1
|
Lan Z, Tian Y, Li C, Wang Y, Yi P, Zhang R. ATP8A1-translocated endosomal phosphatidylserine fine-tunes the multivesicular body formation and the endo-lysosomal traffic. iScience 2025; 28:111973. [PMID: 40083718 PMCID: PMC11904568 DOI: 10.1016/j.isci.2025.111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
P4-ATPases are phospholipid flippases responsible for the transbilayer lipid asymmetry. ATP8A1, a P4-ATPase family member, has been reported to be involved in phosphatidylserine (PS) translocation at the trans-Golgi network, early endosomes and recycling endosomes. However, the possible roles of the PS on late endosomes/lysosomes pathway and how they are regulated remain to be elucidated. This study showed enrichment of ATP8A1 in Rab7-positive late endosomal compartments, and that ATP8A1 primarily flips the endosomal PS from the luminal leaflet to the cytosolic leaflet but not the PS in the inner leaflet of the plasma membrane. ATP8A1 depletion accelerates the lysosome-destined cargo proteins transfer into the intraluminal vesicles (ILVs) of multivesicular bodies (MVBs) and alters the signaling of epidermal growth factor receptor. Mechanistically, ATP8A1 depletion leads to PS loading in the luminal leaflet of MVB's limiting membrane, which fine-tunes ILVs initiation and endosomal sorting complex required for transport (ESCRT) component recruitment.
Collapse
Affiliation(s)
- Zengmei Lan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangli Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hebei Key Laboratory of Medical Data Science, School of Medicine, Hebei University of Engineering, Handan, China
| | - Chengang Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yudong Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Shin HW, Takatsu H. Substrates, regulation, cellular functions, and disease associations of P4-ATPases. Commun Biol 2025; 8:135. [PMID: 39875509 PMCID: PMC11775268 DOI: 10.1038/s42003-025-07549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases. Initially identified as aminophospholipid translocases, P4-ATPases have since been found to translocate other phospholipids, including phosphatidylcholine, phosphatidylinositol, and even glycosphingolipids. Recent advances in structural analysis have significantly improved our understanding of the lipid transport machinery associated with P4-ATPases, as documented in recent reviews. In this review, we highlight the emerging evidence related to substrate diversity, the regulation of cellular localization, enzymatic activities, and their impact on organism homeostasis and diseases.
Collapse
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Ma X, Chen X, Che Y, Zhu S, Wang X, Gao S, Wu J, Kong F, Cheng C, Wu Y, Guo J, Qi J, Chai R. The single-cell transcriptomic landscape of the topological differences in mammalian auditory receptors. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2398-2410. [PMID: 39083201 DOI: 10.1007/s11427-024-2672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 10/22/2024]
Abstract
Mammalian hair cells (HCs) are arranged spirally along the cochlear axis and correspond to different frequency ranges. Serving as primary sound detectors, HCs spatially segregate component frequencies into a topographical map. HCs display significant diversity in anatomical and physiological characteristics, yet little is known about the organization of the cochleotopic map of HCs or the molecules involved in this process. Using single-cell RNA sequencing, we determined the distinct molecular profiles of inner hair cells and outer hair cells, and we identified numerous position-dependent genes that were expressed as gradients. Newly identified genes such as Ptn, Rxra, and Nfe2l2 were found to be associated with tonotopy. We employed the SCENIC algorithm to predict the transcription factors that potentially shape these tonotopic gradients. Furthermore, we confirmed that Nfe2l2, a tonotopy-related transcription factor, is critical in mice for sensing low-to-medium sound frequencies in vivo. the analysis of cell-cell communication revealed potential receptor-ligand networks linking inner hair cells to spiral ganglion neurons, including pathways such as BDNF-Ntrk and PTN-Scd4, which likely play essential roles in tonotopic maintenance. Overall, these findings suggest that molecular gradients serve as the organizing principle for maintaining the selection of sound frequencies by HCs.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuwei Che
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Siyao Zhu
- School of Engineering, Vanderbilt University, Nashville, 37240, USA
| | - Xinlin Wang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shan Gao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiheng Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fanliang Kong
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Cheng Cheng
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210096, China
- Research Institute of Otorhinolaryngology, Nanjing, 210096, China
| | - Yunhao Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- Department of Neurology, Aerospace Center Hospital, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Beijing, 100081, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Beijing, 100081, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
4
|
Sai KV, Lee JYE. Crossing the membrane-What does it take to flip a phospholipid? Structural and biochemical advances on P4-ATPase flippases. J Biol Chem 2024; 300:107738. [PMID: 39233230 PMCID: PMC11460456 DOI: 10.1016/j.jbc.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Membrane asymmetry is critical for maintenance of several different processes such as cell signaling, apoptosis, and vesicular transport in various eukaryotic systems. Flippases of the P4-ATPase family are associated with flipping phospholipids from the luminal or exoplasmic leaflet to the cytosolic leaflet. P4-ATPases belong to the P-type ATPase family, which are activated by phosphorylation and couple ATPase activity to substrate translocation. These proteins possess a transmembrane domain responsible for substrate transport, while the cytosolic machinery performs the necessary ATP hydrolysis for this process. Several high-resolution structures of human or yeast P4-ATPases have recently been resolved, but a comprehensive overview of the changes for reaction cycle in different members was crucial for future research. In this review, we have compiled available data reflecting the reaction cycle-associated changes in conformation of P4-ATPases. Together, this will provide an improved understanding of the similarities and differences between these members, which will drive further structural, functional, and computational studies to understand the mechanisms of these flippases.
Collapse
Affiliation(s)
- Kadambari Vijay Sai
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jyh-Yeuan Eric Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Li X, Li S, Zhang W, Wang Q, Zou W. Impacts of P4-ATPase Deletion on Membrane Asymmetry and Disease Development. Cell Biochem Funct 2024; 42:e70004. [PMID: 39425455 DOI: 10.1002/cbf.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Phospholipids exhibit an asymmetrical distribution on the cell membrane. P4-ATPases, type IV lipid flippases, are responsible for establishing and maintaining this phospholipid compositional asymmetry. The essential β subunit CDC50 (also known as TMEM30) assists in the transport and proper functioning of P4-ATPases. Deletion of P4-ATPases and its β subunit disrupts the membrane asymmetry, impacting the growth and development and leading to various diseases affecting the nervous, skeletal muscle, digestive, and hematopoietic systems. This review discusses the crucial roles of P4-ATPases and their β subunit in Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, and mammals, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xinyu Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuzhen Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weipu Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qi Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Wouters R, Beletchi I, Van den Haute C, Baekelandt V, Martin S, Eggermont J, Vangheluwe P. The lipid flippase ATP10B enables cellular lipid uptake under stress conditions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119652. [PMID: 38086447 DOI: 10.1016/j.bbamcr.2023.119652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Pathogenic ATP10B variants have been described in patients with Parkinson's disease and dementia with Lewy body disease, and we previously established ATP10B as a late endo-/lysosomal lipid flippase transporting both phosphatidylcholine (PC) and glucosylceramide (GluCer) from the lysosomal exoplasmic to cytoplasmic membrane leaflet. Since several other lipid flippases regulate cellular lipid uptake, we here examined whether also ATP10B impacts cellular lipid uptake. Transient co-expression of ATP10B with its obligatory subunit CDC50A stimulated the uptake of fluorescently (NBD-) labeled PC in HeLa cells. This uptake is dependent on the transport function of ATP10B, is impaired by disease-associated variants and appears specific for NBD-PC. Uptake of non-ATP10B substrates, such as NBD-sphingomyelin or NBD-phosphatidylethanolamine is not increased. Remarkably, in stable cell lines co-expressing ATP10B/CDC50A we only observed increased NBD-PC uptake following treatment with rotenone, a mitochondrial complex I inhibitor that induces transport-dependent ATP10B phenotypes. Conversely, Im95m and WM-115 cells with endogenous ATP10B expression, present a decreased NBD-PC uptake following ATP10B knockdown, an effect that is exacerbated under rotenone stress. Our data show that the endo-/lysosomal lipid flippase ATP10B contributes to cellular PC uptake under specific cell stress conditions.
