1
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
2
|
Burakova I, Gryaznova M, Smirnova Y, Morozova P, Mikhalev V, Zimnikov V, Latsigina I, Shabunin S, Mikhailov E, Syromyatnikov M. Association of milk microbiome with bovine mastitis before and after antibiotic therapy. Vet World 2023; 16:2389-2402. [PMID: 38328355 PMCID: PMC10844787 DOI: 10.14202/vetworld.2023.2389-2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/26/2023] [Indexed: 02/09/2024] Open
Abstract
Background and Aim Mastitis is recognized as the most common disease in cattle and causes economic losses in the dairy industry. A number of opportunistic bacterial taxa have been identified as causative agents for this disease. Conventionally, antibiotics are used to treat mastitis; however, most bacteria are resistant to the majority of antibiotics. This study aimed to use molecular methods to identify milk microbiome patterns characteristic of mastitis that can help in the early diagnosis of this disease and in the development of new treatment strategies. Materials and Methods To evaluate the microbiome composition, we performed NGS sequencing of the 16S rRNA gene of the V3 region. Results An increase in the abundance of the bacterial genera Hymenobacter and Lachnospiraceae NK4A136 group is associated with the development of subclinical and clinical mastitis in dairy cows. These bacteria can be added to the list of markers used to detect mastitis in cows. Furthermore, a decrease in the abundance of Ralstonia, Lachnospiraceae NK3A20 group, Acetitomaculum, Massilia, and Atopostipes in cows with mastitis may indicate their role in maintaining a healthy milk microbiome. Antibiotics reduced the levels of Streptococcus in milk compared to those in the healthy group and cows before antibiotic treatment. Antibiotic therapy also contributed to an increase in the abundance of beneficial bacteria of the genus Asticcacaulis. Conclusion This study expands our understanding of the association between milk microbiota and mastitis.
Collapse
Affiliation(s)
- Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vitaliy Mikhalev
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Vitaliy Zimnikov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Irina Latsigina
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Sergey Shabunin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Evgeny Mikhailov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| |
Collapse
|
3
|
Cheong KL, Zhang Y, Li Z, Li T, Ou Y, Shen J, Zhong S, Tan K. Role of Polysaccharides from Marine Seaweed as Feed Additives for Methane Mitigation in Ruminants: A Critical Review. Polymers (Basel) 2023; 15:3153. [PMID: 37571046 PMCID: PMC10420924 DOI: 10.3390/polym15153153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Given the increasing concerns regarding greenhouse gas emissions associated with livestock production, the need to discover effective strategies to mitigate methane production in ruminants is clear. Marine algal polysaccharides have emerged as a promising research avenue because of their abundance and sustainability. Polysaccharides, such as alginate, laminaran, and fucoidan, which are extracted from marine seaweeds, have demonstrated the potential to reduce methane emissions by influencing the microbial populations in the rumen. This comprehensive review extensively examines the available literature and considers the effectiveness, challenges, and prospects of using marine seaweed polysaccharides as feed additives. The findings emphasise that marine algal polysaccharides can modulate rumen fermentation, promote the growth of beneficial microorganisms, and inhibit methanogenic archaea, ultimately leading to decreases in methane emissions. However, we must understand the long-term effects and address the obstacles to practical implementation. Further research is warranted to optimise dosage levels, evaluate potential effects on animal health, and assess economic feasibility. This critical review provides insights for researchers, policymakers, and industry stakeholders dedicated to advancing sustainable livestock production and methane mitigation.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Yiyu Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Zhuoting Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Tongtong Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Yiqing Ou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Jiayi Shen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| |
Collapse
|
4
|
Feehan B, Ran Q, Dorman V, Rumback K, Pogranichniy S, Ward K, Goodband R, Niederwerder MC, Lee STM. Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea. Anim Microbiome 2023; 5:35. [PMID: 37461084 DOI: 10.1186/s42523-023-00256-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination. RESULTS We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.
Collapse
Affiliation(s)
- Brandi Feehan
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Qinghong Ran
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Victoria Dorman
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kourtney Rumback
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophia Pogranichniy
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaitlyn Ward
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Sonny T M Lee
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
5
|
Wang Z, Dalton KR, Lee M, Parks CG, Beane Freeman LE, Zhu Q, González A, Knight R, Zhao S, Motsinger-Reif AA, London SJ. Metagenomics reveals novel microbial signatures of farm exposures in house dust. Front Microbiol 2023; 14:1202194. [PMID: 37415812 PMCID: PMC10321240 DOI: 10.3389/fmicb.2023.1202194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Indoor home dust microbial communities, important contributors to human health, are shaped by environmental factors, including farm-related exposures. Advanced metagenomic whole genome shotgun sequencing (WGS) improves detection and characterization of microbiota in the indoor built-environment dust microbiome, compared to conventional 16S rRNA amplicon sequencing (16S). We hypothesized that the improved characterization of indoor dust microbial communities by WGS will enhance detection of exposure-outcome associations. The objective of this study was to identify novel associations of environmental exposures with the dust microbiome from the homes of 781 farmers and farm spouses enrolled in the Agricultural Lung Health Study. We examined various farm-related exposures, including living on a farm, crop versus animal production, and type of animal production, as well as non-farm exposures, including home cleanliness and indoor pets. We assessed the association of the exposures on within-sample alpha diversity and between-sample beta diversity, and the differential abundance of specific microbes by exposure. Results were compared to previous findings using 16S. We found most farm exposures were significantly positively associated with both alpha and beta diversity. Many microbes exhibited differential abundance related to farm exposures, mainly in the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The identification of novel differential taxa associated with farming at the genera level, including Rhodococcus, Bifidobacterium, Corynebacterium, and Pseudomonas, was a benefit of WGS compared to 16S. Our findings indicate that characterization of dust microbiota, an important component of the indoor environment relevant to human health, is heavily influenced by sequencing techniques. WGS is a powerful tool to survey the microbial community that provides novel insights on the impact of environmental exposures on indoor dust microbiota. These findings can inform the design of future studies in environmental health.
Collapse
Affiliation(s)
- Ziyue Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Kathryn R. Dalton
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Mikyeong Lee
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Christine G. Parks
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Qiyun Zhu
- School of Life Sciences, Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Antonio González
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Alison A. Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Stephanie J. London
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
6
|
Wang Z, Dalton KR, Lee M, Parks CG, Beane Freeman LE, Zhu Q, Gonz Lez A, Knight R, Zhao S, Motsinger-Reif AA, London SJ. Metagenomics reveals novel microbial signatures of farm exposures in house dust. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288301. [PMID: 37090637 PMCID: PMC10120797 DOI: 10.1101/2023.04.07.23288301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Indoor home dust microbial communities, important contributors to human health outcomes, are shaped by environmental factors, including farm-related exposures. Detection and characterization of microbiota are influenced by sequencing methodology; however, it is unknown if advanced metagenomic whole genome shotgun sequencing (WGS) can detect novel associations between environmental exposures and the indoor built-environment dust microbiome, compared to conventional 16S rRNA amplicon sequencing (16S). This study aimed to better depict indoor dust microbial communities using WGS to investigate novel associations with environmental risk factors from the homes of 781 farmers and farm spouses enrolled in the Agricultural Lung Health Study. We examined various farm-related exposures, including living on a farm, crop versus animal production, and type of animal production, as well as non-farm exposures, including home cleanliness and indoor pets. We assessed the association of the exposures on within-sample alpha diversity and between-sample beta diversity, and the differential abundance of specific microbes by exposure. Results were compared to previous findings using 16S. We found most farm exposures were significantly positively associated with both alpha and beta diversity. Many microbes exhibited differential abundance related to farm exposures, mainly in the phyla Actinobacteria, Bacteroidetes, Firmicutes , and Proteobacteria . The identification of novel differential taxa associated with farming at the genera level, including Rhodococcus, Bifidobacterium, Corynebacterium , and Pseudomonas , was a benefit of WGS compared to 16S. Our findings indicate that characterization of dust microbiota, an important component of the indoor environment relevant to human health, is heavily influenced by sequencing techniques. WGS is a powerful tool to survey the microbial community that provides novel insights on the impact of environmental exposures on indoor dust microbiota, and should be an important consideration in designing future studies in environmental health.
