1
|
Storelli N, Steiner OS, Di Nezio F, Roman S, Buetti-Dinh A, Bouffard D. Physically stable yet biologically sensitive: multiyear ecological dynamics of anoxygenic phototrophs in stably redox-stratified Lake Cadagno. AQUATIC SCIENCES 2025; 87:58. [PMID: 40255984 PMCID: PMC12003485 DOI: 10.1007/s00027-025-01183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Lake Cadagno is a meromictic alpine lake characterized by permanent stratification, which creates a permanent anoxic environment that supports the growth of anoxygenic phototrophic sulfur bacteria. The seasonality and interseasonality of these microorganisms were examined over a three-year period (2019-2021) through regular monitoring of the water column. A variety of physical-chemical parameters, including temperature, conductivity, light, oxygen and sulfide concentrations, and the community composition of anoxygenic phototrophic sulfur bacteria in the chemocline were recorded, to observe potential influence of external weather conditions. Our findings indicate that, despite the lake's consistent physical and chemical stratification, the composition of the anoxygenic phototrophic sulfur bacteria community exhibited notable variations in response to external environmental factors, including changes in rainfall and light irradiance. Specifically, we observed different growth dynamics in the purple (PSB) and green (GSB) sulfur bacteria communities over the three years of monitoring. These variations underscore the complexity of biogeochemical cycles in meromictic lakes and the impact of external environmental factors on this ancestral microbial community dynamics. The results provide valuable insights into the stability of redox-stratified environments, offering a modern analog for ancient aquatic ecosystems. This research emphasizes the importance of long-term regular monitoring to capture interannual dynamics and assess the implications of climate change on such unique ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s00027-025-01183-1.
Collapse
Affiliation(s)
- N. Storelli
- Department of Environment, Constructions and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland
- Department of Plant Sciences, University of Geneva, Boulevard d’Yvoy 4, 1205 Geneva, Switzerland
| | - O. Sepúlveda Steiner
- Surface Waters – Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
- Civil and Environmental Engineering, University of California – Davis, 3155 Ghausi Hall, Davis, CA 95616 USA
| | - F. Di Nezio
- Department of Environment, Constructions and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland
- National Research Council of Italy – Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - S. Roman
- Department of Environment, Constructions and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland
- Alpine Biology Center Foundation, Via Mirasole 22A, 6500 Bellinzona, Switzerland
| | - A. Buetti-Dinh
- Department of Environment, Constructions and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland
| | - D. Bouffard
- Surface Waters – Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Quartier UNIL-Mouline, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Di Nezio F, Roman S, Buetti-Dinh A, Sepúlveda Steiner O, Bouffard D, Sengupta A, Storelli N. Motile bacteria leverage bioconvection for eco-physiological benefits in a natural aquatic environment. Front Microbiol 2023; 14:1253009. [PMID: 38163082 PMCID: PMC10756677 DOI: 10.3389/fmicb.2023.1253009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Bioconvection, a phenomenon characterized by the collective upward swimming of motile microorganisms, has mainly been investigated within controlled laboratory settings, leaving a knowledge gap regarding its ecological implications in natural aquatic environments. This study aims to address this question by investigating the influence of bioconvection on the eco-physiology of the anoxygenic phototrophic sulfur bacteria community of meromictic Lake Cadagno. Methods Here we comprehensively explore its effects by comparing the physicochemical profiles of the water column and the physiological traits of the main populations of the bacterial layer (BL). The search for eco-physiological effects of bioconvection involved a comparative analysis between two time points during the warm season, one featuring bioconvection (July) and the other without it (September). Results A prominent distinction in the physicochemical profiles of the water column centers on light availability, which is significantly higher in July. This minimum threshold of light intensity is essential for sustaining the physiological CO2 fixation activity of Chromatium okenii, the microorganism responsible for bioconvection. Furthermore, the turbulence generated by bioconvection redistributes sulfides to the upper region of the BL and displaces other microorganisms from their optimal ecological niches. Conclusion The findings underscore the influence of bioconvection on the physiology of C. okenii and demonstrate its functional role in improving its metabolic advantage over coexisting phototrophic sulfur bacteria. However, additional research is necessary to confirm these results and to unravel the multiscale processes activated by C. okenii's motility mechanisms.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Samuele Roman