Collapse
Affiliation(s)
- Rosanne Wouters
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Igor Beletchi
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Chris Van den Haute
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Leuven Viral Vector Core, KU Leuven, B-3000 Leuven, Belgium; Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| | - Veerle Baekelandt
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
9
|
Zheng L, Pan C, Tian W, Liang C, Feng Y, He W, Yang Z, Wang B, Qiu Q, Li N, Sun Y, Qiu H, Sample KM, Zhou L, Zhu X, Hu Y. Atp8a1 deletion increases the proliferative activity of hematopoietic stem cells by impairing PTEN function. Cell Oncol (Dordr) 2023; 46:1069-1083. [PMID: 36930333 DOI: 10.1007/s13402-023-00797-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
PURPOSE The eukaryotic cell plasma membrane contains several asymmetrically distributed phospholipids, which is maintained by the P4-ATPase flippase complex. Herein, we demonstrated the biological effects and mechanisms of asymmetrical loss in hematopoietic stem cells (HSCs). METHODS An Atp8a1 knockout mouse model was employed, from which the HSC (long-term HSCs and short-term HSCs) population was analyzed to assess their abundance and function. Additionally, competitive bone marrow transplantation and 5-FU stress assays were performed. RNA sequencing was performed on Hematopoietic Stem and Progenitor Cells, and DNA damage was assayed using immunofluorescence staining and comet electrophoresis. The protein abundance for members of key signaling pathways was confirmed using western blotting. RESULTS Atp8a1 deletion resulted in slight hyperleukocytosis, associated with the high proliferation of HSCs and BCR/ABL1 transformed leukemia stem cells (LSCs). Atp8a1 deletion increased the repopulation capability of HSCs with a competitive advantage in reconstitution assay. HSCs without Atp8a1 were more sensitive to 5-FU-induced apoptosis. Moreover, Atp8a1 deletion prevented HSC DNA damage and facilitated DNA repair processes. Genes involved in PI3K-AKT-mTORC1, DNA repair, and AP-1 complex signaling were enriched and elevated in HSCs with Atp8a1 deletion. Furthermore, Atp8a1 deletion caused decreased PTEN protein levels, resulting in the activation of PI3K-AKT-mTORC1 signaling, further increasing the activity of JNK/AP-1 signaling and YAP1 phosphorylation. CONCLUSION We identified the role of Atp8a1 on hematopoiesis and HSCs. Atp8a1 deletion resulted in the loss of phosphatidylserine asymmetry and intracellular signal transduction chaos.
Collapse
Affiliation(s)
- Li Zheng
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Cong Pan
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Wanli Tian
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Cailing Liang
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Yunyu Feng
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Wei He
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Zirong Yang
- Institute of Life Science, eBond Pharmaceutical Technology Ltd., Chengdu, China
| | - Bochuan Wang
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Qiang Qiu
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Ning Li
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Yuanyuan Sun
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Huandi Qiu
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China
| | - Klarke M Sample
- Institute of Life Science, eBond Pharmaceutical Technology Ltd., Chengdu, China
| | - Lingyun Zhou
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China.
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Yiguo Hu
- Department of Thyroid Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, Ren-Min-Nan Road (Third Section), Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Meng T, Chen X, He Z, Huang H, Lin S, Liu K, Bai G, Liu H, Xu M, Zhuang H, Zhang Y, Waqas A, Liu Q, Zhang C, Sun XD, Huang H, Umair M, Yan Y, Feng D. ATP9A deficiency causes ADHD and aberrant endosomal recycling via modulating RAB5 and RAB11 activity. Mol Psychiatry 2023; 28:1219-1231. [PMID: 36604604 PMCID: PMC9816018 DOI: 10.1038/s41380-022-01940-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.
Collapse
Affiliation(s)
- Tian Meng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiaoting Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhengjie He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haofeng Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shiyin Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Kunru Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Guo Bai
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, China
| | - Mindong Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ahmed Waqas
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Qian Liu
- Department of Cerebrovascular Disease Center, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Chuan Zhang
- Medical Genetics Center, Gansu Provincial Maternity and Child-care Hospital; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou, 730050, China
| | - Xiang-Dong Sun
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, 11481, Saudi Arabia. .,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 22209, Pakistan.
| | - Yousheng Yan
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
12
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
13
|
Machado JP, Athie MC, Matos AH, Lopes-Cendes I, Vieira A. The transcriptome of rat hippocampal subfields. IBRO Neurosci Rep 2022; 13:322-329. [PMID: 36247526 PMCID: PMC9561749 DOI: 10.1016/j.ibneur.2022.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
The hippocampus comprises several neuronal populations such as CA1, CA2, CA3, and the dentate gyrus (DG), which present different neuronal origins, morphologies, and molecular mechanisms. Laser capture microdissection (LCM) allows selectively collecting samples from target regions and eliminating unwanted cells to obtain more specific results. LCM of hippocampus neuronal populations coupĺed with RNA-seq analysis has the potential to allow the exploration of the molecular machinery unique to each of these subfields. Previous RNA-seq investigation has already provided a molecular blueprint of the hippocampus, however, there is no RNA-seq data specific for each of the rat hippocampal regions. Serial tissue sections covering the hippocampus were produced from frozen brains of adult male Wistar rats, and the hippocampal subfields CA1, CA2, CA3, and DG were identified and isolated by LCM. We found evident segregation of the transcriptomic profile from different regions of the hippocampus and the expression of known, as well as novel, specific marker genes for each region. Gene ontology enrichment analysis of CA1 subfield indicates an enrichment of actin regulation and postsynaptic membrane AMPA receptors genes indispensable for long-term potentiation. CA2 and CA3 transcripts were found associated with the increased metabolic processes. DG expression was enriched for ribosome and spliceosome, both required for protein synthesis and maintenance of cell life. The present findings contribute to a deeper understanding of the differences in the molecular machinery expressed by the rat hippocampal neuronal populations, further exploring underlying mechanisms responsible for each subflied specific functions.
Collapse
Affiliation(s)
- João P.D. Machado
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Maria C.P. Athie
- Department of Translational Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Alexandre H.B. Matos
- Department of Translational Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - André.S. Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Almasieh M, Faris H, Levin LA. Pivotal roles for membrane phospholipids in axonal degeneration. Int J Biochem Cell Biol 2022; 150:106264. [PMID: 35868612 DOI: 10.1016/j.biocel.2022.106264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Membrane phospholipids are critical components of several signaling pathways. Maintained in a variety of asymmetric distributions, their trafficking across the membrane can be induced by intra-, extra-, and intercellular events. A familiar example is the externalization of phosphatidylserine from the inner leaflet to the outer leaflet in apoptosis, inducing phagocytosis of the soma. Recently, it has been recognized that phospholipids in the axonal membrane may be a signal for axonal degeneration, regeneration, or other processes. This review focuses on key recent developments and areas for ongoing investigations. KEY FACTS: Phosphatidylserine externalization propagates along an axon after axonal injury and is delayed in the Wallerian degeneration slow (WldS) mutant. The ATP8A2 flippase mutant has spontaneous axonal degeneration. Microdomains of axonal degeneration in spheroid bodies have differential externalization of phosphatidylserine and phosphatidylethanolamine. Phospholipid trafficking could represent a mechanism for coordinated axonal degeneration and elimination, i.e. axoptosis, analogous to apoptosis of the cell body.