Collapse
|
7
|
Guindo CO, Davoust B, Drancourt M, Grine G. Diversity of Methanogens in Animals' Gut. Microorganisms 2020; 9:microorganisms9010013. [PMID: 33374535 PMCID: PMC7822204 DOI: 10.3390/microorganisms9010013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
Methanogens are members of anaerobe microbiota of the digestive tract of mammals, including humans. However, the sources, modes of acquisition, and dynamics of digestive tract methanogens remain poorly investigated. In this study, we aimed to expand the spectrum of animals that could be sources of methanogens for humans by exploring methanogen carriage in animals. We used real-time PCR, PCR-sequencing, and multispacer sequence typing to investigate the presence of methanogens in 407 fecal specimens collected from nine different mammalian species investigated here. While all the negative controls remained negative, we obtained by PCR-sequencing seven different species of methanogens, of which three (Methanobrevibacter smithii, Methanobrevibacter millerae and Methanomassiliicoccus luminyensis) are known to be part of the methanogens present in the human digestive tract. M. smithii was found in 24 cases, including 12/24 (50%) in pigs, 6/24 (25%) in dogs, 4/24 (16.66%) in cats, and 1/24 (4.16%) in both sheep and horses. Genotyping these 24 M. smithii revealed five different genotypes, all known in humans. Our results are fairly representative of the methanogen community present in the digestive tract of certain animals domesticated by humans, and other future studies must be done to try to cultivate methanogens here detected by molecular biology to better understand the dynamics of methanogens in animals and also the likely acquisition of methanogens in humans through direct contact with these animals or through consumption of the meat and/or milk of certain animals, in particular cows.
Collapse
Affiliation(s)
- Cheick Oumar Guindo
- IHU Méditerranée Infection, 13005 Marseille, France; (C.O.G.); (M.D.)
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Bernard Davoust
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Michel Drancourt
- IHU Méditerranée Infection, 13005 Marseille, France; (C.O.G.); (M.D.)
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Ghiles Grine
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
- Faculty of Odontology, Aix-Marseille Université, 13005 Marseille, France
- Correspondence: ; Tel.: +33-(0)4-13-73-24-01; Fax: +33-(0)-13-73-24-02
| |
Collapse
|
8
|
Fan H, Wu S, Woodley J, Zhuang G, Bai Z, Xu S, Wang X, Zhuang X. Effective removal of antibiotic resistance genes and potential links with archaeal communities during vacuum-type composting and positive-pressure composting. J Environ Sci (China) 2020; 89:277-286. [PMID: 31892399 DOI: 10.1016/j.jes.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
As a major reservoir of antibiotics, animal manure contributes a lot to the augmented environmental pressure of antibiotic resistance genes (ARGs). This might be the first study to explore the effects of different ventilation types on the control of ARGs and to identify the relationships between archaeal communities and ARGs during the composting of dairy manure. Several ARGs were quantified via Real-time qPCR and microbial communities including bacteria and archaea were analyzed by High-throughput sequencing during vacuum-type composting (VTC) and positive-pressure composting (PPC). The total detected ARGs and class I integrase gene (intI1) under VTC were significantly lower than that under PPC during each stage of the composting (p<0.001). The relative abundance of potential human pathogenic bacteria (HPB) which were identified based on sequencing information and correlation analysis decreased by 74.6% and 91.4% at the end of PPC and VTC, respectively. The composition of archaeal communities indicated that methane-producing archaea including Methanobrevibacter, Methanocorpusculum and Methanosphaera were dominant throughout the composting. Redundancy analysis suggested that Methanobrevibacter and Methanocorpusculum were positively correlated with all of the detected ARGs. Network analysis determined that the possible hosts of ARGs were different under VTC and PPC, and provided new sights about potential links between archaea and ARGs. Our results showed better performance of VTC in reducing ARGs and potential HPB and demonstrated that some archaea could also be influential hosts of ARGs, and caution the risks of archaea carrying ARGs.
Collapse
Affiliation(s)
- Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - John Woodley
- Center for Process Engineering and Technology, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Vargas JE, Andrés S, López-Ferreras L, Snelling TJ, Yáñez-Ruíz DR, García-Estrada C, López S. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Sci Rep 2020; 10:1613. [PMID: 32005859 PMCID: PMC6994681 DOI: 10.1038/s41598-020-58401-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022] Open
Abstract
Ruminants contribute to the emissions of greenhouse gases, in particular methane, due to the microbial anaerobic fermentation of feed in the rumen. The rumen simulation technique was used to investigate the effects of the addition of different supplemental plant oils to a high concentrate diet on ruminal fermentation and microbial community composition. The control (CTR) diet was a high-concentrate total mixed ration with no supplemental oil. The other experimental diets were supplemented with olive (OLV), sunflower (SFL) or linseed (LNS) oils at 6%. Rumen digesta was used to inoculate the fermenters, and four fermentation units were used per treatment. Fermentation end-products, extent of feed degradation and composition of the microbial community (qPCR) in digesta were determined. Compared with the CTR diet, the addition of plant oils had no significant (P > 0.05) effect on ruminal pH, substrate degradation, total volatile fatty acids or microbial protein synthesis. Gas production from the fermentation of starch or cellulose were decreased by oil supplementation. Methane production was reduced by 21-28% (P < 0.001), propionate production was increased (P < 0.01), and butyrate and ammonia outputs and the acetate to propionate ratio were decreased (P < 0.001) with oil-supplemented diets. Addition of 6% OLV and LNS reduced (P < 0.05) copy numbers of total bacteria relative to the control. In conclusion, the supplementation of ruminant diets with plant oils, in particular from sunflower or linseed, causes some favorable effects on the fermentation processes. The addition of vegetable oils to ruminant mixed rations will reduce methane production increasing the formation of propionic acid without affecting the digestion of feed in the rumen. Adding vegetable fats to ruminant diets seems to be a suitable approach to decrease methane emissions, a relevant cleaner effect that may contribute to alleviate the environmental impact of ruminant production.
Collapse
Affiliation(s)
- Julio Ernesto Vargas
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, E-24007, León, Spain
- Universidad de Caldas, Facultad de Ciencias Agropecuarias, Grupo CIENVET, Manizales, Colombia
| | - Sonia Andrés
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, E-24007, León, Spain
| | - Lorena López-Ferreras
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, E-24007, León, Spain
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30, Gothenburg, Sweden
| | - Timothy J Snelling
- Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | - Carlos García-Estrada
- INBIOTEC, Instituto de Biotecnología de León, Avda. Real no. 1, Parque Científico de León, 24006, León, Spain
| | - Secundino López
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, E-24007, León, Spain.
| |
Collapse
|
10
|
Yejun L, Su Kyoung L, Shin Ja L, Jong-Su E, Sung Sill L. Effects of Lonicera japonica extract supplementation on in vitro ruminal fermentation, methane emission, and microbial population. Anim Sci J 2019; 90:1170-1176. [PMID: 31321858 DOI: 10.1111/asj.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 01/07/2023]
Abstract
Lonicera japonica (LJ; honeysuckle) is used in traditional folk medicine in Korea and is a rich source of ascorbic acid and phenolic components that are reported to have antioxidant and antibiotic properties. We performed an in vitro experiment to assess the effects of LJ extracts (LJE) on ruminal fermentation. Timothy hay (0.3 g dry matter [DM]) was incubated with buffer, ruminal fluid, and 0%, 3%, 5%, 7%, and 9% LJE. Batch culture fermentation was conducted separately for 12, 24, and 48 hr to determine gas production (GP), ruminal fermentation characteristics, and microbial population characteristics. The effects on GP were generally similar to those on DM degradability, with a linear decrease observed at 9% extract at 24 hr. NH3 -N showed a linear increase with increasing extract concentrations at 12 hr, whereas a decrease was observed at 24 hr. Extract supplementation decreased methane (CH4 ) production at 12, 24, and 48 hr. In addition, the abundance of fibrolytic bacteria and ciliate-associated methanogen was reduced at all concentrations of extracts. These results indicate that LJE have the potential to serve as a ruminal fermentation modifier to suppress CH4 production with minimal effects on nutrient digestion in the rumen.