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
| | - Oscar Sepúlveda Steiner
- Department of Surface Waters – Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
- Civil and Environmental Engineering, University of California, Davis, Davis, CA, United States
| | - Damien Bouffard
- Department of Surface Waters – Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
- Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Anupam Sengupta
- Department of Physics and Materials Science, Physics of Living Matter Group, Luxembourg City, Luxembourg
| | - Nicola Storelli
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Di Nezio F, Beney C, Roman S, Danza F, Buetti-Dinh A, Tonolla M, Storelli N. Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol Ecol 2021; 97:6123714. [PMID: 33512460 PMCID: PMC7947596 DOI: 10.1093/femsec/fiab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community and exibiting different phenotypes: (1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, (2) the small-celled PSB Thiodictyon syntrophicum and (3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Clarisse Beney
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| |
Collapse
|
4
|
García-Rodríguez F, Piccini C, Carrizo D, Sánchez-García L, Pérez L, Crisci C, Oaquim ABJ, Evangelista H, Soutullo A, Azcune G, Lüning S. Centennial glacier retreat increases sedimentation and eutrophication in Subantarctic periglacial lakes: A study case of Lake Uruguay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142066. [PMID: 33254911 DOI: 10.1016/j.scitotenv.2020.142066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
High resolution XRF scanning documented inter-annual paleolimnological changes of a Subantarctic periglacial lake, during a process of centennial glacier retreat in King George Island, Antarctica. Two major paleoenvironmental stages were inferred from the combined analysis of elemental, molecular and isotopic biomarkers, with a boundary or transition set at about 3200 yr BP. The first stage was characterized by a relatively low allochthonous organic content, reduced productivity and nitrogen levels. Such paleoenvironmental conditions are interpreted as a terrestrial system under periglacial influence, where material influx was related to erosion process from the melt water discharge, because of the proximity to the Collins Glacier ice cap. After the major Holocene glacier advance dated at about 3500 yr BP, the ice cap retreat led to the formation of Lake Uruguay, which involved in filling processes leading to moraine deposits, proglacial meltwater channels, and lakes next to the land glacier. During the second stage, with the onset of the Current Warm Period, prior to 1900 CE the stabilization of the Zr/Rb ratio within the laminated sediments documented the origin of the lacustrine sedimentation system, with subsequent increases in the sedimentation rate and biomass content (total nitrogen and organic carbon). Time series analyses revealed that the lake displayed variability cycles related to El Niño Southern Oscillation (ENSO), as reflected by high resolution sedimentological proxies for grain size, weathering, allochthonous inputs from the watershed, increase of biomass and productivity, and changes in redox conditions, all of which displayed similar oscillation cycles from 2 to 6 yr. During this periglacial recession and associated eutrophication process, we detected a striking loss in both bacterial specific richness and diversity as inferred from preliminary selected ancient DNA analyses. Thus, the Antarctic warming scenario leading to glacier depletion appears to exert deterioration consequences on the Subantarctic microbial web.
Collapse
Affiliation(s)
- F García-Rodríguez
- Universidad de la República, Centro Universitario Regional Este, CURE Rocha y Maldonado, Uruguay; Universidade Federal de Rio Grande, Instituto de Oceanografia, Programa de Pós-Graduação em Oceanología, Rio Grande, Brazil.