Collapse
Affiliation(s)
- Mohammadali Almasieh
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Hannah Faris
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
15
|
Yap YT, Li YH, Li W, Banerjee P, Zhang Z. ATP8a1, an IFT27 binding partner, is dispensable for spermatogenesis and male fertility. Mol Reprod Dev 2021; 88:371-375. [PMID: 33821543 DOI: 10.1002/mrd.23470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/23/2021] [Indexed: 11/10/2022]
Abstract
Intraflagellar transport 27 (IFT27) is a key regulator for spermiogenesis and male fertility in mice. ATP8a1, a protein involved in the translocation of phosphatidylserine and phosphatidylethanolamine across lipid bilayers, is the strongest binding partner of IFT27. To investigate the role of ATP8a1 in spermatogenesis and male fertility, the global Atp8a1 knockout mice were analyzed. All mutant mice were fertile, and sperm count and motility were comparable to the control mice. Examination of testis and epididymis by hematoxylin and eosin staining did not reveal major histologic defects. These observations demonstrate that ATP8a1 is not a major spermatogenesis regulator. Given that a tissue-specific paralogue of ATP8a1, ATP8a2, is present, further studies with double-knockout models are warranted to delineate any compensatory functions of the two proteins.
Collapse
Affiliation(s)
- Yi T Yap
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Yu H Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.,School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Probal Banerjee
- Department of Chemistry, The College of Staten Island (CUNY), Staten Island, New York, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
16
|
The transport mechanism of P4 ATPase lipid flippases. Biochem J 2021; 477:3769-3790. [PMID: 33045059 DOI: 10.1042/bcj20200249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
P4 ATPase lipid flippases are ATP-driven transporters that translocate specific lipids from the exoplasmic to the cytosolic leaflet of biological membranes, thus establishing a lipid gradient between the two leaflets that is essential for many cellular processes. While substrate specificity, subcellular and tissue-specific expression, and physiological functions have been assigned to a number of these transporters in several organisms, the mechanism of lipid transport has been a topic of intense debate in the field. The recent publication of a series of structural models based on X-ray crystallography and cryo-EM studies has provided the first glimpse into how P4 ATPases have adapted the transport mechanism used by the cation-pumping family members to accommodate a substrate that is at least an order of magnitude larger than cations.
Collapse
|
17
|
Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 2021; 296:100411. [PMID: 33581114 PMCID: PMC8005811 DOI: 10.1016/j.jbc.2021.100411] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Formations of myofibers, osteoclasts, syncytiotrophoblasts, and fertilized zygotes share a common step, cell–cell fusion. Recent years have brought about considerable progress in identifying some of the proteins involved in these and other cell-fusion processes. However, even for the best-characterized cell fusions, we still do not know the mechanisms that regulate the timing of cell-fusion events. Are they fully controlled by the expression of fusogenic proteins or do they also depend on some triggering signal that activates these proteins? The latter scenario would be analogous to the mechanisms that control the timing of exocytosis initiated by Ca2+ influx and virus-cell fusion initiated by low pH- or receptor interaction. Diverse cell fusions are accompanied by the nonapoptotic exposure of phosphatidylserine at the surface of fusing cells. Here we review data on the dependence of membrane remodeling in cell fusion on phosphatidylserine and phosphatidylserine-recognizing proteins and discuss the hypothesis that cell surface phosphatidylserine serves as a conserved “fuse me” signal regulating the time and place of cell-fusion processes.
Collapse
|
18
|
Regulation of phospholipid dynamics in brain. Neurosci Res 2021; 167:30-37. [PMID: 33476682 DOI: 10.1016/j.neures.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Phospholipids are asymmetrically distributed at the plasma membrane. Phosphatidylserine (PtdSer) is exclusively located in the inner leaflet of the cell membrane while phosphatidylcholine (PtdCho) and glycolipids are mainly located in the outer leaflet of the membrane. However, this asymmetry is disrupted in various physiological situations, and PtdSer is exposed on the cell surface. In platelets, exposed PtdSer functions as a scaffold for the coagulation reaction, while in dead cells, exposed PtdSer serves as an "Eat-me" signal for efferocytosis. In the developing brain, synaptic connections are over-formed during the fetal period, but about half of the neurons are removed by apoptosis, and synaptic and dendritic compartments of living neurons are also removed by phagocytes. During these processes, glial cells such as microglia and astrocyte engulf unwanted dead cells and compartments in living cells using several phagocytic receptors, recognizing PtdSer by direct binding or an indirect way using secreted molecules. Based on recent findings, we will discuss how the compartments in living neurons are eliminated for the neuronal circuit plasticity.
Collapse
|
19
|
Thongkorn S, Kanlayaprasit S, Panjabud P, Saeliw T, Jantheang T, Kasitipradit K, Sarobol S, Jindatip D, Hu VW, Tencomnao T, Kikkawa T, Sato T, Osumi N, Sarachana T. Sex differences in the effects of prenatal bisphenol A exposure on autism-related genes and their relationships with the hippocampus functions. Sci Rep 2021; 11:1241. [PMID: 33441873 PMCID: PMC7806752 DOI: 10.1038/s41598-020-80390-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanit Saeliw
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthathip Sarobol
- grid.411628.80000 0000 9758 8584Specimen Center, Department of Laboratory Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Takako Kikkawa
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tatsuya Sato
- grid.412754.10000 0000 9956 3487Department of Healthcare Management, Faculty of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi Japan
| | - Noriko Osumi
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tewarit Sarachana
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Abe N, Nishihara T, Yorozuya T, Tanaka J. Microglia and Macrophages in the Pathological Central and Peripheral Nervous Systems. Cells 2020; 9:cells9092132. [PMID: 32967118 PMCID: PMC7563796 DOI: 10.3390/cells9092132] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Microglia, the immunocompetent cells in the central nervous system (CNS), have long been studied as pathologically deteriorating players in various CNS diseases. However, microglia exert ameliorating neuroprotective effects, which prompted us to reconsider their roles in CNS and peripheral nervous system (PNS) pathophysiology. Moreover, recent findings showed that microglia play critical roles even in the healthy CNS. The microglial functions that normally contribute to the maintenance of homeostasis in the CNS are modified by other cells, such as astrocytes and infiltrated myeloid cells; thus, the microglial actions on neurons are extremely complex. For a deeper understanding of the pathophysiology of various diseases, including those of the PNS, it is important to understand microglial functioning. In this review, we discuss both the favorable and unfavorable roles of microglia in neuronal survival in various CNS and PNS disorders. We also discuss the roles of blood-borne macrophages in the pathogenesis of CNS and PNS injuries because they cooperatively modify the pathological processes of resident microglia. Finally, metabolic changes in glycolysis and oxidative phosphorylation, with special reference to the pro-/anti-inflammatory activation of microglia, are intensively addressed, because they are profoundly correlated with the generation of reactive oxygen species and changes in pro-/anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
- Correspondence: ; Tel.: +81-89-960-5383; Fax: +81-89-960-5386
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; (N.A.); (T.Y.)
| | - Junya Tanaka
- Department of Molecular and cellular Physiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan;
| |
Collapse
|
21
|
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Wang J, Li W, Zhou F, Feng R, Wang F, Zhang S, Li J, Li Q, Wang Y, Xie J, Wen T. ATP11B deficiency leads to impairment of hippocampal synaptic plasticity. J Mol Cell Biol 2019; 11:688-702. [PMID: 31152587 PMCID: PMC7261485 DOI: 10.1093/jmcb/mjz042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/28/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Synaptic plasticity is known to regulate and support signal transduction between neurons, while synaptic dysfunction contributes to multiple neurological and other brain disorders; however, the specific mechanism underlying this process remains unclear. In the present study, abnormal neural and dendritic morphology was observed in the hippocampus following knockout of Atp11b both in vitro and in vivo. Moreover, ATP11B modified synaptic ultrastructure and promoted spine remodeling via the asymmetrical distribution of phosphatidylserine and enhancement of glutamate release, glutamate receptor expression, and intracellular Ca2+ concentration. Furthermore, experimental results also indicate that ATP11B regulated synaptic plasticity in hippocampal neurons through the MAPK14 signaling pathway. In conclusion, our data shed light on the possible mechanisms underlying the regulation of synaptic plasticity and lay the foundation for the exploration of proteins involved in signal transduction during this process.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruili Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yajiang Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
23
|
Hiraizumi M, Yamashita K, Nishizawa T, Nureki O. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science 2019; 365:1149-1155. [PMID: 31416931 DOI: 10.1126/science.aay3353] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
In eukaryotic membranes, type IV P-type adenosine triphosphatases (P4-ATPases) mediate the translocation of phospholipids from the outer to the inner leaflet and maintain lipid asymmetry, which is critical for membrane trafficking and signaling pathways. Here, we report the cryo-electron microscopy structures of six distinct intermediates of the human ATP8A1-CDC50a heterocomplex at resolutions of 2.6 to 3.3 angstroms, elucidating the lipid translocation cycle of this P4-ATPase. ATP-dependent phosphorylation induces a large rotational movement of the actuator domain around the phosphorylation site in the phosphorylation domain, accompanied by lateral shifts of the first and second transmembrane helices, thereby allowing phosphatidylserine binding. The phospholipid head group passes through the hydrophilic cleft, while the acyl chain is exposed toward the lipid environment. These findings advance our understanding of the flippase mechanism and the disease-associated mutants of P4-ATPases.