Collapse
Affiliation(s)
- Lee Yejun
- Division of Applied Life Science (BK21+), Gyeongsang National University, Jinju, Korea
| | - Lee Su Kyoung
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea
| | - Lee Shin Ja
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Korea
| | - Eun Jong-Su
- Institute of Integrated Technology, CJ CheilJedang, Suwon, Korea
| | - Lee Sung Sill
- Division of Applied Life Science (BK21+), Gyeongsang National University, Jinju, Korea.,Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
11
|
Improved Methanogenic Communities for Biogas Production. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-10516-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Bader S, Gerbig S, Spengler B, Schwiertz A, Breves G, Diener M. Robustness of the non-neuronal cholinergic system in rat large intestine against luminal challenges. Pflugers Arch 2018; 471:605-618. [PMID: 30506275 DOI: 10.1007/s00424-018-2236-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Acetylcholine and atypical esters of choline such as propionyl- and butyrylcholine are produced by the colonic epithelium and are released when epithelial receptors for short-chain fatty acids (SCFA) are stimulated by propionate. It is assumed that the SCFA used by the choline acetyltransferase (ChAT), the central enzyme for the production of these choline esters, originate from the colonic lumen, where they are synthesized during the bacterial fermentation of carbohydrates. Therefore, it seemed to be of interest to study whether the non-neuronal cholinergic system in the colonic epithelium is affected by maneuvers intended to stimulate or to inhibit colonic fermentation by changing the intestinal microbiota. In two series of experiments, rats were either fed with a high fiber diet (15.5% (w/v) crude fibers in comparison to 4.6% (w/w) in the control diet) or treated orally with the antibiotic vancomycin. High fiber diet induced an unexpected decrease in the luminal concentration of SCFA in the colon, but an increase in the caecum, suggesting an upregulation of colonic SCFA absorption, whereas vancomycin treatment resulted in the expected strong reduction of SCFA concentration in colon and caecum. MALDI MS analysis revealed a decrease in the colonic content of propionylcholine by high fiber diet and by vancomycin. High fiber diet caused a significant downregulation of ChAT expression on protein and mRNA level. Despite a modest increase in tissue conductance during the high fiber diet, main barrier and transport properties of the epithelium such as basal short-circuit current (Isc), the flux of the paracellularly transported marker, fluorescein, or the Isc induced by epithelial acetylcholine release evoked by propionate remained unaltered. These results suggest a remarkable stability of the non-neuronal cholinergic system in colonic epithelium against changes in the luminal environment underlying its biological importance for intestinal homeostasis.
Collapse
Affiliation(s)
- Sandra Bader
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Stefanie Gerbig
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | | | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany. .,Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Giessen, Germany.
| |
Collapse
|
13
|
Effects of zinc on the production of alcohol by Clostridium carboxidivorans P7 using model syngas. ACTA ACUST UNITED AC 2018; 45:61-69. [DOI: 10.1007/s10295-017-1992-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/26/2017] [Indexed: 01/03/2023]
Abstract
Abstract
Renewable energy, including biofuels such as ethanol and butanol from syngas bioconversed by Clostridium carboxidivorans P7, has been drawing extensive attention due to the fossil energy depletion and global eco-environmental issues. Effects of zinc on the growth and metabolites of C. carboxidivorans P7 were investigated with model syngas as the carbon source. The cell concentration was doubled, the ethanol content increased 3.02-fold and the butanol content increased 7.60-fold, the hexanol content increased 44.00-fold in the medium with 280 μM Zn2+, when comparing with those in the control medium [Zn2+, (7 μM)]. Studies of the genes expression involved in the carbon fixation as well as acid and alcohol production in the medium with 280 μM Zn2+ indicated that fdhII was up-regulated on the second day, acs A, fdhII, bdh35 and bdh50 were up-regulated on the third day and bdh35, acsB, fdhI, fdhIII, fdhIV, buk, bdh10, bdh35, bdh40 and bdh50 were up-regulated on the fourth day. The results indicated that the increased Zn2+ content increased the alcohol production through increase in the gene expression of the carbon fixation and alcohol dehydrogenase.
Collapse
|
14
|
Friedman N, Jami E, Mizrahi I. Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages. Environ Microbiol 2017; 19:3365-3373. [PMID: 28654196 PMCID: PMC6488025 DOI: 10.1111/1462-2920.13846] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
Abstract
Methanogenic archaea in the bovine rumen are responsible for the reduction of carbon molecules to methane, using various electron donors and driving the electron flow across the microbial food webs. Thus, methanogens play a key role in sustaining rumen metabolism and function. Research of rumen methanogenic archaea typically focuses on their composition and function in mature animals, while studies of early colonization and functional establishment remain scarce. Here, we investigated the metabolic potential and taxonomic composition of the methanogenic communities across different rumen developmental stages. We discovered that the methanogenesis process changes with age and that the early methanogenic community is characterized by a high activity of methylotrophic methanogenesis, likely performed by members of the order Methanosarcinales, exclusively found in young rumen. In contrast, higher hydrogenotrophic activity was observed in the mature rumen, where a higher proportion of exclusively hydrogenotrophic taxa are found. These findings suggest that environmental filtering acts on the archaeal communities and select for different methanogenic lineages during different growth stages, affecting the functionality of this ecosystem. This study provides a better understanding of the compositional and metabolic changes that occur in the rumen microbiome from its initial stages of colonization and throughout the animals' life.
Collapse
Affiliation(s)
- Nir Friedman
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Derech HaMaccabim 68, Rishon LeZion, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Paul SS, Dey A, Baro D, Punia BS. Comparative community structure of archaea in rumen of buffaloes and cattle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3284-3293. [PMID: 27976411 DOI: 10.1002/jsfa.8177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/13/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Detailed knowledge of the community structure of methanogens is essential for amelioration of methane emission from livestock species. Several studies have indicated that predominant methanogens of buffalo rumen are different from those in cattle. However, predominant genera of methanogens reported by individual studies varied primarily because of limited scope of sampling, sequencing of limited number of sequences and potential PCR bias in individual studies. In this study, the collective comparative diversity of methanogenic archaea in the rumen of cattle and buffaloes was examined by performing a meta-analysis of all the 16S rRNA (rrn) sequences deposited in GenBank. RESULTS Ruminal methanogen sequences of buffalo were clustered into 900 species-level operational taxonomic units (OTUs), and ruminal methanogen sequences of cattle were clustered into 1522 species level OTUs. The number of species-level OTUs shared between cattle and buffaloes was 229 (10.4% of all OTUs), comprising 1746 sequences (27% of the total 6447 sequences). According to taxonomic classification by three different classifiers, Methanobrevibacter was found to be the most predominant genus both in cattle (69-71% of sequences) as well as buffaloes (65.1-68.9% of sequences). Percentage of Methanomicrobium was much higher (P < 0.05) in the case of buffalo (18%) than that of cattle (4.5%). On the other hand, percentages of Methanosphaera- and Methanomassiliicoccus-like methanogens were much higher (P < 0.05) in cattle than in buffaloes. CONCLUSION This study indicated that there is a substantial difference in community structure of ruminal methanogens of cattle and buffaloes. The study has also indicated that the percent of species-level operational taxonomic units shared between cattle and buffalo is very low, and thus host species-specific methane mitigation strategies need to be developed for cattle and buffaloes. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shyam S Paul
- ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Avijit Dey
- ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Daoharu Baro
- ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Balbir S Punia
- ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| |
Collapse
|
16
|
Bharathi M, Chellapandi P. Intergenomic evolution and metabolic cross-talk between rumen and thermophilic autotrophic methanogenic archaea. Mol Phylogenet Evol 2016; 107:293-304. [PMID: 27864137 DOI: 10.1016/j.ympev.2016.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/17/2016] [Accepted: 11/13/2016] [Indexed: 02/01/2023]
