1
|
Amin A, Badenes M, Tüshaus J, de Carvalho É, Burbridge E, Faísca P, Trávníčková K, Barros A, Carobbio S, Domingos PM, Vidal-Puig A, Moita LF, Maguire S, Stříšovský K, Ortega FJ, Fernández-Real JM, Lichtenthaler SF, Adrain C. Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis. Mol Metab 2023; 73:101731. [PMID: 37121509 PMCID: PMC10197113 DOI: 10.1016/j.molmet.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVE The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal; Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Květa Trávníčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - André Barros
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Antonio Vidal-Puig
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Francisco J Ortega
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland.
| |
Collapse
|
2
|
Tüshaus J, Müller SA, Shrouder J, Arends M, Simons M, Plesnila N, Blobel CP, Lichtenthaler SF. The pseudoprotease iRhom1 controls ectodomain shedding of membrane proteins in the nervous system. FASEB J 2021; 35:e21962. [PMID: 34613632 DOI: 10.1096/fj.202100936r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Proteolytic ectodomain shedding of membrane proteins is a fundamental mechanism to control the communication between cells and their environment. A key protease for membrane protein shedding is ADAM17, which requires a non-proteolytic subunit, either inactive Rhomboid 1 (iRhom1) or iRhom2 for its activity. While iRhom1 and iRhom2 are co-expressed in most tissues and appear to have largely redundant functions, the brain is an organ with predominant expression of iRhom1. Yet, little is known about the spatio-temporal expression of iRhom1 in mammalian brain and about its function in controlling membrane protein shedding in the nervous system. Here, we demonstrate that iRhom1 is expressed in mouse brain from the prenatal stage to adulthood with a peak in early postnatal development. In the adult mouse brain iRhom1 was widely expressed, including in cortex, hippocampus, olfactory bulb, and cerebellum. Proteomic analysis of the secretome of primary neurons using the hiSPECS method and of cerebrospinal fluid, obtained from iRhom1-deficient and control mice, identified several membrane proteins that require iRhom1 for their shedding in vitro or in vivo. One of these proteins was 'multiple-EGF-like-domains protein 10' (MEGF10), a phagocytic receptor in the brain that is linked to the removal of amyloid β and apoptotic neurons. MEGF10 was further validated as an ADAM17 substrate using ADAM17-deficient mouse embryonic fibroblasts. Taken together, this study discovers a role for iRhom1 in controlling membrane protein shedding in the mouse brain, establishes MEGF10 as an iRhom1-dependent ADAM17 substrate and demonstrates that iRhom1 is widely expressed in murine brain.
Collapse
Affiliation(s)
- Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joshua Shrouder
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Arends
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carl P Blobel
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Ko PH, Lenka G, Chen YA, Chuang EY, Tsai MH, Sher YP, Lai LC. Semaphorin 5A suppresses the proliferation and migration of lung adenocarcinoma cells. Int J Oncol 2019; 56:165-177. [PMID: 31789397 PMCID: PMC6910195 DOI: 10.3892/ijo.2019.4932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Semaphorin 5A (SEMA5A), a member of the semaphorin family, plays an important role in axonal guidance. Previously, the authors identified another possible role of SEMA5A as a prognostic biomarker for non-smoking women with lung adenocarcinoma in Taiwan, and this phenomenon has been validated in other ethnic groups. However, the functional significance of SEMA5A in lung adenocarcinoma remains unclear. Therefore, we assessed the function of SEMA5A in three lung adenocarcinoma cell lines in this study. Kaplan-Meier Plotter for lung cancer was conducted for survival analyses. Reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis were performed to investigate the expression and post-translational regulation of SEMA5A in lung adenocar-cinoma cell lines. A pre-designed PyroMark CpG assay and 5-aza-2′-deoxycytidine treatment were used to measure the methylation levels of SEMA5A. The biological functions of lung adenocarcinoma cells overexpressing SEMA5A were investigated by microarrays, and validated both in vitro (proliferation, colony formation and migration assays) and in vivo (tumor xenografts) experiments. The results revealed that the hypermethylation of SEMA5A and the cleavage of the extracellular domain of SEMA5A were responsible for the downregulation of the SEMA5A levels in lung adenocarcinoma cells (A549 and H1299) as compared to the normal controls. Functional analysis of SEMA5A-regulated genes revealed that they were involved in cellular growth and proliferation. The overexpression of SEMA5A in A549 and H1299 cells significantly decreased the proliferation (P<0.01), colony formation (P<0.001) and migratory ability (P<0.01) of the cells. The suppressive effects of SEMA5A on the proliferative and migratory ability of the cells were also observed in both in vitro and in vivo experiments using brain metastatic Bm7 lung adenocarcinoma cells. On the whole, the findings of this study suggest a suppressive role for SEMA5A in lung adenocarcinoma involving the inhibition of the proliferation and migration of lung transformed cells.