Collapse
Affiliation(s)
- Masahiro Hiraizumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Discovery Technology Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama, 227-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
24
|
Gerber KJ, Dammer EB, Duong DM, Deng Q, Dudek SM, Seyfried NT, Hepler JR. Specific Proteomes of Hippocampal Regions CA2 and CA1 Reveal Proteins Linked to the Unique Physiology of Area CA2. J Proteome Res 2019; 18:2571-2584. [PMID: 31059263 DOI: 10.1021/acs.jproteome.9b00103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hippocampus is well established as an essential brain center for learning and memory. Within the hippocampus, recent studies show that area CA2 is important for social memory and is an anomaly compared to its better-understood neighboring region, CA1. Unlike CA1, CA2 displays a lack of typical synaptic plasticity, enhanced calcium buffering and extrusion, and resilience to cell death following injury. Although recent studies have identified multiple molecular markers of area CA2, the proteins that mediate the unique physiology, signaling, and resilience of this region are unknown. Using a transgenic GFP-reporter mouse line that expresses eGFP in CA2, we were able to perform targeted dissections of area CA2 and CA1 for proteomic analysis. We identified over 100 proteins with robustly enriched expression in area CA2 compared to CA1. Many of these proteins, including RGS14 and NECAB2, have already been shown to be enriched in CA2 and important for its function, while many more merit further study in the context of enhanced expression in this enigmatic brain region. Furthermore, we performed a comprehensive analysis of the entire data set (>2300 proteins) using a weighted protein co-expression network analysis. This identified eight distinct co-expressed patterns of protein co-enrichment associated with increased expression in area CA2 tissue (compared to CA1). The novel data set we present here reveals a specific CA2 hippocampal proteome, laying the groundwork for future studies and a deeper understanding of area CA2 and the proteins mediating its unique physiology and signaling.
Collapse
Affiliation(s)
- Kyle J Gerber
- Department of Pharmacology and Chemical Biology, Rollins Research Center , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Qiudong Deng
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States.,Department of Neurology , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Rollins Research Center , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| |
Collapse
|
25
|
Liou AY, Molday LL, Wang J, Andersen JP, Molday RS. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells. J Biol Chem 2019; 294:6809-6821. [PMID: 30850395 DOI: 10.1074/jbc.ra118.007270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Indexed: 02/04/2023] Open
Abstract
ATP-dependent phospholipid flippase activity crucial for generating lipid asymmetry was first detected in red blood cell (RBC) membranes, but the P4-ATPases responsible have not been directly determined. Using affinity-based MS, we show that ATP11C is the only abundant P4-ATPase phospholipid flippase in human RBCs, whereas ATP11C and ATP8A1 are the major P4-ATPases in mouse RBCs. We also found that ATP11A and ATP11B are present at low levels. Mutations in the gene encoding ATP11C are responsible for blood and liver disorders, but the disease mechanisms are not known. Using heterologous expression, we show that the T415N substitution in the phosphorylation motif of ATP11C, responsible for congenital hemolytic anemia, reduces ATP11C expression, increases retention in the endoplasmic reticulum, and decreases ATPase activity by 61% relative to WT ATP11C. The I355K substitution in the transmembrane domain associated with cholestasis and anemia in mice was expressed at WT levels and trafficked to the plasma membrane but was devoid of activity. We conclude that the T415N variant causes significant protein misfolding, resulting in low protein expression, cellular mislocalization, and reduced functional activity. In contrast, the I355K variant folds and traffics normally but lacks key contacts required for activity. We propose that the loss in ATP11C phospholipid flippase activity coupled with phospholipid scramblase activity results in the exposure of phosphatidylserine on the surface of RBCs, decreasing RBC survival and resulting in anemia.
Collapse
Affiliation(s)
- Angela Y Liou
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Laurie L Molday
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Jiao Wang
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Jens Peter Andersen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| | - Robert S Molday
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| |
Collapse
|
26
|
Li Q, Yang Y, Liu Y. Over-Expression of ATPase II Alleviates Ethanol-Induced Hepatocyte Injury in HL-7702 Cells. Med Sci Monit 2018; 24:8372-8382. [PMID: 30457983 PMCID: PMC6256429 DOI: 10.12659/msm.910254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Excessive alcohol consumption can cause hepatocellular injury. ATPase II (ATP8A1) can display an ATP-dependent phospholipid translocase activity. However, the function of ATP8A1 in hepatocyte injury is still unclear. In the present study we explored the effect of ATP8A1 on ethanol-induced hepatocyte injury. Material/Method A human hepatocyte strain, HL-7702, was pretreated by ethanol with gradient concentration for 2, 4, 8, and 12 h, and were then divided into 6 groups after the cells were transfected. We detected cell viability by use of the Cell Counting Kit-8 (CCK-8) assay. Reactive oxygen species (ROS), apoptosis rate, and mitochondrial membrane potential (MMP) were measured using flow cytometry. We used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot to measure the mRNA and protein expression, respectively. Results Ethanol inhibited the viability of HL-7702 cells and suppressed the expression of ATP8A1 in dose- and time-dependent manners. Furthermore, over-expression of ATP8A1 reduced the level of ROS and the apoptosis rate and recovered the MMP. Additionally, over-expressed ATP8A1 regulated the protein and mRNA levels of apoptosis-related molecules. Moreover, over-expression of ATP8A1 enhanced the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt). Conclusions Over-expression of ATP8A1 alleviated ethanol-induced hepatocyte injury. Moreover, the PI3K/Akt signaling pathway appears to participate in inhibition of ethanol-induced hepatocyte apoptosis and may provide a candidate target for the treatment of alcoholic liver diseases (ALD).
Collapse
Affiliation(s)
- Qing Li
- Department of Clinical Laboratory, Jingmen No. 1 People's Hospital, Jingmen, Hubei, China (mainland)
| | - Yan Yang
- Department of Clinical Laboratory, Jingmen No. 1 People's Hospital, Jingmen, Hubei, China (mainland)
| | - Ying Liu
- Department of Clinical Laboratory, Jingmen No. 1 People's Hospital, Jingmen, Hubei, China (mainland)
| |
Collapse
|
27
|
Disruption of Tmem30a results in cerebellar ataxia and degeneration of Purkinje cells. Cell Death Dis 2018; 9:899. [PMID: 30185775 PMCID: PMC6125289 DOI: 10.1038/s41419-018-0938-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Phospholipids are asymmetrically distributed across mammalian plasma membrane with phosphatidylserine (PS) and phosphatidylethanolamine concentrated in the cytoplasmic leaflet of the membrane bilayer. This asymmetric distribution is dependent on a group of P4-ATPases named PS flippases. The proper transport and function of PS flippases require a β-subunit transmembrane protein 30 A (TMEM30A). Disruption of PS flippases led to several human diseases. However, the roles of TMEM30A in the central nervous system remain elusive. To investigate the role of Tmem30a in the cerebellum, we developed a Tmem30a Purkinje cell (PC)-specific knockout (KO) mouse model. The Tmem30a KO mice displayed early-onset ataxia and progressive PC death. Deficiency in Tmem30a led to an increased expression of Glial fibrillary acidic protein and astrogliosis in regions with PC loss. Elevated C/EBP homologous protein and BiP expression levels indicated the presence of endoplasmic reticulum stress in the PCs prior to visible cell loss. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis suggested that apoptotic cell death occurred in the cerebellum. Our data demonstrate that loss of Tmem30a in PCs results in protein folding and transport defects, a substantial decrease in dendritic spine density, increased astrogliosis and PC death. Taken together, our data demonstrate an essential role of Tmem30a in the cerebellum PCs.