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rumen methanogenic archaean that can be able to utilize formate and CO2/H2 as growth substrates. Extensive analysis on the evolutionary genomic contexts considered herein to unravel its intergenomic relationship and metabolic adjustment acquired from the genomic content of Methanothermobacter thermautotrophicus ΔH. We demonstrated its intergenomic distance, genome function, synteny homologs and gene families, origin of replication, and methanogenesis to reveal the evolutionary relationships between Methanobrevibacter and Methanothermobacter. Comparison of the phylogenetic and metabolic markers was suggested for its archaeal metabolic core lineage that might have evolved from Methanothermobacter. Orthologous genes involved in its hydrogenotrophic methanogenesis might be acquired from intergenomic ancestry of Methanothermobacter via Methanobacterium formicicum. Formate dehydrogenase (fdhAB) coding gene cluster and carbon monoxide dehydrogenase (cooF) coding gene might have evolved from duplication events within Methanobrevibacter-Methanothermobacter lineage, and fdhCD gene cluster acquired from bacterial origins. Genome-wide metabolic survey found the existence of four novel pathways viz. l-tyrosine catabolism, mevalonate pathway II, acyl-carrier protein metabolism II and glutathione redox reactions II in MRU. Finding of these pathways suggested that MRU has shown a metabolic potential to tolerate molecular oxygen, antimicrobial metabolite biosynthesis and atypical lipid composition in cell wall, which was acquainted by metabolic cross-talk with mammalian bacterial origins. We conclude that coevolution of genomic contents between Methanobrevibacter and Methanothermobacter provides a clue to understand the metabolic adaptation of MRU in the rumen at different environmental niches.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
17
|
Wang J, Liu M, Wu Y, Wang L, Liu J, Jiang L, Yu Z. Medicinal herbs as a potential strategy to decrease methane production by rumen microbiota: a systematic evaluation with a focus on Perilla frutescens seed extract. Appl Microbiol Biotechnol 2016; 100:9757-9771. [PMID: 27660180 DOI: 10.1007/s00253-016-7830-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/12/2016] [Indexed: 11/24/2022]
Abstract
Mitigation of the methane (CH4) emission from ruminants is needed to decrease the environmental impact of ruminant animal production. Different plant materials and chemicals have been tested, but few are both effective and practical. Medicinal herbs contain biological compounds and antimicrobials that may be effective in lowering the CH4 production. However, few studies have systematically evaluated medicinal herbs for their effect on CH4 production or on the rumen microbiota. In this study, extracts from 100 medicinal herbs were assessed for their ability to decrease CH4 production by rumen microbiota in vitro. The extracts of 12 herbs effectively lowered the CH4 production, with the extract of Perilla frutescens seeds being the most effective. The major components of P. frutescens seed extract were identified, and the effects of the extract on the fermentation characteristics and populations of rumen methanogens, fungi, protozoa, and select bacteria were also assessed. The decreased CH4 production induced by the P. frutescens seed extract was accompanied by an increased abundance of Ruminobacter, Selenomonas, Succinivibrio, Shuttleworthis, Pseudobutyrivbrio, Anaerovibrio, and Roseomonas and a decreased abundance of Methanobrevibacter millerae. The abundance of Pedobacter, Anaeroplasma, Paludibacter, Ruminococcus, and unclassified Lachnospiraceae was positively correlated with the CH4 production, with no effects on volatile fatty acids. This study suggests that medicinal herbs may be used to mitigate the CH4 emission from ruminants.
Collapse
Affiliation(s)
- Jiakun Wang
- IMoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,College of Animal Sciences, Zhejiang University, Yuhangtang Road 866#, Hangzhou, Zhejiang, China.
| | - Mei Liu
- IMoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yuelei Wu
- IMoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Liang Wang
- IMoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jianxin Liu
- IMoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing, 102206, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Kelly WJ, Pacheco DM, Li D, Attwood GT, Altermann E, Leahy SC. The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9. Stand Genomic Sci 2016; 11:49. [PMID: 27536339 PMCID: PMC4987999 DOI: 10.1186/s40793-016-0171-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 08/04/2016] [Indexed: 12/04/2022] Open
Abstract
Methanobrevibacter millerae SM9 was isolated from the rumen of a sheep maintained on a fresh forage diet, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. It is the first rumen isolate from the Methanobrevibacter gottschalkii clade to have its genome sequence completed. The 2.54 Mb SM9 chromosome has an average G + C content of 31.8 %, encodes 2269 protein-coding genes, and harbors a single prophage. The overall gene content is comparable to that of Methanobrevibacter ruminantium M1 and the type strain of M. millerae (ZA-10T) suggesting that the basic metabolism of these two hydrogenotrophic rumen methanogen species is similar. However, M. millerae has a larger complement of genes involved in methanogenesis including genes for methyl coenzyme M reductase II (mrtAGDB) which are not found in M1. Unusual features of the M. millerae genomes include the presence of a tannase gene which shows high sequence similarity with the tannase from Lactobacillus plantarum, and large non-ribosomal peptide synthase genes. The M. millerae sequences indicate that methane mitigation strategies based on the M. ruminantium M1 genome sequence are also likely to be applicable to members of the M. gottschalkii clade.
Collapse
Affiliation(s)
- William J Kelly
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Diana M Pacheco
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Graeme T Attwood
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Sinead C Leahy
- Rumen Microbiology, Animal Science, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| |
Collapse
|
19
|
St-Pierre B, Cersosimo LM, Ishaq SL, Wright ADG. Toward the identification of methanogenic archaeal groups as targets of methane mitigation in livestock animalsr. Front Microbiol 2015; 6:776. [PMID: 26284054 PMCID: PMC4519756 DOI: 10.3389/fmicb.2015.00776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
In herbivores, enteric methane is a by-product from the digestion of plant biomass by mutualistic gastrointestinal tract (GIT) microbial communities. Methane is a potent greenhouse gas that is not assimilated by the host and is released into the environment where it contributes to climate change. Since enteric methane is exclusively produced by methanogenic archaea, the investigation of mutualistic methanogen communities in the GIT of herbivores has been the subject of ongoing research by a number of research groups. In an effort to uncover trends that would facilitate the development of efficient methane mitigation strategies for livestock species, we have in this review summarized and compared currently available results from published studies on this subject. We also offer our perspectives on the importance of pursuing current research efforts on the sequencing of gut methanogen genomes, as well as investigating their cellular physiology and interactions with other GIT microorganisms.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings SD, USA
| | - Laura M Cersosimo
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington VT, USA
| | - Suzanne L Ishaq
- Department of Animal and Range Sciences, Montana State University, Bozeman MT, USA
| | - André-Denis G Wright
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| |
Collapse
|
20
|
Freetly HC, Lindholm-Perry AK, Hales KE, Brown-Brandl TM, Kim M, Myer PR, Wells JE. Methane production and methanogen levels in steers that differ in residual gain123. J Anim Sci 2015; 93:2375-81. [DOI: 10.2527/jas.2014-8721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- H. C. Freetly
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | | | - K. E. Hales
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | | | - M. Kim
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - P. R. Myer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - J. E. Wells
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| |
Collapse
|
21
|
Xu B, Xu W, Li J, Dai L, Xiong C, Tang X, Yang Y, Mu Y, Zhou J, Ding J, Wu Q, Huang Z. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genomics 2015; 16:174. [PMID: 25887697 PMCID: PMC4369366 DOI: 10.1186/s12864-015-1378-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 02/21/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host and the diet adopted by the host. Although the importance of gut microbiota of humans has been well demonstrated, there is a paucity of research regarding non-human primates (NHPs), especially herbivorous NHPs. RESULTS In this study, an analysis of 97,942 pyrosequencing reads generated from Rhinopithecus bieti fecal DNA extracts was performed to help better understanding of the microbial diversity and functional capacity of the R. bieti gut microbiome. The taxonomic analysis of the metagenomic reads indicated that R. bieti fecal microbiomes were dominated by Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria phyla. The comparative analysis of taxonomic classification revealed that the metagenome of R. bieti was characterized by an overrepresentation of bacteria of phylum Fibrobacteres and Spirochaetes as compared with other animals. Primary functional categories were associated mainly with protein, carbohydrates, amino acids, DNA and RNA metabolism, cofactors, cell wall and capsule and membrane transport. Comparing glycoside hydrolase profiles of R. bieti with those of other animal revealed that the R. bieti microbiome was most closely related to cow rumen. CONCLUSIONS Metagenomic and functional analysis demonstrated that R. bieti possesses a broad diversity of bacteria and numerous glycoside hydrolases responsible for lignocellulosic biomass degradation which might reflect the adaptations associated with a diet rich in fibrous matter. These results would contribute to the limited body of NHPs metagenome studies and provide a unique genetic resource of plant cell wall degrading microbial enzymes. However, future studies on the metagenome sequencing of R. bieti regarding the effects of age, genetics, diet and environment on the composition and activity of the metagenomes are required.