Collapse
Affiliation(s)
- Pin-Hao Ko
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, R.O.C
| | - Govinda Lenka
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, R.O.C
| | - Yu-An Chen
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan, R.O.C
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan, R.O.C
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan, R.O.C
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, R.O.C
| |
Collapse
|
4
|
St Clair RM, Dumas CM, Williams KS, Goldstein MT, Stant EA, Ebert AM, Ballif BA. PKC induces release of a functional ectodomain of the guidance cue semaphorin6A. FEBS Lett 2019; 593:3015-3028. [PMID: 31378926 DOI: 10.1002/1873-3468.13561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023]
Abstract
Semaphorins (Semas) are a family of secreted and transmembrane proteins that play critical roles in development. Interestingly, several vertebrate transmembrane Sema classes are capable of producing functional soluble ectodomains. However, little is known of soluble Sema6 ectodomains in the nervous system. Herein, we show that the soluble Sema6A ectodomain, sSema6A, exhibits natural and protein kinase C (PKC)-induced release. We show that PKC mediates Sema6A phosphorylation at specific sites and while this phosphorylation is not the primary mechanism regulating sSema6A production, we found that the intracellular domain confers resistance to ectodomain release. Finally, sSema6A is functional as it promotes the cohesion of zebrafish early eye field explants. This suggests that in addition to its canonical contact-mediated functions, Sema6A may have regulated, long-range, forward-signaling capacity.
Collapse
Affiliation(s)
- Riley M St Clair
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Caroline M Dumas
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Kori S Williams
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
5
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
7
|
Assays to Examine Transmembrane Semaphorin Function In Vitro. Methods Mol Biol 2016. [PMID: 27787856 DOI: 10.1007/978-1-4939-6448-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The semaphorins are a large family of secreted and membrane associated proteins that play numerous key roles in the development and function of the nervous system and other tissues. They have been primarily associated with their function as guidance cues in the developing nervous system. In general, semaphorins have been shown to function as inhibitory guidance cues; however there are also numerous examples where they can function as attractive or permissive cues. Thus it is important to employ a variety of assays to test for semaphorin function. While numerous assays have been established for secreted semaphorins, testing the function of transmembrane semaphorins has been challenging. In this chapter we outline two assays that we have used extensively to test their function. In one assay we examine the effect of a constant source of a transmembrane semaphorin on neurite outgrowth and in a second assay we examine whether neurons will actively avoid growing across islands of cells expressing a transmembrane semaphorin. We have found both assays to be relatively easy to perform and useful to test semaphorin function and signaling.
Collapse
|
8
|
Masuda T, Taniguchi M. Contribution of semaphorins to the formation of the peripheral nervous system in higher vertebrates. Cell Adh Migr 2016; 10:593-603. [PMID: 27715392 PMCID: PMC5160040 DOI: 10.1080/19336918.2016.1243644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Semaphorins are a large family of proteins characterized by sema domains and play a key role not only in the formation of neural circuits, but in the immune system, angiogenesis, tumor progression, and bone metabolism. To date, 15 semaphorins have been reported to be involved in the formation of the peripheral nervous system (PNS) in higher vertebrates. A number of experiments have revealed their functions in the PNS, where they act mainly as axonal guidance cues (as repellents or attractants). Semaphorins also play an important role in the migration of neurons and formation of sensory-motor connections in the PNS. This review summarizes recent knowledge regarding the functions of higher vertebrate semaphorins in the formation of the PNS.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- a Department of Neurobiology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan.,b Doctoral and Master's Programs in Kansei , Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Ibaraki , Japan
| | - Masahiko Taniguchi
- c Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Hokkaido , Japan
| |
Collapse
|
9
|
Gurrapu S, Tamagnone L. Transmembrane semaphorins: Multimodal signaling cues in development and cancer. Cell Adh Migr 2016; 10:675-691. [PMID: 27295627 DOI: 10.1080/19336918.2016.1197479] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Semaphorins constitute a large family of membrane-bound and secreted proteins that provide guidance cues for axon pathfinding and cell migration. Although initially discovered as repelling cues for axons in nervous system, they have been found to regulate cell adhesion and motility, angiogenesis, immune function and tumor progression. Notably, semaphorins are bifunctional cues and for instance can mediate both repulsive and attractive functions in different contexts. While many studies focused so far on the function of secreted family members, class 1 semaphorins in invertebrates and class 4, 5 and 6 in vertebrate species comprise around 14 transmembrane semaphorin molecules with emerging functional relevance. These can signal in juxtacrine, paracrine and autocrine fashion, hence mediating long and short range repulsive and attractive guidance cues which have a profound impact on cellular morphology and functions. Importantly, transmembrane semaphorins are capable of bidirectional signaling, acting both in "forward" mode via plexins (sometimes in association with receptor tyrosine kinases), and in "reverse" manner through their cytoplasmic domains. In this review, we will survey known molecular mechanisms underlying the functions of transmembrane semaphorins in development and cancer.