Collapse
|
28
|
Wang J, Molday LL, Hii T, Coleman JA, Wen T, Andersen JP, Molday RS. Proteomic Analysis and Functional Characterization of P4-ATPase Phospholipid Flippases from Murine Tissues. Sci Rep 2018; 8:10795. [PMID: 30018401 PMCID: PMC6050252 DOI: 10.1038/s41598-018-29108-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/05/2018] [Indexed: 01/31/2023] Open
Abstract
P4-ATPases are a subfamily of P-type ATPases that flip phospholipids across membranes to generate lipid asymmetry, a property vital to many cellular processes. Mutations in several P4-ATPases have been linked to severe neurodegenerative and metabolic disorders. Most P4-ATPases associate with one of three accessory subunit isoforms known as CDC50A (TMEM30A), CDC50B (TMEM30B), and CDC50C (TMEM30C). To identify P4-ATPases that associate with CDC50A, in vivo, and determine their tissue distribution, we isolated P4-ATPases-CDC50A complexes from retina, brain, liver, testes, and kidney on a CDC50A immunoaffinity column and identified and quantified P4-ATPases from their tryptic peptides by mass spectrometry. Of the 12 P4-ATPase that associate with CDC50 subunits, 10 P4-ATPases were detected. Four P4-ATPases (ATP8A1, ATP11A, ATP11B, ATP11C) were present in all five tissues. ATP10D was found in low amounts in liver, brain, testes, and kidney, and ATP8A2 was present in significant amounts in retina, brain, and testes. ATP8B1 was detected only in liver, ATP8B3 and ATP10A only in testes, and ATP8B2 primarily in brain. We also show that ATP11A, ATP11B and ATP11C, like ATP8A1 and ATP8A2, selectively flip phosphatidylserine and phosphatidylethanolamine across membranes. These studies provide new insight into the tissue distribution, relative abundance, subunit interactions and substrate specificity of P4-ATPase-CDC50A complexes.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Laboratory of Molecular Neural Biology, Institute of Systems Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Theresa Hii
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Jonathan A Coleman
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, Institute of Systems Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Bldg. 1160, DK-8000, Aarhus C, Denmark
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
29
|
Mioka T, Fujimura-Kamada K, Mizugaki N, Kishimoto T, Sano T, Nunome H, Williams DE, Andersen RJ, Tanaka K. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane. Mol Biol Cell 2018. [PMID: 29540528 PMCID: PMC5935070 DOI: 10.1091/mbc.e17-04-0217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phospholipid flippase (type 4 P-type ATPase) plays a major role in the generation of phospholipid asymmetry in eukaryotic cell membranes. Loss of Lem3p-Dnf1/2p flippases leads to the exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell surface in yeast, resulting in sensitivity to PS- or PE-binding peptides. We isolated Sfk1p, a conserved membrane protein in the TMEM150/FRAG1/DRAM family, as a multicopy suppressor of this sensitivity. Overexpression of SFK1 decreased PS/PE exposure in lem3Δ mutant cells. Consistent with this, lem3Δ sfk1Δ double mutant cells exposed more PS/PE than the lem3Δ mutant. Sfk1p was previously implicated in the regulation of the phosphatidylinositol-4 kinase Stt4p, but the effect of Sfk1p on PS/PE exposure in lem3Δ was independent of Stt4p. Surprisingly, Sfk1p did not facilitate phospholipid flipping but instead repressed it, even under ATP-depleted conditions. We propose that Sfk1p negatively regulates transbilayer movement of phospholipids irrespective of directions. In addition, we showed that the permeability of the plasma membrane was dramatically elevated in the lem3Δ sfk1Δ double mutant in comparison with the corresponding single mutants. Interestingly, total ergosterol was decreased in the lem3Δ sfk1Δ mutant. Our results suggest that phospholipid asymmetry is required for the maintenance of low plasma membrane permeability.
Collapse
Affiliation(s)
- Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Konomi Fujimura-Kamada
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Nahiro Mizugaki
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Takamitsu Sano
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Hitoshi Nunome
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - David E Williams
- Departments of Chemistry and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
30
|
Li N, Yang Y, Liang C, Qiu Q, Pan C, Li M, Yang S, Chen L, Zhu X, Hu Y. Tmem30a Plays Critical Roles in Ensuring the Survival of Hematopoietic Cells and Leukemia Cells in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1457-1468. [PMID: 29574182 DOI: 10.1016/j.ajpath.2018.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/03/2018] [Accepted: 02/27/2018] [Indexed: 02/05/2023]
Abstract
The fundamental structure of eukaryotic cell plasma membrane is the phospholipid bilayer, which contains four major phospholipids. These phospholipids are asymmetrically distributed between the outer and inner leaflets. P4-ATPase flippase complexes play essential roles in ensuring this asymmetry. We found that conditional deletion of Tmem30a, the β subunit of P4-ATPase flippase complex, caused pancytopenia in mice. Tmem30a deficiency resulted in depletion of lineage-committed blood cells in the peripheral blood, spleen, and bone marrow. Ablation of Tmem30a also caused the depletion of hematopoietic stem cells (HSCs). HSC RNA sequencing results revealed that multiple biological processes and signal pathways were involved in the event, including mammalian target of rapamycin signaling, genes for HSC stemness, and genes responding to interferons. Our results also revealed that targeting Tmem30a signaling had therapeutic utility in BCR/ABL1-induced chronic myeloid leukemia.
Collapse
Affiliation(s)
- Ning Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Cailing Liang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Qiu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cong Pan
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengyuan Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China.
| | - Yiguo Hu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Zhang L, Yang Y, Li S, Zhang S, Zhu X, Tai Z, Yang M, Liu Y, Guo X, Chen B, Jiang Z, Lu F, Zhu X. Loss of Tmem30a leads to photoreceptor degeneration. Sci Rep 2017; 7:9296. [PMID: 28839191 PMCID: PMC5571223 DOI: 10.1038/s41598-017-09506-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
Phosphatidylserine (PS) is asymmetrically distributed between the outer and inner leaflets of the plasma membrane in eukaryotic cells. PS asymmetry on the plasma membrane depends on the activities of P4-ATPases, and disruption of PS distribution can lead to various disease conditions. Folding and transporting of P4-ATPases to their cellular destination requires the β subunit TMEM30A proteins. However, the in vivo functions of Tmem30a remain unknown. To this end, we generated retinal-specific Tmem30a-knockout mice to investigate its roles in vivo for the first time. Our data demonstrated that loss of Tmem30a in mouse cone cells leads to mislocalization of cone opsin, loss of photopic electroretinogram (ERG) responses and loss of cone cells. Mechanistically, Tmem30a-mutant mouse embryonic fibroblasts (MEFs) exhibited diminished PS flippase activity and increased exposure of PS on the cell surface. The broad loss of Tmem30a in adult mice led to a reduced scotopic photoresponse, mislocalization of ATP8A2 to the inner segment and cell body, and increased apoptosis in the retina. Our data demonstrated novel essential roles of Tmem30a in the retina.