Collapse
Affiliation(s)
- Bo Xu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Weijiang Xu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Junjun Li
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Liming Dai
- School of Life Science, Yunnan Normal University, Kunming, 650500, China.
| | - Caiyun Xiong
- School of Life Science, Yunnan Normal University, Kunming, 650500, China.
| | - Xianghua Tang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Yunjuan Yang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Yuelin Mu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Junpei Zhou
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Junmei Ding
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| |
Collapse
|
22
|
Kim ET, Guan LL, Lee SJ, Lee SM, Lee SS, Lee ID, Lee SK, Lee SS. Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:530-7. [PMID: 25656200 PMCID: PMC4341102 DOI: 10.5713/ajas.14.0692] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants.
Collapse
Affiliation(s)
- Eun T Kim
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Shin J Lee
- Division of Applied Life Science (BK21 , IALS), Gyeongsang National University, Jinju 660-701, Korea
| | - Sang M Lee
- National Institute of Animal Science, RDA, Pyeongchang 232-950, Korea
| | - Sang S Lee
- Department of Animal Science and Technology, Sunchon National Uuniversity, Suncheon 540-742, Korea
| | - Il D Lee
- Division of Applied Life Science (BK21 , IALS), Gyeongsang National University, Jinju 660-701, Korea
| | - Su K Lee
- Division of Applied Life Science (BK21 , IALS), Gyeongsang National University, Jinju 660-701, Korea
| | - Sung S Lee
- Division of Applied Life Science (BK21 , IALS), Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
23
|
Snelling TJ, Genç B, McKain N, Watson M, Waters SM, Creevey CJ, Wallace RJ. Diversity and community composition of methanogenic archaea in the rumen of Scottish upland sheep assessed by different methods. PLoS One 2014; 9:e106491. [PMID: 25250654 PMCID: PMC4175461 DOI: 10.1371/journal.pone.0106491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022] Open
Abstract
Ruminal archaeomes of two mature sheep grazing in the Scottish uplands were analysed by different sequencing and analysis methods in order to compare the apparent archaeal communities. All methods revealed that the majority of methanogens belonged to the Methanobacteriales order containing the Methanobrevibacter, Methanosphaera and Methanobacteria genera. Sanger sequenced 1.3 kb 16S rRNA gene amplicons identified the main species of Methanobrevibacter present to be a SGMT Clade member Mbb. millerae (≥91% of OTUs); Methanosphaera comprised the remainder of the OTUs. The primers did not amplify ruminal Thermoplasmatales-related 16S rRNA genes. Illumina sequenced V6–V8 16S rRNA gene amplicons identified similar Methanobrevibacter spp. and Methanosphaera clades and also identified the Thermoplasmatales-related order as 13% of total archaea. Unusually, both methods concluded that Mbb. ruminantium and relatives from the same clade (RO) were almost absent. Sequences mapping to rumen 16S rRNA and mcrA gene references were extracted from Illumina metagenome data. Mapping of the metagenome data to16S rRNA gene references produced taxonomic identification to Order level including 2–3% Thermoplasmatales, but was unable to discriminate to species level. Mapping of the metagenome data to mcrA gene references resolved 69% to unclassified Methanobacteriales. Only 30% of sequences were assigned to species level clades: of the sequences assigned to Methanobrevibacter, most mapped to SGMT (16%) and RO (10%) clades. The Sanger 16S amplicon and Illumina metagenome mcrA analyses showed similar species richness (Chao1 Index 19–35), while Illumina metagenome and amplicon 16S rRNA analysis gave lower richness estimates (10–18). The values of the Shannon Index were low in all methods, indicating low richness and uneven species distribution. Thus, although much information may be extracted from the other methods, Illumina amplicon sequencing of the V6–V8 16S rRNA gene would be the method of choice for studying rumen archaeal communities.
Collapse
Affiliation(s)
- Timothy J. Snelling
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | - Buğra Genç
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Nest McKain
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | - Mick Watson
- ARK Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
| | - Sinéad M. Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Christopher J. Creevey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - R. John Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Kim WY, Hanigan MD, Lee SJ, Lee SM, Kim DH, Hyun JH, Yeo JM, Lee SS. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions. J Dairy Sci 2014; 97:7065-75. [PMID: 25200786 DOI: 10.3168/jds.2014-8064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
This experiment was designed to investigate the effects of different concentrations (0.00, 0.10, 0.15, 0.20, 0.25, and 0.30 g/L) of dried Cordyceps militaris mushroom on in vitro anaerobic ruminal microbe fermentation and methane production using soluble starch as a substrate. Ruminal fluids were collected from Korean native cattle, mixed with phosphate buffer (1:2), and incubated anaerobically at 38 °C for 3, 6, 9, 12, 24, 36, 48, and 72 h. The addition of C. militaris significantly increased total volatile fatty acid and total gas production. The molar proportion of acetate was decreased and that of propionate was increased, with a corresponding decrease in the acetate:propionate ratio. As the concentration of C. militaris increased from 0.10 to 0.30 g/L, methane and hydrogen production decreased. The decrease in methane accumulation relative to the control was 14.1, 22.0, 24.9, 39.7, and 40.9% for the 0.10, 0.15, 0.20, 0.25, and 0.30 g/L treatments, respectively. Ammonia-N concentration and numbers of live protozoa decreased linearly with increasing concentrations of C. militaris. The pH of the medium significantly decreased at the highest level of C. militaris compared with the control. In conclusion, C. militaris stimulated mixed ruminal microorganism fermentation and inhibited methane production in vitro. Therefore, C. militaris could be developed as a novel compound for antimethanogenesis.
Collapse
Affiliation(s)
- W Y Kim
- Department of Beef and Dairy Science, Korea National College of Agriculture and Fisheries, Hwaseong, 445-893, Korea
| | - M D Hanigan
- Virginia Polytechnic Institute and State University, Blacksburg 24061
| | - S J Lee
- Division of Applied Life Science (BK21), Graduate School of Gyeongsang National University, IALS, Jinju, 660-701, Korea
| | - S M Lee
- National Institute of Animal Science, Rural Development Association, Suwon, 441-706 Korea
| | - D H Kim
- National Institute of Animal Science, Rural Development Association, Suwon, 441-706 Korea
| | - J H Hyun
- Division of Applied Life Science (BK21), Graduate School of Gyeongsang National University, IALS, Jinju, 660-701, Korea
| | - J M Yeo
- Department of Beef and Dairy Science, Korea National College of Agriculture and Fisheries, Hwaseong, 445-893, Korea
| | - S S Lee
- Division of Applied Life Science (BK21), Graduate School of Gyeongsang National University, IALS, Jinju, 660-701, Korea,.
| |
Collapse
|
25
|
Carberry CA, Kenny DA, Kelly AK, Waters SM. Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets. J Anim Sci Biotechnol 2014; 5:41. [PMID: 25276350 PMCID: PMC4177383 DOI: 10.1186/2049-1891-5-41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022] Open
Abstract
Background Methane (CH4) emissions in cattle are an undesirable end product of rumen methanogenic fermentative activity as they are associated not only with negative environmental impacts but also with reduced host feed efficiency. The aim of this study was to quantify total and specific rumen microbial methanogenic populations in beef cattle divergently selected for residual feed intake (RFI) while offered (i) a low energy high forage (HF) diet followed by (ii) a high energy low forage (LF) diet. Ruminal fluid was collected from 14 high (H) and 14 low (L) RFI animals across both dietary periods. Quantitative real time PCR (qRT-PCR) analysis was conducted to quantify the abundance of total and specific rumen methanogenic microbes. Spearman correlation analysis was used to investigate the association between the relative abundance of methanogens and animal performance, rumen fermentation variables and diet digestibility. Results Abundance of methanogens, did not differ between RFI phenotypes. However, relative abundance of total and specific methanogen species was affected (P < 0.05) by diet type, with greater abundance observed while animals were offered the LF compared to the HF diet. Conclusions These findings suggest that differences in abundance of specific rumen methanogen species may not contribute to variation in CH4 emissions between efficient and inefficient animals, however dietary manipulation can influence the abundance of total and specific methanogen species.