Collapse
Affiliation(s)
- Sreeharsha Gurrapu
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| | - Luca Tamagnone
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| |
Collapse
|
10
|
Cell adhesion and invasion mechanisms that guide developing axons. Curr Opin Neurobiol 2016; 39:77-85. [PMID: 27135389 DOI: 10.1016/j.conb.2016.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023]
Abstract
Axon extension, guidance and tissue invasion share many similarities to normal cell migration and cancer cell metastasis. Proper cell and growth cone migration requires tightly regulated adhesion complex assembly and detachment from the extracellular matrix (ECM). In addition, many cell types actively remodel the ECM using matrix metalloproteases (MMPs) to control tissue invasion and cell dispersal. Targeting and activating MMPs is a tightly regulated process, that when dysregulated, can lead to cancer cell metastasis. Interestingly, new evidence suggests that growth cones express similar cellular and molecular machinery as migrating cells to clutch retrograde actin flow on ECM proteins and target matrix degradation, which may be used to facilitate axon pathfinding through the basal lamina and across tissues.
Collapse
|
11
|
Battistini C, Tamagnone L. Transmembrane semaphorins, forward and reverse signaling: have a look both ways. Cell Mol Life Sci 2016; 73:1609-22. [PMID: 26794845 PMCID: PMC11108563 DOI: 10.1007/s00018-016-2137-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
Abstract
Semaphorins are signaling molecules playing pivotal roles not only as axon guidance cues, but are also involved in the regulation of a range of biological processes, such as immune response, angiogenesis and invasive tumor growth. The main functional receptors for semaphorins are plexins, which are large single-pass transmembrane molecules. Semaphorin signaling through plexins-the "classical" forward signaling-affects cytoskeletal remodeling and integrin-dependent adhesion, consequently influencing cell migration. Intriguingly, semaphorins and plexins can interact not only in trans, but also in cis, leading to differentiated and highly regulated signaling outputs. Moreover, transmembrane semaphorins can also mediate a so-called "reverse" signaling, by acting not as ligands but rather as receptors, and initiate a signaling cascade through their own cytoplasmic domains. Semaphorin reverse signaling has been clearly demonstrated in fruit fly Sema1a, which is required to control motor axon defasciculation and target recognition during neuromuscular development. Sema1a invertebrate semaphorin is most similar to vertebrate class-6 semaphorins, and examples of semaphorin reverse signaling in mammalians have been described for these family members. Reverse signaling is also reported for other vertebrate semaphorin subsets, e.g. class-4 semaphorins, which bear potential PDZ-domain interaction motifs in their cytoplasmic regions. Therefore, thanks to their various signaling abilities, transmembrane semaphorins can play multifaceted roles both in developmental processes and in physiological as well as pathological conditions in the adult.
Collapse
Affiliation(s)
- Chiara Battistini
- Department of Oncology, University of Torino c/o IRCCS, Str. Prov. 142, 10060, Candiolo (TO), Italy
- Candiolo Cancer Institute, IRCCS-FPO, Str. Prov. 142, 10060, Candiolo (TO), Italy
| | - Luca Tamagnone
- Department of Oncology, University of Torino c/o IRCCS, Str. Prov. 142, 10060, Candiolo (TO), Italy.