Collapse
Affiliation(s)
- Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.,Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Shanshan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Xiong Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Zhengfu Tai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.,Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.,Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Yuqing Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Xinzheng Guo
- Department of Ophthalmology, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Chen
- Department of Ophthalmology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Fang Lu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China. .,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China. .,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China. .,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China. .,Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Li D, Xu T, Wang X, Ma X, Liu T, Wang Y, Jiang S. The role of ATP8A1 in non-small cell lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7760-7766. [PMID: 31966623 PMCID: PMC6965297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/19/2017] [Indexed: 06/10/2023]
Abstract
The study objective was to investigate the expression of ATP8A1 in non-small cell lung cancer (NSCLC) and to discover the role of ATP8A1 in the carcinogenesis of NSCLC. We collected 25 cases of tumor tissues and the adjacent normal tissues from surgeries of NSCLC patients in our hospital, among which 15 cases were found with lymph node metastasis while the other 10 were not. Immunohistochemical staining was performed to compare the expression level of TAP8A1 protein in NSCLC tissues with or without lymph node metastasis and the adjacent normal tissues. Transwell and scratch assay were used to test the invasion/migration capacity of different types of NSCLC. PCR and Western Blots were performed to detect the expression of ATP8A1 and epithelial-mesenchymal transition (EMT) markers in different cells. The percentage of ATP8A1 positive cells was (39.2±8.6)% in NSCLC tissues without lymph node metastasis, which was significantly lower than that in NSCLC tissues with lymph node metastasis ((74.7±11.0)%, P<0.05) as wells as remarkably higher than that in adjacent normal tissues with no ATP8A1 expression (P<0.05). When compared with normal H1299 cells, the invasion ability of ATP8A1 knock-down cells (si-H1299) was down-regulated by (31.2±5.7)%, the migration ability was down-regulated by (23.4±7.1)%, and the gene expression level of MMP and Vimentin was significantly reduced (P<0.05) while the expression of E-cadherin was remarkably increased (P<0.05). ATP8A1 was overexpressed in NSCLC tissues which promoted the expression of MMP-9 and Vimentin as well as suppressed the expression of E-cadherin thus resulting in the elevated invasion/migration ability of NSCLC cells.
Collapse
Affiliation(s)
- Daowei Li
- Department of Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, P. R. China
| | - Tao Xu
- Department of Respiratory Disease, Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Xingguang Wang
- Department of Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, P. R. China
| | - Xiaobin Ma
- Department of Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, P. R. China
| | - Tingting Liu
- Department of Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, P. R. China
| | - Yonggang Wang
- Department of Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, P. R. China
| | - Shujuan Jiang
- Department of Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, P. R. China
| |
Collapse
|
33
|
Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front Mol Neurosci 2017; 10:191. [PMID: 28674485 PMCID: PMC5474494 DOI: 10.3389/fnmol.2017.00191] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, during an early wave of hematopoiesis in the yolk sac between embryonic day E7.0 and E9.0, cells of mesodermal leaflet addressed to macrophage lineage enter in developing central nervous system (CNS) and originate the developing native microglial cells. Depending on the species, microglial cells represent 5–20% of glial cells resident in adult brain. Here, we briefly discuss some canonical functions of the microglia, i.e., cytokine secretion and functional transition from M1 to M2 phenotype. In addition, we review studies on the non-canonical functions of microglia such as regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. In this latter context the contribution of microglia to some neurodevelopmental disorders is now well established. Nasu-Hakola (NHD) disease is considered a primary microgliopathy with alterations of the DNAX activation protein 12 (DAP12)-Triggering receptor expressed on myeloid cells 2 (TREM-2) signaling and removal of macromolecules and apoptotic cells followed by secondary microglia activation. In Rett syndrome Mecp2-/- microglia shows a substantial impairment of phagocytic ability, although the role of microglia is not yet clear. In a mouse model of Tourette syndrome (TS), microglia abnormalities have also been described, and deficient microglia-mediated neuroprotection is obvious. Here we review the role of microglial cells in neurodevelopmental disorders without inflammation and on the complex role of microglia in developing CNS.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Carmen Mecca
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| |
Collapse
|
34
|
Chaubey PM, Hofstetter L, Roschitzki B, Stieger B. Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver. PLoS One 2016; 11:e0158033. [PMID: 27347675 PMCID: PMC4922570 DOI: 10.1371/journal.pone.0158033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Transport processes in the canalicular membrane are key elements in bile formation and are the driving force of the enterohepatic circulation of bile salts. The canalicular membrane is constantly exposed to the detergent action of bile salts. One potential element protecting the canalicular membrane from the high canalicular bile salt concentrations may be bile salt resistant microdomains, however additional factors are likely to play a role. To obtain more insights into the molecular composition of the canalicular membrane, the proteome of highly purified rat canalicular membrane vesicles was determined. Isolated rat canalicular membrane vesicles were stripped from adhering proteins, deglycosylated and protease digested before subjecting the samples to shot gun proteomic analysis. The expression of individual candidates was studied by PCR, Western blotting and immunohistochemistry. A total of 2449 proteins were identified, of which 1282 were predicted to be membrane proteins. About 50% of the proteins identified here were absent from previously published liver proteomes. In addition to ATP8B1, four more P4-ATPases were identified. ATP8A1 and ATP9A showed expression specific to the canalicular membrane, ATP11C at the bLPM and ATP11A in an intracellular vesicular compartment partially colocalizing with RAB7A and EEA1 as markers of the endosomal compartment. This study helped to identify additional P4-ATPases from rat liver particularly in the canalicular membrane, previously not known to be expressed in liver. These P4-ATPases might be contributing for maintaining transmembrane lipid homeostasis in hepatocytes.
Collapse
Affiliation(s)
- Pururawa Mayank Chaubey
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Lia Hofstetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Kerr DJ, Marsillo A, Guariglia SR, Budylin T, Sadek R, Menkes S, Chauhan A, Wen GY, McCloskey DP, Wieraszko A, Banerjee P. Aberrant hippocampal Atp8a1 levels are associated with altered synaptic strength, electrical activity, and autistic-like behavior. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1755-65. [PMID: 27287255 DOI: 10.1016/j.bbadis.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 05/06/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022]
Abstract
Type IV ATPases are putative aminophospholipid translocases (APLTs), more commonly known as flippases. A pronounced induction of the flippase Atp8a1 was observed in post-mortem tissue homogenates from the hippocampus and temporal lobe of juvenile autistic subjects compared to age-matched controls. In order to simulate the human data, C57BL/6 mice were allowed to develop after intra-hippocampal injection of recombinant lentivirus expressing Atp8a1 at the early developmental stage of postnatal day 6 (P6). Transmission electron microscopy (TEM) analysis of the lentivirus-Atp8a1 treated (Atp8a1+) mice in adulthood revealed fewer and weaker excitatory synapses in the hippocampal CA1 region compared to mice injected with empty virus. Significant inhibition of the Schaffer collateral pathway was observed in the Atp8a1+ mice in paired-pulse recording (PPR) at 20-ms inter-stimulus interval. In the three-chambered sociability test, the Atp8a1+ mice displayed no preference for an encaged stranger mouse over a novel object, which is a characteristic autistic-like behavior. In sharp contrast, Atp8a1 (-/-) mice displayed a preference for a stranger mouse over the novel object, which is characteristic of neurotypical mouse behavior. However, similar to the Atp8a1+ mice, the Atp8a1 (-/-) mice harbored fewer and weaker excitatory synapses in CA1 compared to wild-type controls, and displayed inhibition at 20-ms inter-stimulus interval in PPR. These findings suggest that both elevated and diminished levels of Atp8a1 during early development are detrimental to brain connectivity, but only elevated Atp8a1 is associated with aberrant social behavior. Mice with augmented levels of Atp8a1 may therefore serve as a potential model in autism research.