Collapse
Affiliation(s)
- Ciara A Carberry
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland ; UCD School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Alan K Kelly
- UCD School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
26
|
Evaluation of bacterial and archaeal diversity in the rumen of Xiangxi yellow cattle (Bos taurus) fed Miscanthus sinensis or common mixed feedstuff. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0783-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Abecia L, Fondevila M, Rodríguez-Romero N, Martínez G, Yáñez-Ruiz DR. Comparative study of fermentation and methanogen community structure in the digestive tract of goats and rabbits. J Anim Physiol Anim Nutr (Berl) 2013; 97 Suppl 1:80-8. [PMID: 23639021 DOI: 10.1111/jpn.12049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/26/2012] [Indexed: 12/01/2022]
Abstract
Methane is the most important anthropogenic contribution to climate change after carbon dioxide and represents a loss of feed energy for the animal, mainly for herbivorous species. However, our knowledge about the ecology of Archaea, the microbial group responsible for methane synthesis in the gut, is very poor. Moreover, it is well known that hindgut fermentation differs from rumen fermentation. The composition of archaeal communities in fermentation compartments of goats and rabbits were investigated using DGGE to generate fingerprints of archaeal 16S rRNA gene. Ruminal contents and faeces from five Murciano-Granadina goats and caecal contents of five commercial White New Zealand rabbits were compared. Diversity profile of methanogenic archaea was carried out by PCR-DGGE. Quantification of methanogenic archaea and the abundance relative to bacteria was determined by real-time PCR. Methanogenic archaeal species were relatively constant across species. Dendrogram from DGGE of the methanogen community showed one cluster for goat samples with two sub-clusters by type of sample (ruminal and faeces). In a second cluster, samples from rabbit were grouped. No differences were found either in richness or Shannon index as diversity indexes. Although the primer sets used was developed to investigate rumen methanogenic archaeal community, primers specificity did not affect the assessment of rabbit methanogen community structure. Rumen content showed the highest number or methanogenic archaea (log₁₀ 9.36), followed by faeces (log₁₀ 8.52) and showing rabbit caecum the lower values (log₁₀ 5.52). DGGE profile showed that pre-gastric and hindgut fermenters hold a very different methanogen community. Rabbits hold a microbial community of similar complexity than that in ruminants but less abundant, which agrees with the type of fermentation profile.
Collapse
Affiliation(s)
- L Abecia
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
28
|
Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol 2013; 80:586-94. [PMID: 24212580 DOI: 10.1128/aem.03131-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methane is an undesirable end product of rumen fermentative activity because of associated environmental impacts and reduced host feed efficiency. Our study characterized the rumen microbial methanogenic community in beef cattle divergently selected for phenotypic residual feed intake (RFI) while offered a high-forage (HF) diet followed by a low-forage (LF) diet. Rumen fluid was collected from 14 high-RFI (HRFI) and 14 low-RFI (LRFI) animals at the end of both dietary periods. 16S rRNA gene clone libraries were used, and methanogen-specific tag-encoded pyrosequencing was carried out on the samples. We found that Methanobrevibacter spp. are the dominant methanogens in the rumen, with Methanobrevibacter smithii being the most abundant species. Differences in the abundance of Methanobrevibacter smithii and Methanosphaera stadtmanae genotypes were detected in the rumen of animals offered the LF compared to the HF diet while the abundance of Methanobrevibacter smithii genotypes was different between HRFI and LRFI animals irrespective of diet. Our results demonstrate that while a core group of methanogen operational taxonomic units (OTUs) exist across diet and phenotype, significant differences were observed in the distribution of genotypes within those OTUs. These changes in genotype abundance may contribute to the observed differences in methane emissions between efficient and inefficient animals.
Collapse
|
29
|
Dungan RS, Leytem AB. The characterization of microorganisms in dairy wastewater storage ponds. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:1583-1588. [PMID: 24216436 DOI: 10.2134/jeq2013.04.0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Dairy wastewaters from storage ponds are commonly land applied to irrigate forage crops. Given that diverse microbial populations are associated with cattle feces, the objective of this study was to use a culture-independent approach to characterize bacteria and archaea in dairy wastewaters. Using domain-specific primers, a region of the 16S rRNA gene was amplified from pooled DNA extracts from 30 dairy wastewaters and subsequently used to create a clone library. A total of 152 bacterial clones were examined and sequence matches were affiliated with the following groups: Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Synergistetes. Firmicutes was identified as the largest phylum, representing up to 69% of the clone sequences. Of 167 clones representing Archaea, seven genera were found to be closely related (91-100% sequence similarity) to isolates obtained from sediments and feces. Most of the putative sequence matches (98%) represented members from the class Methanomicrobia. With respect to the archaeal clones, only one of the putative sequence matches was affiliated with a methanogenic bacterium known to inhabit the rumen.
Collapse
|
30
|
Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK. The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 2013; 523:161-6. [DOI: 10.1016/j.gene.2013.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 03/12/2013] [Accepted: 04/02/2013] [Indexed: 01/12/2023]
|
31
|
Saengkerdsub S, Ricke SC. Ecology and characteristics of methanogenic archaea in animals and humans. Crit Rev Microbiol 2013; 40:97-116. [PMID: 23425063 DOI: 10.3109/1040841x.2013.763220] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, the molecular techniques used in animal-based-methanogen studies will be discussed along with how methanogens interact not only with other microorganisms but with their animal hosts as well. These methods not only indicate the diversity and levels of methanogens, but also provide insight on their ecological functions. Most molecular techniques have been based on either 16S rRNA genes or methyl-coenzyme M reductase, a ubiquitous enzyme in methanogens. The most predominant methanogens in animals belong to the genus Methanobrevibacter. Besides methanogens contributing to overall H2 balance, methanogens also have mutual interactions with other bacteria. In addition to shared metabolic synergism, the host animal retrieves additional energy from the diet when methanogens are co-colonized with other normal flora. By comparing genes in methanogens with other bacteria, possible gene transfer between methanogens and other bacteria in the same environments appears to occur. Finally, diets in conjunction with the genetics of methanogens and hosts may represent the biological framework that dictate the extent of methanogen prevalence in these ecosystems. In addition, host evolution including the immune system could serve as an additional selective pressure for methanogen colonization.
Collapse
Affiliation(s)
- Suwat Saengkerdsub
- Department of Food Science, Center for Food Safety, University of Arkansas , Fayetteville, AR , USA , and
| | | |
Collapse
|
32
|
Kong Y, Xia Y, Seviour R, Forster R, McAllister TA. Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw. FEMS Microbiol Ecol 2013; 84:302-15. [PMID: 23278338 DOI: 10.1111/1574-6941.12062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
It is clear that methanogens are responsible for ruminal methane emissions, but quantitative information about the composition of the methanogenic community in the bovine rumen is still limited. The diversity and composition of rumen methanogens in cows fed either alfalfa hay or triticale straw were examined using a full-cycle rRNA approach. Quantitative fluorescence in situ hybridization undertaken applying oligonucleotide probes designed here identified five major methanogenic populations or groups in these animals: the Methanobrevibacter TMS group (consisting of Methanobrevibacter thaueri, Methanobrevibacter millerae and Methanobrevibacter smithii), Methanbrevibacter ruminantium-, Methanosphaera stadtmanae-, Methanomicrobium mobile-, and Methanimicrococcus-related methanogens. The TMS- and M. ruminantium-related methanogens accounted for on average 46% and 41% of the total methanogenic cells in liquid (Liq) and solid (Sol) phases of the rumen contents, respectively. Other prominent methanogens in the Liq and Sol phases included members of M. stadtmanae (15% and 33%), M. mobile (17% and 12%), and Methanimicrococcus (23% and 9%). The relative abundances of these methanogens in the community varied among individual animals and across diets. No clear differences in community composition could be observed with dietary change using cloning techniques. This study extends the known biodiversity levels of the methanogenic communities in the rumen of cows.