- Candiolo Cancer Institute, IRCCS-FPO, Str. Prov. 142, 10060, Candiolo (TO), Italy.
| |
Collapse
|
12
|
Shi ZF, Fang QB, Limu S, Jiareke T, Ge XH. Association Between Three SNPs and Thromboangiitis Obliterans in Xinjiang Uyghur Population. Genet Test Mol Biomarkers 2016; 20:55-62. [PMID: 26829209 DOI: 10.1089/gtmb.2015.0264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Thromboangiitis obliterans (TAO), also called Buerger's disease, is a chronic peripheral vascular occlusive disease. It is an obliterative vasculitis characterized by arterial thrombosis and strongly associated with tobacco exposure. The pathogenesis and etiology of TAO are not well understood, but genetic factors may be important in its development. A case-control study was undertaken to identify genetic factors potentially involved in the pathogenesis of TAO in a Xinjiang Uyghur population of China, where TAO is common. METHODS We ascertained 177 TAO patients by clinical screening and 86 healthy individuals from the HAPMAP database. The genotypes of single-nucleotide polymorphisms (SNPs) of the participants were identified using the Affymetrix Genome-Wide Human SNP Array 6.0 to perform a genome wide association study (GWAS). The association between the SNPs and incidence of TAO was quantified using race stratification exposure. RESULTS Through a case-control GWAS study 26 SNPs were significantly associated with incidence of TAO following a Bonferroni correction. However, after genomic control correction for population stratification only three of these SNPS were highly significantly associated with TAO: rs376511 in IL17RC (OR = 24.4, 95% CI:8.68 - 68.62, p < 0.0001), rs7632505 in SEMA5B (OR = 29.47, 95% CI:7.16 - 121.3, p < 0.0001), and rs10178082 (OR = 18.09, 95% CI: 6.56 - 49.92, p < 0.0001) showed a significant risk of TAO in the Uyghur population. CONCLUSIONS This study shows an association between these 3 SNPs and susceptibility to TAO in the Uyghur population, suggesting that polymorphisms in the IL-17RC and Sema 5B genes may pre-dispose individuals in this population to development of TAO. These findings require replication.
Collapse
Affiliation(s)
- Zhen-Feng Shi
- 1 Xinjiang Medical University , Xinjiang, China .,2 Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region , Urumqi, Xinjiang, China
| | - Qing-Bo Fang
- 2 Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region , Urumqi, Xinjiang, China
| | - Sai Limu
- 2 Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region , Urumqi, Xinjiang, China
| | - Tang Jiareke
- 2 Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region , Urumqi, Xinjiang, China
| | - Xiao-Hu Ge
- 2 Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region , Urumqi, Xinjiang, China
| |
Collapse
|
13
|
Santiago-Medina M, Gregus KA, Nichol RH, O'Toole SM, Gomez TM. Regulation of ECM degradation and axon guidance by growth cone invadosomes. Development 2015; 142:486-96. [PMID: 25564649 DOI: 10.1242/dev.108266] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Invadopodia and podosomes, collectively referred to as invadosomes, are F-actin-rich basal protrusions of cells that provide sites of attachment to and degradation of the extracellular matrix. Invadosomes promote the invasion of cells, ranging from metastatic cancer cells to immune cells, into tissue. Here, we show that neuronal growth cones form protrusions that share molecular, structural and functional characteristics of invadosomes. Growth cones from all neuron types and species examined, including a variety of human neurons, form invadosomes both in vitro and in vivo. Growth cone invadosomes contain dynamic F-actin and several actin regulatory proteins, as well as Tks5 and matrix metalloproteinases, which locally degrade the matrix. When viewed using three-dimensional super-resolution microscopy, F-actin foci often extended together with microtubules within orthogonal protrusions emanating from the growth cone central domain. Finally, inhibiting the function of Tks5 both reduced matrix degradation in vitro and disrupted motoneuron axons from exiting the spinal cord and extending into the periphery. Taken together, our results suggest that growth cones use invadosomes to target protease activity during axon guidance through tissues.