| | - C Piccini
- Instituto de Investigaciones Biológicas Clemente Estable, Departamento de Microbiología, Av. Italia 3318, Montevideo 11600, Uruguay
| | - D Carrizo
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | - L Pérez
- Universidad de la República, Centro Universitario Regional Este, CURE Rocha y Maldonado, Uruguay
| | - C Crisci
- Universidad de la República, Centro Universitario Regional Este, CURE Rocha y Maldonado, Uruguay
| | - A B J Oaquim
- LARAMG/Universidade do Estado do Rio de Janeiro - UERJ, Departamento de Biofísica, Maracanã 0550900, RJ, Brazil
| | - H Evangelista
- LARAMG/Universidade do Estado do Rio de Janeiro - UERJ, Departamento de Biofísica, Maracanã 0550900, RJ, Brazil
| | - A Soutullo
- Universidad de la República, Centro Universitario Regional Este, CURE Rocha y Maldonado, Uruguay; Instituto Antártico Uruguayo, Montevideo, Uruguay
| | - G Azcune
- Universidad de la República, Centro Universitario Regional Este, CURE Rocha y Maldonado, Uruguay
| | - S Lüning
- Institute for Hydrography, Geoecology and Climate Sciences, Hauptstraße 47, 6315 Ägeri, Switzerland
| |
Collapse
|
5
|
Pang X, Jia Z, Lu J, Zhang S, Zhang C, Zhang M, Lv J. A new method for quantitative detection of Lactobacillus casei based on casx gene and its application. BMC Biotechnol 2019; 19:87. [PMID: 31823776 PMCID: PMC6902566 DOI: 10.1186/s12896-019-0587-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background The traditional method of bacterial identification based on 16S rRNA is a widely used and very effective detection method, but this method still has some deficiencies, especially in the identification of closely related strains. A high homology with little differences is mostly observed in the 16S sequence of closely related bacteria, which results in difficulty to distinguish them by 16S rRNA-based detection method. In order to develop a rapid and accurate method of bacterial identification, we studied the possibility of identifying bacteria with other characteristic fragments without the use of 16S rRNA as detection targets. Results We analyzed the potential of using cas (CRISPR-associated proteins) gene as a target for bacteria detection. We found that certain fragment located in the casx gene was species-specific and could be used as a specific target gene. Based on these fragments, we established a TaqMan MGB Real-time PCR method for detecting bacteria. We found that the method used in this study had the advantages of high sensitivity and good specificity. Conclusions The casx gene-based method of bacterial identification could be used as a supplement to the conventional 16 s rRNA-based detection method. This method has an advantage over the 16 s rRNA-based detection method in distinguishing the genetic relationship between closely-related bacteria, such as subgroup bacteria, and can be used as a supplement to the 16 s rRNA-based detection method.
Collapse
Affiliation(s)
- Xiaoyang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Ziyang Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jing Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Cai Zhang
- Laboratory of Environment and Livestock Products, Henan University of Science and Technology, Luoyang, 471023, China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
6
|
Luedin SM, Liechti N, Cox RP, Danza F, Frigaard NU, Posth NR, Pothier JF, Roman S, Storelli N, Wittwer M, Tonolla M. Draft Genome Sequence of Chromatium okenii Isolated from the Stratified Alpine Lake Cadagno. Sci Rep 2019; 9:1936. [PMID: 30760771 PMCID: PMC6374484 DOI: 10.1038/s41598-018-38202-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023] Open
Abstract
Blooms of purple sulfur bacteria (PSB) are important drivers of the global sulfur cycling oxidizing reduced sulfur in intertidal flats and stagnant water bodies. Since the discovery of PSB Chromatium okenii in 1838, it has been found that this species is characteristic of for stratified, sulfidic environments worldwide and its autotrophic metabolism has been studied in depth since. We describe here the first high-quality draft genome of a large-celled, phototrophic, γ-proteobacteria of the genus Chromatium isolated from the stratified alpine Lake Cadagno, C. okenii strain LaCa. Long read technology was used to assemble the 3.78 Mb genome that encodes 3,016 protein-coding genes and 67 RNA genes. Our findings are discussed from an ecological perspective related to Lake Cadagno. Moreover, findings of previous studies on the phototrophic and the proposed chemoautotrophic metabolism of C. okenii were confirmed on a genomic level. We additionally compared the C. okenii genome with other genomes of sequenced, phototrophic sulfur bacteria from the same environment. We found that biological functions involved in chemotaxis, movement and S-layer-proteins were enriched in strain LaCa. We describe these features as possible adaptions of strain LaCa to rapidly changing environmental conditions within the chemocline and the protection against phage infection during blooms. The high quality draft genome of C. okenii strain LaCa thereby provides a basis for future functional research on bioconvection and phage infection dynamics of blooming PSB.
Collapse
Affiliation(s)
- Samuel M Luedin
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland.
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
| | - Nicole Liechti
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Raymond P Cox
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Francesco Danza
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | | | - Nicole R Posth
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, Copenhagen, Denmark
| | - Joël F Pothier
- Environmental Genomics and System Biology Research Group, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Matthias Wittwer
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Mauro Tonolla
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland.