Collapse
Affiliation(s)
- Yunhong Kong
- Department of Biological Science and Technology, Kunming University, Kunming, China
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Belanche A, de la Fuente G, Pinloche E, Newbold CJ, Balcells J. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis1. J Anim Sci 2012; 90:3924-36. [DOI: 10.2527/jas.2011-4802] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A. Belanche
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177 50013, Zaragoza, Spain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3EE, Aberystwyth, UK
| | - G. de la Fuente
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177 50013, Zaragoza, Spain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3EE, Aberystwyth, UK
| | - E. Pinloche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3EE, Aberystwyth, UK
| | - C. J. Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3EE, Aberystwyth, UK
| | - J. Balcells
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177 50013, Zaragoza, Spain
- Departament de Producció Animal, Escola Tècnica Superior d'Enginyeria Agrària, Universitat Lleida, Alcalde Rovira Roure 177, 25198 Lleida, Spain
| |
Collapse
|
35
|
Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle. Animal 2012; 4:20-9. [PMID: 22443614 DOI: 10.1017/s1751731109990681] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three methanogen 16S rRNA gene clone libraries were constructed from liquid (LM), solid (SM) and epithelium (EM) fractions taken from the rumen of Jinnan cattle in China. After the amplification by PCR using methanogen-specific primers Met86F and Met1340R, equal quantities of PCR products from the same fractions from each of the four cattle were mixed together and used to construct the three libraries. Sequence analysis showed that the 268 LM clones were divided into 35 phylotypes with 18 sequences of phylotypes affiliated with the genus Methanobrevibacter (84.3% of clones). The 135 SM clones were divided into 19 phylotypes with 11 phylotypes affiliated with the genus Methanobrevibacter (77.8%). The 267 EM clones were divided into 33 phylotypes with 15 phylotypes affiliated with the genus Methanobrevibacter (77.2%). Clones closely related to Methanomicrobium mobile and Methanobrevibacter wolinii were only found in the LM library, and those to Methanobrevibacter ruminantium and Methanobrevibacter gottschalkii only in the SM library. LM library comprised 12.4% unidentified euryarchaeal clones, SM library 23.7% and EM library 25.5%, respectively. Five phylotypes (accession number: EF055528 and EF055531-EF055534) did not belong to the Euryarchaeota sequences we had known. One possible new genus (represented by phylotype E17, accession number EF055528) belonging to Methanobacteriaceae was identified from EM library. Quantitative real-time PCR for the first time revealed that epithelium fraction had significantly higher density of methanogens, with methanogenic mcrA gene copies (9.95 log 10 (copies per gram of wet weight)) than solid (9.26, P < 0.01) and the liquid (8.44, P < 0.001). The three clone libraries also appeared different in Shannon index (EM library 2.12, LM library 2.05 and SM library 1.73). Our results showed that there were apparent differences in the methanogenic diversity and abundance in the three different fractions within the rumen of Jinnan cattle, with Methanobrevibacter species predominant in all the three libraries and with epithelium fraction having more unknown species and higher density of methanogens.
Collapse
|
36
|
Molecular diversity of methanogens in fecal samples from Bactrian camels (Camelus bactrianus) at two zoos. Res Vet Sci 2012; 93:246-9. [DOI: 10.1016/j.rvsc.2011.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022]
|
37
|
Lean breed Landrace pigs harbor fecal methanogens at higher diversity and density than obese breed Erhualian pigs. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:605289. [PMID: 22844227 PMCID: PMC3403511 DOI: 10.1155/2012/605289] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/25/2012] [Accepted: 05/28/2012] [Indexed: 12/24/2022]
Abstract
The diversity of fecal methanogens of Erhualian (obese type) and Landrace (lean type) pigs was examined using separate 16S rRNA gene libraries for each breed. A total of 763 clones were analyzed; 381 from the Erhualian library and 382 from the Landrace library were identified belonging to the genus Methanobrevibacter. Others were identified belonging to the genus Methanosphaera. The two libraries showed significant differences in diversity (P < 0.05) and composition (P < 0.0001). Only two operational taxonomic units (OTUs) were found in both libraries, whereas six OTUs were found only in the Erhualian library and 23 OTUs were found only in the Landrace library. Real-time PCR showed that the abundance of fecal methanogens in Landrace pigs was significantly higher than that in Erhualian pigs (P < 0.05). Results showed that the Landrace pig (lean) harbored a greater diversity and higher numbers of methanogen mcrA gene copies than the Erhualian pig (obese). These differences may be related to the fatness or leanness in these two pig breeds. The results provide new leads for further investigations on the fat storage of pigs or even humans.
Collapse
|
38
|
Sirohi SK, Singh N, Dagar SS, Puniya AK. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 2012; 95:1135-54. [PMID: 22782251 DOI: 10.1007/s00253-012-4262-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 12/30/2022]
Abstract
Rumen microbial community comprising of bacteria, archaea, fungi, and protozoa is characterized not only by the high population density but also by the remarkable diversity and the most complex microecological interactions existing in the biological world. This unprecedented biodiversity is quite far from full elucidation as only about 15-20 % of the rumen microbes are identified and characterized till date using conventional culturing and microscopy. However, the last two decades have witnessed a paradigm shift from cumbersome and time-consuming classical methods to nucleic acid-based molecular approaches for deciphering the rumen microbial community. These techniques are rapid, reproducible and allow both the qualitative and quantitative assessment of microbial diversity. This review describes the different molecular methods and their applications in elucidating the rumen microbial community.
Collapse
Affiliation(s)
- Sunil Kumar Sirohi
- Nutrition Biotechnology Laboratory, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | | | | | | |
Collapse
|
39
|
Tymensen LD, Beauchemin KA, McAllister TA. Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology (Reading) 2012; 158:1808-1817. [DOI: 10.1099/mic.0.057984-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lisa D. Tymensen
- Agriculture and Agri-Food Canada, Lethbridge, AB TIJ 4B1, Canada
| | | | | |
Collapse
|
40
|
OZUTSUMI Y, TAJIMA K, TAKENAKA A, ITABASHI H. ThemcrA gene and 16S rRNA gene in the phylogenetic analysis of methanogens in the rumen of faunated and unfaunated cattle. Anim Sci J 2012; 83:727-34. [DOI: 10.1111/j.1740-0929.2012.01023.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Community structure analysis of methanogens associated with rumen protozoa reveals bias in universal archaeal primers. Appl Environ Microbiol 2012; 78:4051-6. [PMID: 22447586 DOI: 10.1128/aem.07994-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The diversity of protozoan-associated methanogens in cattle was investigated using five universal archaeal small-subunit (SSU) rRNA gene primer sets. Methanobrevibacter spp. and rumen cluster C (distantly related to Thermoplasma spp.) were predominant. Significant differences in species composition among libraries indicate that some primers used previously to characterize rumen methanogens exhibit biased amplification.