Collapse
Affiliation(s)
- Miguel Santiago-Medina
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Kelly A Gregus
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Robert H Nichol
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Sean M O'Toole
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Timothy M Gomez
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
14
|
Craig SEL, Brady-Kalnay SM. Regulation of development and cancer by the R2B subfamily of RPTPs and the implications of proteolysis. Semin Cell Dev Biol 2014; 37:108-18. [PMID: 25223585 DOI: 10.1016/j.semcdb.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/04/2023]
Abstract
The initial cloning of receptor protein tyrosine phosphatases (RPTPs) was met with excitement because of their hypothesized function in counterbalancing receptor tyrosine kinase signaling. In recent years, members of a subfamily of RPTPs with homophilic cell-cell adhesion capabilities, known as the R2B subfamily, have been shown to have functions beyond that of counteracting tyrosine kinase activity, by independently influencing cell signaling in their own right and by regulating cell adhesion. The R2B subfamily is composed of four members: PTPmu (PTPRM), PTPrho (PTPRT), PTPkappa (PTPRK), and PCP-2 (PTPRU). The effects of this small subfamily of RPTPs is far reaching, influencing several developmental processes and cancer. In fact, R2B RPTPs are predicted to be tumor suppressors and are among the most frequently mutated protein tyrosine phosphatases (PTPs) in cancer. Confounding these conclusions are more recent studies suggesting that proteolysis of the full-length R2B RPTPs result in oncogenic extracellular and intracellular protein fragments. This review discusses the current knowledge of the role of R2B RPTPs in development and cancer, with special detail given to the mechanisms and implications that proteolysis has on R2B RPTP function. We also touch upon the concept of exploiting R2B proteolysis to develop cancer imaging tools, and consider the effects of R2B proteolysis on axon guidance, perineural invasion and collective cell migration.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Susann M Brady-Kalnay
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Gras C, Eiz-Vesper B, Jaimes Y, Immenschuh S, Jacobs R, Witte T, Blasczyk R, Figueiredo C. Secreted Semaphorin 5A Activates Immune Effector Cells and Is a Biomarker for Rheumatoid Arthritis. Arthritis Rheumatol 2014; 66:1461-71. [DOI: 10.1002/art.38425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 02/11/2014] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Yarua Jaimes
- Hannover Medical School, Hannover, Germany, and Deutsches Rheuma-Forschungszentrum, Leibniz Institute; Berlin Germany
| | | | | | | | | | | |
Collapse
|
16
|
Michaud JL, Lachance M, Hamdan FF, Carmant L, Lortie A, Diadori P, Major P, Meijer IA, Lemyre E, Cossette P, Mefford HC, Rouleau GA, Rossignol E. The genetic landscape of infantile spasms. Hum Mol Genet 2014; 23:4846-58. [PMID: 24781210 DOI: 10.1093/hmg/ddu199] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infantile spasms (IS) is an early-onset epileptic encephalopathy of unknown etiology in ∼40% of patients. We hypothesized that unexplained IS cases represent a large collection of rare single-gene disorders. We investigated 44 children with unexplained IS using comparative genomic hybridisation arrays (aCGH) (n = 44) followed by targeted sequencing of 35 known epilepsy genes (n = 8) or whole-exome sequencing (WES) of familial trios (n = 18) to search for rare inherited or de novo mutations. aCGH analysis revealed de novo variants in 7% of patients (n = 3/44), including a distal 16p11.2 duplication, a 15q11.1q13.1 tetrasomy and a 2q21.3-q22.2 deletion. Furthermore, it identified a pathogenic maternally inherited Xp11.2 duplication. Targeted sequencing was informative for ARX (n = 1/14) and STXBP1 (n = 1/8). In contrast, sequencing of a panel of 35 known epileptic encephalopathy genes (n = 8) did not identify further mutations. Finally, WES (n = 18) was very informative, with an excess of de novo mutations identified in genes predicted to be involved in neurodevelopmental processes and/or known to be intolerant to functional variations. Several pathogenic mutations were identified, including de novo mutations in STXBP1, CASK and ALG13, as well as recessive mutations in PNPO and ADSL, together explaining 28% of cases (5/18). In addition, WES identified 1-3 de novo variants in 64% of remaining probands, pointing to several interesting candidate genes. Our results indicate that IS are genetically heterogeneous with a major contribution of de novo mutations and that WES is significantly superior to targeted re-sequencing in identifying detrimental genetic variants involved in IS.