Collapse
Affiliation(s)
- Daniel J Kerr
- Doctoral Program in Biology (CUNY), The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Alexandra Marsillo
- Doctoral Program in Biology (CUNY), The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Sara R Guariglia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Tatyana Budylin
- Doctoral Program in Biology (CUNY), The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Rodina Sadek
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Silvia Menkes
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Abha Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, United States
| | - Guang Y Wen
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States; New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, United States
| | - Daniel P McCloskey
- Doctoral Program in Psychology, CUNY Graduate Center, New York, NY 10016, United States; Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Andrzej Wieraszko
- Department of Biology, The College of Staten Island (CUNY), Staten Island, NY 10314, United States; Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Probal Banerjee
- Doctoral Program in Biology (CUNY), The College of Staten Island (CUNY), Staten Island, NY 10314, United States; Department of Chemistry, The College of Staten Island (CUNY), Staten Island, NY 10314, United States; Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States.
| |
Collapse
|
36
|
Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 2016; 7:1179-97. [PMID: 26139610 PMCID: PMC4568951 DOI: 10.15252/emmm.201505298] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.
Collapse
Affiliation(s)
- Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Parth Shah
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Parkhurst
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wen-Biao Gan
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Yabas M, Jing W, Shafik S, Bröer S, Enders A. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes. PLoS One 2016; 11:e0146774. [PMID: 26799398 PMCID: PMC4723305 DOI: 10.1371/journal.pone.0146774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022] Open
Abstract
Organization of the plasma membrane into specialized substructures in different blood lineages facilitates important biological functions including proper localization of receptors at the plasma membrane as well as the initiation of crucial intracellular signaling cascades. The eukaryotic plasma membrane is a lipid bilayer that consists of asymmetrically distributed phospholipids. This asymmetry is actively maintained by membrane-embedded lipid transporters, but there is only limited data available about the molecular identity of the predominantly active transporters and their substrate specificity in different leukocyte subsets. We demonstrate here that the P4-type ATPase ATP11C mediates significant flippase activity in all murine leukocyte subsets. Loss of ATP11C resulted in a defective internalization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in comparison to control cells. The diminished flippase activity caused increased PS exposure on 7-aminoactinomycin D- (7-AAD-) viable pro-B cells freshly isolated from the bone marrow of ATP11C-deficient mice, which was corrected upon a 2-hour resting period in vitro. Despite the impaired flippase activity in all immune cell subsets, the only other blood cell type with an accumulation of PS on the surface were viable 7-AAD- developing T cells but this did not result in any discernable effect on their development in the thymus. These findings show that all leukocyte lineages exhibit flippase activity, and identify ATP11C as an aminophospholipid translocase in immune cells.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Department of Genetics and Bioengineering, Faculty of Engineering, Trakya University, Edirne, Turkey
| | - Weidong Jing
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Sarah Shafik
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
38
|
Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Front Physiol 2016; 7:275. [PMID: 27458383 PMCID: PMC4937031 DOI: 10.3389/fphys.2016.00275] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023] Open
Abstract
P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood coagulation, apoptosis, bile and cholesterol homeostasis, and neuronal cell survival. Some P4-ATPases transport phosphatidylserine and phosphatidylethanolamine across the plasma membrane or intracellular membranes whereas other P4-ATPases are specific for phosphatidylcholine. The importance of P4-ATPases is highlighted by the finding that genetic defects in two P4-ATPases ATP8A2 and ATP8B1 are associated with severe human disorders. Recent studies have provided insight into how P4-ATPases translocate phospholipids across membranes. P4-ATPases form a phosphorylated intermediate at the aspartate of the P-type ATPase signature sequence, and dephosphorylation is activated by the lipid substrate being flipped from the exoplasmic to the cytoplasmic leaflet similar to the activation of dephosphorylation of Na(+)/K(+)-ATPase by exoplasmic K(+). How the phospholipid is translocated can be understood in terms of a peripheral hydrophobic gate pathway between transmembrane helices M1, M3, M4, and M6. This pathway, which partially overlaps with the suggested pathway for migration of Ca(2+) in the opposite direction in the Ca(2+)-ATPase, is wider than the latter, thereby accommodating the phospholipid head group. The head group is propelled along against its concentration gradient with the hydrocarbon chains projecting out into the lipid phase by movement of an isoleucine located at the position corresponding to an ion binding glutamate in the Ca(2+)- and Na(+)/K(+)-ATPases. Hence, the P4-ATPase mechanism is quite similar to the mechanism of these ion pumps, where the glutamate translocates the ions by moving like a pump rod. The accessory subunit CDC50 may be located in close association with the exoplasmic entrance of the suggested pathway, and possibly promotes the binding of the lipid substrate. This review focuses on properties of mammalian and yeast P4-ATPases for which most mechanistic insight is available. However, the structure, function and enigmas associated with mammalian and yeast P4-ATPases most likely extend to P4-ATPases of plants and other organisms.
Collapse
Affiliation(s)
| | | | | | | | - Madhavan Chalat
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Robert S. Molday
| |
Collapse
|
39
|
Specific mutations in mammalian P4-ATPase ATP8A2 catalytic subunit entail differential glycosylation of the accessory CDC50A subunit. FEBS Lett 2015; 589:3908-14. [PMID: 26592152 DOI: 10.1016/j.febslet.2015.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
P4-ATPases, or flippases, translocate phospholipids between the two leaflets of eukaryotic biological membranes. They are essential to the physiologically crucial phospholipid asymmetry and involved in severe diseases, but their molecular structure and mechanism are still unresolved. Here, we show that in an extensive mutational alanine screening of the mammalian flippase ATP8A2 catalytic subunit, five mutations stand out by leading to reduced glycosylation of the accessory subunit CDC50A. These mutations may disturb the interaction between the subunits.
Collapse
|
40
|
Dong W, Yao C, Teng X, Chai J, Yang X, Li B. MiR-140-3p suppressed cell growth and invasion by downregulating the expression of ATP8A1 in non-small cell lung cancer. Tumour Biol 2015; 37:2973-85. [PMID: 26415732 DOI: 10.1007/s13277-015-3452-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) as a class of small noncoding RNA molecules regulate the expression of targeted gene. The dysregulation of microRNAs is reported to be involved in carcinogenesis and tumor progression. Here, we identified miR-140-3p as a downregulated microRNA in most cancer tissues including lung cancer tissues, compared with their normal counterparts. MiR-140-3p was observed to perform its tumor suppressor function via its inhibition on cell growth, migration and invasion but its induction of cell apoptosis. Furthermore, the growth of non-small-cell lung cancer (NSCLC) cells in nude mouse models were suppressed by overexpression of miR-140-3p. ATP8A1 was demonstrated as a novel direct target of miR-140-3p using a luciferase assay. The increased level of intracellular ATP8A1 protein attenuated the inhibitor role of miR-140-3p in the growth and mobility of NSCLC cell. A regulation mechanism of miR-140-3p for the development and progression of NSCLC through downregulating the ATP8A1 expression was first discovered in the present study.
Collapse
Affiliation(s)
- Wei Dong
- Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Chunping Yao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xuepeng Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Jie Chai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xinhua Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440# Jiyan Road, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
41
|
Lee S, Taguchi T, Arai H. Endosomal lipid flippases and their related diseases. Channels (Austin) 2015; 9:166-8. [PMID: 26083369 DOI: 10.1080/19336950.2015.1062332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Shoken Lee
- a Department of Health Chemistry ; Graduate School of Pharmaceutical Sciences; University of Tokyo ; Tokyo , Japan
| | | | | |
Collapse
|
42
|
Shea CJA, Carhuatanta KAK, Wagner J, Bechmann N, Moore R, Herman JP, Jankord R. Variable impact of chronic stress on spatial learning and memory in BXD mice. Physiol Behav 2015; 150:69-77. [PMID: 26079812 DOI: 10.1016/j.physbeh.2015.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
The effects of chronic stress on learning are highly variable across individuals. This variability stems from gene-environment interactions. However, the mechanisms by which stress affects genetic predictors of learning are unclear. Thus, we aim to determine whether the genetic pathways that predict spatial memory performance are altered by previous exposure to chronic stress. Sixty-two BXD recombinant inbred strains of mice, as well as parent strains C57BL/6J and DBA/2J, were randomly assigned as behavioral control or to a chronic variable stress paradigm and then underwent behavioral testing to assess spatial memory and learning performance using the Morris water maze. Quantitative trait loci (QTL) mapping was completed for average escape latency times for both control and stress animals. Loci on chromosomes 5 and 10 were found in both control and stress environmental populations; eight additional loci were found to be unique to either the control or stress environment. In sum, results indicate that certain genetic loci predict spatial memory performance regardless of prior stress exposure, while exposure to stress also reveals unique genetic predictors of training during the memory task. Thus, we find that genetic predictors contributing to spatial learning and memory are susceptible to the presence of chronic stress.