- Alpine Biology Center Foundation, Bellinzona, Switzerland.
| |
Collapse
|
7
|
Rogozin DY, Zykov VV, Ivanova EA, Anufrieva TN, Barkhatov YV, Khromechek EB, Botvich IY. Meromixis and Seasonal Dynamics of Vertical Structure of Lake Uchum (South Siberia). CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s1995425518020117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, Pedersen MW. Ancient plant DNA in lake sediments. THE NEW PHYTOLOGIST 2017; 214:924-942. [PMID: 28370025 DOI: 10.1111/nph.14470] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/07/2016] [Indexed: 05/14/2023]
Abstract
Contents 924 I. 925 II. 925 III. 927 IV. 929 V. 930 VI. 930 VII. 931 VIII. 933 IX. 935 X. 936 XI. 938 938 References 938 SUMMARY: Recent advances in sequencing technologies now permit the analyses of plant DNA from fossil samples (ancient plant DNA, plant aDNA), and thus enable the molecular reconstruction of palaeofloras. Hitherto, ancient frozen soils have proved excellent in preserving DNA molecules, and have thus been the most commonly used source of plant aDNA. However, DNA from soil mainly represents taxa growing a few metres from the sampling point. Lakes have larger catchment areas and recent studies have suggested that plant aDNA from lake sediments is a more powerful tool for palaeofloristic reconstruction. Furthermore, lakes can be found globally in nearly all environments, and are therefore not limited to perennially frozen areas. Here, we review the latest approaches and methods for the study of plant aDNA from lake sediments and discuss the progress made up to the present. We argue that aDNA analyses add new and additional perspectives for the study of ancient plant populations and, in time, will provide higher taxonomic resolution and more precise estimation of abundance. Despite this, key questions and challenges remain for such plant aDNA studies. Finally, we provide guidelines on technical issues, including lake selection, and we suggest directions for future research on plant aDNA studies in lake sediments.
Collapse
Affiliation(s)
- Laura Parducci
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Keith D Bennett
- Department of Geography & Sustainable Development, School of Geography & Geosciences, University of St Andrews, St Andrews, Fife, KY16 9AL, UK
- Marine Laboratory, Queen's University Belfast, Portaferry, BT22 1LS, UK
| | - Gentile Francesco Ficetola
- CNRS, Université Grenoble-Alpes, Laboratoire d'Ecologie Alpine (LECA), Grenoble, F-38000, France
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Inger Greve Alsos
- Tromsø Museum, UiT - The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Jamie R Wood
- Long-term Ecology Lab, Landcare Research, PO Box 69040, Lincoln Canterbury, 7640, New Zealand
| | - Mikkel Winther Pedersen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark
| |
Collapse
|
9
|
Bueche M, Junier P. Effect of organic carbon and metal accumulation on the bacterial communities in sulphidogenic sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10443-10456. [PMID: 26780045 DOI: 10.1007/s11356-016-6056-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
A unique geochemical setting in Lake Cadagno, Switzerland, has led to the accumulation of insoluble metal sulphides in the sedimentary record as the result of past airborne pollution. This offers an exceptional opportunity to study the effect of these metals on the bacterial communities in sediments, and in particular to investigate further the link between metal contamination and an increase in the populations of endospore-forming bacteria observed previously in other metal-contaminated sediments. A decrease in organic carbon and total bacterial counts was correlated with an increase in the numbers of endospores in the oldest sediment samples, showing the first environmental evidence of a decrease in nutrient availability as a trigger of sporulation. Proteobacteria and Firmicutes were the two dominant bacterial phyla throughout the sediment, the former in an area with high sulphidogenic activity, and the latter in the oldest samples. Even though the dominant Firmicutes taxa were stable along the sediment core and did not vary with changes in metal contamination, the prevalence of some molecular species like Clostridium sp. was positively correlated with metal sulphide concentration. However, this cannot be generalized to all endospore-forming species. Overall, the community composition supports the hypothesis of sporulation as the main mechanism explaining the dominance of endospore formers in the deepest part of the sediment core, while metal contamination in the form of insoluble metal sulphide deposits appears not to be linked with sporulation as a mechanism of metal tolerance in this sulphidogenic ecosystem.
Collapse
Affiliation(s)
- Matthieu Bueche
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, PO box 158, CH-2000, Neuchatel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, PO box 158, CH-2000, Neuchatel, Switzerland.
| |
Collapse
|
10
|
Baatar B, Chiang PW, Rogozin DY, Wu YT, Tseng CH, Yang CY, Chiu HH, Oyuntsetseg B, Degermendzhy AG, Tang SL. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia. PLoS One 2016; 11:e0150847. [PMID: 26934492 PMCID: PMC4775032 DOI: 10.1371/journal.pone.0150847] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022] Open
Abstract
Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.
