1
|
Zhao L, Hu Y, Liang L, Dhanasekaran S, Zhang X, Yang X, Wu M, Song Y, Zhang H. WSC1 Regulates the Growth, Development, Patulin Production, and Pathogenicity of Penicillium expansum Infecting Pear Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1025-1034. [PMID: 38181197 DOI: 10.1021/acs.jafc.3c07566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
In this study, the role of WSC1 in the infection of pear fruit by Penicillium expansum was investigated. The WSC1 gene was knocked out and complemented by Agrobacterium-mediated homologous recombination technology. Then, the changes in growth, development, and pathogenic processes of the knockout mutant and the complement mutant were analyzed. The results indicated that deletion of WSC1 slowed the growth rate, reduced the mycelial and spore yield, and reduced the ability to produce toxins and pathogenicity of P. expansum in pear fruits. At the same time, the deletion of WSC1 reduced the tolerance of P. expansum to cell wall stress factors, enhanced antioxidant capacity, decreased hypertonic sensitivity, decreased salt stress resistance, and was more sensitive to most metal ions. Our results confirmed that WSC1 plays an important role in maintaining cell wall integrity and responding to stress, toxin production, and the pathogenicity of P. expansum.
Collapse
Affiliation(s)
- Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, People's Republic of China
| | - Yize Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Luyi Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiangzheng Yang
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Maoyu Wu
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Zhang J, Fu B, Lin Q, Riley IT, Ding S, Chen L, Cui J, Yang L, Li H. Colonization of Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode (Heterodera filipjevi). PLoS One 2020; 15:e0232770. [PMID: 32369513 PMCID: PMC7199937 DOI: 10.1371/journal.pone.0232770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cereal cyst nematodes cause serious yield losses of wheat in Hunaghuai winter wheat growing region in China. Beauveria bassiana 08F04 isolated from the surface of cysts is a promising biological control agent for cereal cyst nematodes. As the colonization capacity is a crucial criteria to assess biocontrol effectiveness for a microbial agent candidate, we aimed to label B. bassiana 08F04 for efficient monitoring of colonization in the soil. The binary pCAM-gfp plasmid containing sgfp and hph was integrated into B. bassiana 08F04 using the Agrobacterium tumefaciens-mediated transformation. The transformation caused a significant change in mycelial and conidial yields, and in extracellular chitinase activity in some transformants. The cultural filtrates of some transformants also decreased acetylcholinesterase activity and the survival of Heterodera filipjevi second-stage juveniles relative to the wild-type strain. One transformant (G10) had a growth rate and biocontrol efficacy similar to the wild-type strain, so it was used for a pilot study of B. bassiana colonization conducted over 13 weeks. Real-time PCR results and CFU counts revealed that the population of G10 increased quickly over the first 3 weeks, then decreased slowly over the following 4 weeks before stabilizing. In addition, the application of wild-type B. bassiana 08F04 and transformant G10 significantly reduced the number of H. filipjevi females in roots by 64.4% and 60.2%, respectively. The results of this study have practical applications for ecological, biological and functional studies of B. bassiana 08F04 and for bionematicide registration.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Qitong Lin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ian T. Riley
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Shengli Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jiangkuan Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (LY); (HL)
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- * E-mail: (LY); (HL)
| |
Collapse
|
3
|
The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. Appl Microbiol Biotechnol 2016; 100:5491-503. [DOI: 10.1007/s00253-016-7308-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022]
|
4
|
Sørensen LQ, Lysøe E, Larsen JE, Khorsand-Jamal P, Nielsen KF, Frandsen RJN. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system. BMC Mol Biol 2014; 15:15. [PMID: 25048842 PMCID: PMC4133957 DOI: 10.1186/1471-2199-15-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. RESULTS The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. CONCLUSION The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome modifications. New USER-Bricks with additional functionality can easily be added to the system by future users. The optimized protocol for ATMT of F. avenaceum represents the first reported targeted genome modification by double homologous recombination of this plant pathogen and will allow for future characterization of this fungus. Functional linkage of FaPKS6 to the production of the mycotoxin fusaristatin A serves as a first testimony to this.
Collapse
Affiliation(s)
| | | | | | | | | | - Rasmus John Normand Frandsen
- Eukaryotic Molecular Cell Biology Group, Department of Systems Biology, The Technical University of Denmark, Søltofts Plads building 223, DK-2800 Kgs,, Lyngby, Denmark.
| |
Collapse
|