Collapse
Affiliation(s)
- Chloe J A Shea
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States
| | - Kimberly A K Carhuatanta
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States; Research Associate Program, National Research Council, National Academies of Science, Washington DC 20001, United States
| | - Jessica Wagner
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States
| | - Naomi Bechmann
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States; Infoscitex, Inc., Dayton, OH 45435, United States
| | - Raquel Moore
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States; Infoscitex, Inc., Dayton, OH 45435, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Ryan Jankord
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States.
| |
Collapse
|
43
|
Naito T, Takatsu H, Miyano R, Takada N, Nakayama K, Shin HW. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics. J Biol Chem 2015; 290:15004-17. [PMID: 25947375 DOI: 10.1074/jbc.m115.655191] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Indexed: 11/06/2022] Open
Abstract
We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543-33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) requires an interaction with CDC50A. Moreover, exogenous expression of ATP10A, but not its ATPase-deficient mutant ATP10A(E203Q), dramatically increased PC flipping but not flipping of PS or PE. Depletion of CDC50A caused ATP10A to be retained at the endoplasmic reticulum instead of being delivered to the plasma membrane and abrogated the increased PC flipping activity observed by expression of ATP10A. These results demonstrate that ATP10A is delivered to the plasma membrane via its interaction with CDC50A and, specifically, flips PC at the plasma membrane. Importantly, expression of ATP10A, but not ATP10A(E203Q), dramatically altered the cell shape and decreased cell size. In addition, expression of ATP10A, but not ATP10A(E203Q), delayed cell adhesion and cell spreading onto the extracellular matrix. These results suggest that enhanced PC flipping activity due to exogenous ATP10A expression alters the lipid composition at the plasma membrane, which may in turn cause a delay in cell spreading and a change in cell morphology.
Collapse
Affiliation(s)
| | | | | | - Naoto Takada
- the Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
44
|
Panatala R, Hennrich H, Holthuis JCM. Inner workings and biological impact of phospholipid flippases. J Cell Sci 2015; 128:2021-32. [PMID: 25918123 DOI: 10.1242/jcs.102715] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The plasma membrane, trans-Golgi network and endosomal system of eukaryotic cells are populated with flippases that hydrolyze ATP to help establish asymmetric phospholipid distributions across the bilayer. Upholding phospholipid asymmetry is vital to a host of cellular processes, including membrane homeostasis, vesicle biogenesis, cell signaling, morphogenesis and migration. Consequently, defining the identity of flippases and their biological impact has been the subject of intense investigations. Recent work has revealed a remarkable degree of kinship between flippases and cation pumps. In this Commentary, we review emerging insights into how flippases work, how their activity is controlled according to cellular demands, and how disrupting flippase activity causes system failure of membrane function, culminating in membrane trafficking defects, aberrant signaling and disease.
Collapse
Affiliation(s)
- Radhakrishnan Panatala
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands Molecular Cell Biology Division, University of Osnabrück, 49076 Osnabrück, Germany
| | - Hanka Hennrich
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands
| | - Joost C M Holthuis
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands Molecular Cell Biology Division, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
45
|
Yamagami K, Yamamoto T, Sakai S, Mioka T, Sano T, Igarashi Y, Tanaka K. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants. PLoS One 2015; 10:e0120108. [PMID: 25781026 PMCID: PMC4363822 DOI: 10.1371/journal.pone.0120108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.
Collapse
Affiliation(s)
- Kanako Yamagami
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takaharu Yamamoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Shota Sakai
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takamitsu Sano
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
- * E-mail:
| |
Collapse
|
46
|
P4-ATPases: lipid flippases in cell membranes. Pflugers Arch 2015; 466:1227-40. [PMID: 24077738 PMCID: PMC4062807 DOI: 10.1007/s00424-013-1363-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022]
Abstract
Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates, including lysophospholipids and synthetic alkylphospholipids. At the same time, the cellular processes known to be directly or indirectly affected by this class of transporters have expanded to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell.
Collapse
|
47
|
Kim HY, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res 2014; 56:1-18. [PMID: 24992464 DOI: 10.1016/j.plipres.2014.06.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 01/08/2023]
Abstract
Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.
Collapse
Affiliation(s)
- Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States.
| | - Bill X Huang
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| | - Arthur A Spector
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| |
Collapse
|
48
|
Yabas M, Coupland LA, Cromer D, Winterberg M, Teoh NC, D'Rozario J, Kirk K, Bröer S, Parish CR, Enders A. Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span. J Biol Chem 2014; 289:19531-7. [PMID: 24898253 DOI: 10.1074/jbc.c114.570267] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transmembrane lipid transporters are believed to establish and maintain phospholipid asymmetry in biological membranes; however, little is known about the in vivo function of the specific transporters involved. Here, we report that developing erythrocytes from mice lacking the putative phosphatidylserine flippase ATP11C showed a lower rate of PS translocation in vitro compared with erythrocytes from wild-type littermates. Furthermore, the mutant mice had an elevated percentage of phosphatidylserine-exposing mature erythrocytes in the periphery. Although erythrocyte development in ATP11C-deficient mice was normal, the mature erythrocytes had an abnormal shape (stomatocytosis), and the life span of mature erythrocytes was shortened relative to that in control littermates, resulting in anemia in the mutant mice. Thus, our findings uncover an essential role for ATP11C in erythrocyte morphology and survival and provide a new candidate for the rare inherited blood disorder stomatocytosis with uncompensated anemia.
Collapse
Affiliation(s)
- Mehmet Yabas
- From the Ramaciotti Immunization Genomics Laboratory and
| | - Lucy A Coupland
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, and the Clinical Haematology Unit, The Canberra Hospital, Canberra, Australian Capital Territory 2605, Australia
| | - Deborah Cromer
- the Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, and
| | - Markus Winterberg
- the Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Narci C Teoh
- the Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory 2605, Australia
| | - James D'Rozario
- the Clinical Haematology Unit, The Canberra Hospital, Canberra, Australian Capital Territory 2605, Australia
| | - Kiaran Kirk
- the Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stefan Bröer
- the Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, and
| | - Anselm Enders
- From the Ramaciotti Immunization Genomics Laboratory and
| |
Collapse
|
49
|
Abstract
Microglia, the brain's professional phagocytes, can remove dead and dying neurons as well as synapses and the processes of live neurons. However, we and others have recently shown that microglia can also execute neuronal death by phagocytosing stressed-but-viable neurons - a process that we have termed phagoptosis. In this Progress article, we discuss evidence suggesting that phagoptosis may contribute to neuronal loss during brain development, inflammation, ischaemia and neurodegeneration.
Collapse
|
50
|
Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta Gen Subj 2014; 1850:461-75. [PMID: 24746984 DOI: 10.1016/j.bbagen.2014.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. SCOPE OF REVIEW This review aims to identify common mechanistic features in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. MAJOR CONCLUSIONS Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic molecules have also been found embedded in P-type ATPase crystal structures. Taken together, in two diverse groups of pumps, nature appears to have evolved quite similar ways of flipping phospholipids. GENERAL SIGNIFICANCE Our understanding of the structural basis for phospholipid flipping is still limited but it seems plausible that a general mechanism for phospholipid flipping exists in nature. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|