Collapse
|
42
|
Diversity and abundance of the rumen and fecal methanogens in Altay sheep native to Xinjiang and the influence of diversity on methane emissions. Arch Microbiol 2011; 194:353-61. [PMID: 22038025 DOI: 10.1007/s00203-011-0757-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 10/15/2022]
Abstract
This study aims to investigate the influence of diet roughage proportion on the methanogenic communities from the rumen and fecal samples in Altay local sheep native to Xinjiang and better understand the association of methanogenic diversity or abundance with methane emissions of the ruminants. In this study, the high roughage diet was found to cause more methane emissions for either maintenance or ad-lib group, but the total methanogenic abundance was not influenced by roughage proportion and showed no significant difference between groups. Furthermore, the denaturing gradient gel electrophoresis was conducted to reveal the difference in methanogenic diversity. Phylogenetic analysis showed that the sequences obtained were divided into three groups, affiliated to the genus of Methanobrevibacter, Methanocorpusculum and an unidentified methanogenic-like group. Of these sequences, the predominant diversity from the genus of Methanobrevibacter and the unidentified methanogenic-like archaeons in the rumen was found to be significantly induced by the high roughage diet, implying that the variation of diversity at the species or strain level might have an effect on methane emissions from the rumen. Further analysis showed that five methangenic sequences from the rumen were possibly associated with the differential methane emissions.
Collapse
|
43
|
Zhou M, Chung YH, Beauchemin KA, Holtshausen L, Oba M, McAllister TA, Guan LL. Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J Appl Microbiol 2011; 111:1148-58. [PMID: 21848695 DOI: 10.1111/j.1365-2672.2011.05126.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS To investigate the relationship between ruminal methanogen community and host enteric methane (CH(4) ) production in lactating dairy cows fed diets supplemented with an exogenous fibrolytic enzyme additive. METHODS AND RESULTS Ecology of ruminal methanogens from dairy cows fed with or without exogenous fibrolytic enzymes was examined using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses and quantitative real-time PCR (qRT-PCR). The density of methanogens was not affected by the enzyme additive or sampling times, and no relationship was observed between the total methanogen population and CH(4) yield (as g per head per day or g kg(-1) DMI). The PCR-DGGE profiles consisted of 26 distinctive bands, with two bands similar to Methanogenic archaeon CH1270 negatively correlated, and one band similar to Methanobrevibacter gottschalkii strain HO positively correlated, with CH(4) yield. Three bands similar to Methanogenic archaeon CH1270 or Methanobrevibacter smithii ATCC 35061 appeared after enzyme was added. CONCLUSIONS Supplementing a dairy cow diet with an exogenous fibrolytic enzyme additive increased CH(4) yield and altered the composition of the rumen methanogen community, but not the overall density of methanogens. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to identify the correlation between methanogen ecology and host CH(4) yield from lactating dairy cows.
Collapse
Affiliation(s)
- M Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen. Appl Environ Microbiol 2011; 77:5682-7. [PMID: 21705541 DOI: 10.1128/aem.05130-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the dairy cattle industry, Holstein and Jersey are the breeds most commonly used for production. They differ in performance by various traits, such as body size, milk production, and milk composition. With increased concerns about the impact of agriculture on climate change, potential differences in other traits, such as methane emission, also need to be characterized further. Since methane is produced in the rumen by methanogenic archaea, we investigated whether the population structure of methanogen communities would differ between Holsteins and Jerseys. Breed-specific rumen methanogen 16S rRNA gene clone libraries were constructed from pooled PCR products obtained from lactating Holstein and Jersey cows, generating 180 and 185 clones, respectively. The combined 365 sequences were assigned to 55 species-level operational taxonomic units (OTUs). Twenty OTUs, representing 85% of the combined library sequences, were common to both breeds, while 23 OTUs (36 sequences) were found only in the Holstein library and 12 OTUs (18 sequences) were found only in the Jersey library, highlighting increased diversity in the Holstein library. Other differences included the observation that sequences with species-like sequence identity to Methanobrevibacter millerae were represented more highly in the Jersey breed, while Methanosphaera-related sequences and novel uncultured methanogen clones were more frequent in the Holstein library. In contrast, OTU sequences with species-level sequence identity to Methanobrevibacter ruminantium were represented similarly in both libraries. Since the sampled animals were from a single herd consisting of two breeds which were fed the same diet and maintained under the same environmental conditions, the differences we observed may be due to differences in host breed genetics.
Collapse
|
45
|
Knight T, Ronimus R, Dey D, Tootill C, Naylor G, Evans P, Molano G, Smith A, Tavendale M, Pinares-Patiño C, Clark H. Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Wright ADG, Klieve AV. Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Zhou M, McAllister T, Guan L. Molecular identification of rumen methanogens: Technologies, advances and prospects. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Jeyanathan J, Kirs M, Ronimus RS, Hoskin SO, Janssen PH. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol Ecol 2011; 76:311-26. [DOI: 10.1111/j.1574-6941.2011.01056.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 2011; 76:49-63. [PMID: 21223325 DOI: 10.1111/j.1574-6941.2010.01029.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, the collective microbial diversity in the rumen was examined by performing a meta-analysis of all the curated 16S rRNA gene (rrn) sequences deposited in the RDP database. As of November 2010, 13,478 bacterial and 3516 archaeal rrn sequences were found. The bacterial sequences were assigned to 5271 operation taxonomic units (OTUs) at species level (0.03 phylogenetic distance) representing 19 existing phyla, of which the Firmicutes (2958 OTUs), Bacteroidetes (1610 OTUs) and Proteobacteria (226 OTUs) were the most predominant. These bacterial sequences were grouped into more than 3500 OTUs at genus level (0.05 distance), but only 180 existing genera were represented. Nearly all the archaeal sequences were assigned to 943 species-level OTUs in phylum Euryarchaeota. Although clustered into 670 genus-level OTUs, only 12 existing archaeal genera were represented. Based on rarefaction analysis, the current percent coverage at species level reached 71% for bacteria and 65% for archaea. At least 78,218 bacterial and 24,480 archaeal sequences would be needed to reach 99.9% coverage. The results of this study may serve as a framework to assess the significance of individual populations to rumen functions and to guide future studies to identify the alpha and global diversity of ruminal microbiomes.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA CSIRO Livestock Industries, St Lucia, Qld, Australia
| | | | | |
Collapse
|
50
|
Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, DeSilva U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 2010; 76:7482-90. [PMID: 20851965 PMCID: PMC2976194 DOI: 10.1128/aem.00388-10] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 09/08/2010] [Indexed: 12/31/2022] Open
Abstract
High-grain adaptation programs are widely used with feedlot cattle to balance enhanced growth performance against the risk of acidosis. This adaptation to a high-grain diet from a high-forage diet is known to change the rumen microbial population structure and help establish a stable microbial population within the rumen. Therefore, to evaluate bacterial population dynamics during adaptation to a high-grain diet, 4 ruminally cannulated beef steers were adapted to a high-grain diet using a step-up diet regimen containing grain and hay at ratios of 20:80, 40:60, 60:40, and 80:20. The rumen bacterial populations were evaluated at each stage of the step-up diet after 1 week of adaptation, before the steers were transitioned to the next stage of the diet, using terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quantitative real-time PCR. The T-RFLP analysis displayed a shift in the rumen microbial population structure during the final two stages of the step-up diet. The 16S rRNA gene libraries demonstrated two distinct rumen microbial populations in hay-fed and high-grain-fed animals and detected only 24 common operational taxonomic units out of 398 and 315, respectively. The 16S rRNA gene libraries of hay-fed animals contained a significantly higher number of bacteria belonging to the phylum Fibrobacteres, whereas the 16S rRNA gene libraries of grain-fed animals contained a significantly higher number of bacteria belonging to the phylum Bacteroidetes. Real-time PCR analysis detected significant fold increases in the Megasphaera elsdenii, Streptococcus bovis, Selenomonas ruminantium, and Prevotella bryantii populations during adaptation to the high-concentrate (high-grain) diet, whereas the Butyrivibrio fibrisolvens and Fibrobacter succinogenes populations gradually decreased as the animals were adapted to the high-concentrate diet. This study evaluates the rumen microbial population using several molecular approaches and presents a broader picture of the rumen microbial population structure during adaptation to a high-grain diet from a forage diet.
Collapse
Affiliation(s)
- S. C. Fernando
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - H. T. Purvis
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - F. Z. Najar
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - L. O. Sukharnikov
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - C. R. Krehbiel
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - T. G. Nagaraja
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - B. A. Roe
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - U. DeSilva
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|