Collapse
Affiliation(s)
- Jacques L Michaud
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | | | - Fadi F Hamdan
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Lionel Carmant
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Anne Lortie
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Paola Diadori
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Philippe Major
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Inge A Meijer
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Emmanuelle Lemyre
- Department of Pediatrics and CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - Patrick Cossette
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHUM, Montréal, QC, Canada
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, WA, USA and
| | - Guy A Rouleau
- Department of Neurosciences, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Elsa Rossignol
- Department of Pediatrics and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada, CHU Ste-Justine Research Center, Montréal, QC, Canada,
| |
Collapse
|
17
|
Liu RQ, Wang W, Legg A, Abramyan J, O'Connor TP. Semaphorin 5B is a repellent cue for sensory afferents projecting into the developing spinal cord. Development 2014; 141:1940-9. [PMID: 24718987 DOI: 10.1242/dev.103630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During vertebrate development, centrally projecting sensory axons of the dorsal root ganglia neurons first reach the embryonic spinal cord at the dorsolateral margin. Instead of immediately projecting into the grey matter, they bifurcate and extend rostrally and caudally to establish the longitudinal dorsal funiculus during a stereotyped waiting period of approximately 48 h. Collateral fibres then extend concurrently across multiple spinal segments and project to their appropriate targets within the grey matter. This rostrocaudal extension of sensory afferents is crucial for the intersegmental processing of information throughout the spinal cord. However, the precise cues that prevent premature entry during the waiting period remain to be identified. Here, we show that semaphorin 5B (Sema5B), a member of the semaphorin family of guidance molecules, is expressed in the chick spinal cord during this waiting period and dorsal funiculus formation. Sema5B expression is dynamic, with a reduction of expression apparent in the spinal cord concomitant with collateral extension. We show that Sema5B inhibits the growth of NGF-dependent sensory axons and that this effect is mediated in part through the cell adhesion molecule TAG-1. Knockdown of Sema5B in the spinal cord using RNA interference leads to the premature extension of cutaneous nociceptive axons into the dorsal horn grey matter. These premature projections predominantly occur at the site of dorsal root entry. Our results suggest that Sema5B contributes to a repulsive barrier for centrally projecting primary sensory axons, forcing them to turn and establish the dorsal funiculus.
Collapse
Affiliation(s)
- Rachel Q Liu
- Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
18
|
Grundmann S, Lindmayer C, Hans FP, Hoefer I, Helbing T, Pasterkamp G, Bode C, de Kleijn D, Moser M. FoxP1 stimulates angiogenesis by repressing the inhibitory guidance protein semaphorin 5B in endothelial cells. PLoS One 2013; 8:e70873. [PMID: 24023716 PMCID: PMC3759435 DOI: 10.1371/journal.pone.0070873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/25/2013] [Indexed: 01/15/2023] Open
Abstract
Forkhead box (Fox) transcription factors are important regulators of cardiovascular development and several Fox-proteins have recently been shown to modulate embryonic and post-natal angiogenesis. However, the role of the FoxP subfamily, which is highly expressed in cardiovascular tissue, has not been investigated so far. Here, we show that the transcription factor FoxP1 is the highest expressed FoxP-protein in endothelial cells and that it is upregulated at the site of neovascularization during hindlimb ischemia in mice. Silencing of FoxP1 results in a strong inhibition of proliferation, tube formation and migration of cultured endothelial cells. Accordingly, knockdown of FoxP1 in zebrafish was followed by a disruption of intersomitic vascular formation. Using gene expression profiling, we show that FoxP1 induces a specific change of the endothelial transcriptome and functions as a suppressor of semaphorin 5B, which has previously been described as a neuronal inhibitory factor. Our findings now demonstrate that semaphorin 5B also acts as a FoxP1- dependent suppressor of endothelial cell proliferation, migration and sprouting, mediating the effects of FoxP1. In summary, our data indicate that the transcription factor FoxP1 is essential for the angiogenic function of endothelial cells and functions as a suppressor of the inhibitory guidance cue semaphorin 5B, suggesting an important function of FoxP1 in the regulation of neovascularization.
Collapse
Affiliation(s)
- Sebastian Grundmann
- Department of Cardiology and Angiology I, University Heart Centre Freiburg – Bad Krozingen, Freiburg, Germany
| | - Christian Lindmayer
- Department of Cardiology and Angiology I, University Heart Centre Freiburg – Bad Krozingen, Freiburg, Germany
| | - Felix P. Hans
- Department of Cardiology and Angiology I, University Heart Centre Freiburg – Bad Krozingen, Freiburg, Germany
| | - Imo Hoefer
- Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
| | - Thomas Helbing
- Department of Cardiology and Angiology I, University Heart Centre Freiburg – Bad Krozingen, Freiburg, Germany
| | - Gerard Pasterkamp
- Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Centre Freiburg – Bad Krozingen, Freiburg, Germany
| | - Dominique de Kleijn
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Martin Moser
- Department of Cardiology and Angiology I, University Heart Centre Freiburg – Bad Krozingen, Freiburg, Germany
| |
Collapse
|