytosis, and subsequent perivascular drainage. Thus, the production of Aβ and its interaction with apoE lead to the pathological perivascular drainage of neuronal apoE and provide insight into the pathological interactions of Aβ with neuronal apoE metabolism.
Collapse
Affiliation(s)
- Harshvardhan Rolyan
- Laboratory of Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|