Collapse
Affiliation(s)
- Bayanmunkh Baatar
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Ting Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | - Cheng-Yu Yang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Hui Chiu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Bolormaa Oyuntsetseg
- School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | | | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Pansu J, Giguet-Covex C, Ficetola GF, Gielly L, Boyer F, Zinger L, Arnaud F, Poulenard J, Taberlet P, Choler P. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol Ecol 2015; 24:1485-98. [PMID: 25735209 DOI: 10.1111/mec.13136] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
Abstract
Paleoenvironmental studies are essential to understand biodiversity changes over long timescales and to assess the relative importance of anthropogenic and environmental factors. Sedimentary ancient DNA (sedaDNA) is an emerging tool in the field of paleoecology and has proven to be a complementary approach to the use of pollen and macroremains for investigating past community changes. SedaDNA-based reconstructions of ancient environments often rely on indicator taxa or expert knowledge, but quantitative ecological analyses might provide more objective information. Here, we analysed sedaDNA to investigate plant community trajectories in the catchment of a high-elevation lake in the Alps over the last 6400 years. We combined data on past and present plant species assemblages along with sedimentological and geochemical records to assess the relative impact of human activities through pastoralism, and abiotic factors (temperature and soil evolution). Over the last 6400 years, we identified significant variation in plant communities, mostly related to soil evolution and pastoral activities. An abrupt vegetational change corresponding to the establishment of an agropastoral landscape was detected during the Late Holocene, approximately 4500 years ago, with the replacement of mountain forests and tall-herb communities by heathlands and grazed lands. Our results highlight the importance of anthropogenic activities in mountain areas for the long-term evolution of local plant assemblages. SedaDNA data, associated with other paleoenvironmental proxies and present plant assemblages, appear to be a relevant tool for reconstruction of plant cover history. Their integration, in conjunction with classical tools, offers interesting perspectives for a better understanding of long-term ecosystem dynamics under the influence of human-induced and environmental drivers.
Collapse
Affiliation(s)
- Johan Pansu
- Univ. Grenoble Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Martínez de la Escalera G, Antoniades D, Bonilla S, Piccini C. Application of ancient DNA to the reconstruction of past microbial assemblages and for the detection of toxic cyanobacteria in subtropical freshwater ecosystems. Mol Ecol 2014; 23:5791-802. [PMID: 25346253 DOI: 10.1111/mec.12979] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
Ancient DNA (aDNA) analysis of lake sediments is a promising tool for detecting shifts in past microbial assemblages in response to changing environmental conditions. We examined sediment core samples from subtropical, freshwater Laguna Blanca (Uruguay), which has been severely affected by cultural eutrophication since 1960 and where cyanobacterial blooms, particularly those of the saxitoxin-producer Cylindrospermopsis raciborskii, have been reported since the 1990s. Samples corresponding to ~1846, 1852, 2000 and 2007 AD were selected to perform denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S rRNA intergenic transcribed spacer (ribosomal ITS) to compare their prokaryotic assemblage composition. Each stratum showed different ITS patterns, but the composition of 21st century samples was clearly different than those of mid-19th century. This compositional change was correlated with shifts in sediment organic matter and chlorophyll a content, which were significantly higher in recent samples. The presence of saxitoxin-producing cyanobacteria was addressed by quantitative real-time PCR of the sxtU gene involved in toxin biosynthesis. This gene was present only in recent samples, for which clone libraries and ITS sequencing indicated the presence of Cyanobacteria. Phylogenetic analyses identified C. raciborskii only in the 2000 sample, shortly after several years when blooms were recorded in the lake. These data suggest the utility of aDNA for the reconstruction of microbial assemblage shifts in subtropical lakes, at least on centennial scales. The application of aDNA analysis to genes involved in cyanotoxin synthesis extends the applicability of molecular techniques in palaeolimnological studies to include key microbial community characteristics of great scientific and social interest.
Collapse
Affiliation(s)
- Gabriela Martínez de la Escalera
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600, Montevideo, Uruguay; Ecology and Physiology of Phytoplankton Group, CSIC, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | | | | | | |
Collapse
|