1
|
Brulin L, Ducrocq S, Even G, Sanchez MP, Martel S, Merlin S, Audebert C, Croiseau P, Estellé J. Characterization of bovine vaginal microbiota using 16S rRNA sequencing: associations with host fertility, longevity, health, and production. Sci Rep 2024; 14:19277. [PMID: 39164272 PMCID: PMC11336114 DOI: 10.1038/s41598-024-69715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Due to their potential impact on the host's phenotype, organ-specific microbiotas are receiving increasing attention in several animal species, including cattle. Specifically, the vaginal microbiota of ruminants is attracting growing interest, due to its predicted critical role on cows' reproductive functions in livestock contexts. Notably, fertility disorders represent a leading cause for culling, and additional research would help to fill relevant knowledge gaps. In the present study, we aimed to characterize the vaginal microbiota of a large cohort of 1171 female dairy cattle from 19 commercial herds in Northern France. Vaginal samples were collected using a swab and the composition of the microbiota was determined through 16S rRNA sequencing targeting the V3-V4 hypervariable regions. Initial analyses allowed us to define the core bacterial vaginal microbiota, comprising all the taxa observed in more than 90% of the animals. Consequently, four phyla, 16 families, 14 genera and a single amplicon sequence variant (ASV) met the criteria, suggesting a high diversity of bacterial vaginal microbiota within the studied population. This variability was partially attributed to various environmental factors such as the herd, sampling season, parity, and lactation stage. Next, we identified numerous significant associations between the diversity and composition of the vaginal microbiota and several traits related to host's production and reproduction performance, as well as reproductive tract health. Specifically, 169 genera were associated with at least one trait, with 69% of them significantly associated with multiple traits. Among these, the abundances of Negativibacillus and Ruminobacter were positively correlated with the cows' performances (i.e., longevity, production performances). Other genera showed mixed relationships with the phenotypes, such as Leptotrichia being overabundant in cows with improved fertility records and reproductive tract health, but also in cows with lower production levels. Overall, the numerous associations underscored the complex interactions between the vaginal microbiota and its host. Given the large number of samples collected from commercial farms and the diversity of the phenotypes considered, this study marks an initial step towards a better understanding of the intimate relationship between the vaginal microbiota and the dairy cow's phenotypes.
Collapse
Affiliation(s)
- L Brulin
- GD Biotech-Gènes Diffusion, 59000, Lille, France.
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - S Ducrocq
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - G Even
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - M P Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - S Martel
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - S Merlin
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - C Audebert
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - P Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
2
|
Viquez C, Rojas-Gätjens D, Mesén-Porras E, Avendaño R, Sasa M, Lomonte B, Chavarría M. Venom-microbiomics of eight species of Neotropical spiders from the Theraphosidae family. J Appl Microbiol 2024; 135:lxae113. [PMID: 38692848 DOI: 10.1093/jambio/lxae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
AIM Tarantulas are one of the largest predatory arthropods in tropical regions. Tarantulas though not lethal to humans, their venomous bite kills small animals and insect upon which they prey. To understand the abiotic and biotic components involved in Neotropical tarantula bites, we conducted a venom-microbiomics study in eight species from Costa Rica. METHODS AND RESULTS We determined that the toxin profiles of tarantula venom are highly diverse using shotgun proteomics; the most frequently encountered toxins were ω-Ap2 toxin, neprilysin-1, and several teraphotoxins. Through culture-independent and culture-dependent methods, we determined the microbiota present in the venom and excreta to evaluate the presence of pathogens that could contribute to primary infections in animals, including humans. The presence of opportunistic pathogens with hemolytic activity was observed, with a prominence of Stenotrophomonas in the venoms. Other bacteria found in venoms and excreta with hemolytic activity included members of the genera Serratia, Bacillus, Acinetobacter, Microbacterium, and Morganella. CONCLUSIONS Our data shed light on the venom- and gut-microbiome associated with Neotropical tarantulas. This information may be useful for treating bites from these arthropods in both humans and farm animals, while also providing insight into the toxins and biodiversity of this little-explored microenvironment.
Collapse
Affiliation(s)
- Carlos Viquez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Oficina subregional de Alajuela, Sistema Nacional de Áreas de Conservación (SINAC), Ministerio Ambiente y Energía (MINAE), Alajuela 20101, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Esteve Mesén-Porras
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Museo de Zoología, Centro de Investigación de Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
3
|
Crippen TL, Kim D, Poole TL, Swiger SL, Anderson RC. The bacterial and archaeal communities of flies, manure, lagoons, and troughs at a working dairy. Front Microbiol 2024; 14:1327841. [PMID: 38449879 PMCID: PMC10915237 DOI: 10.3389/fmicb.2023.1327841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Background Fundamental investigations into the location, load, and persistence of microbes, whether beneficial or detrimental, are scarce. Many questions about the retention and survival of microbes on various surfaces, as well as the load necessary for spread, exist. To answer these questions, we must know more about where to find various microbes and in what concentrations, the composition of the microbial communities, and the extent of dissemination between various elements. This study investigated the diversity, composition, and relative abundance of the communities associated with manure, lagoons, troughs, house flies, and stable flies present at a dairy, implementing two different free-stall management systems: flow-through and cross-vent. Shotgun metagenomics at the community level was used to compare the microbiomes within the dairy, allowing confident interpretation at the species level. Results The results showed that there were significant difference in microbial composition between not only each of the dairy elements but also management styles. The primary exceptions were the microbiomes of the house fly and the stable fly. Their compositions heavily overlapped with one another, but interestingly, not with the other components sampled. Additionally, both species of flies carried more pathogens than the other elements of the dairy, indicating that they may not share these organisms with the other components, or that the environments offered by the other components are unsatisfactory for the survival of some pathogens.. Conclusion The lack of overlapping pathogen profiles suggests a lack of transfer from flies to other dairy elements. Dairy health data, showing a low incidence of disease, suggests minimal sharing of bacteria by the flies at a level required for infection, given the health program of this dairy. While flies did carry a multitude of pathogenic bacteria, the mere presence of the bacteria associated with the flies did not necessarily translate into high risk leading to morbidity and mortality at this dairy. Thus, using flies as the sole sentinel of dairy health may not be appropriate for all bacterial pathogens or dairies.
Collapse
Affiliation(s)
- Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| | - Dongmin Kim
- Department of Entomology, Texas A & M University, College Station, TX, United States
| | - Toni L. Poole
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| | - Sonja L. Swiger
- Entomology Extension, Texas AgriLife, Texas A & M University, College Station, TX, United States
| | - Robin C. Anderson
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| |
Collapse
|
4
|
Coates LC, Durham SD, Storms DH, Magnuson AD, Van Hekken DL, Plumier BM, Finley JW, Fukagawa NK, Tomasula PM, Lemay DG, Picklo MJ, Barile D, Kalscheur KF, Kable ME. Associations among Milk Microbiota, Milk Fatty Acids, Milk Glycans, and Inflammation from Lactating Holstein Cows. Microbiol Spectr 2023; 11:e0402022. [PMID: 37074179 PMCID: PMC10269560 DOI: 10.1128/spectrum.04020-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
Milk oligosaccharides (MOs) can be prebiotic and antiadhesive, while fatty acids (MFAs) can be antimicrobial. Both have been associated with milk microbes or mammary gland inflammation in humans. Relationships between these milk components and milk microbes or inflammation have not been determined for cows and could help elucidate a novel approach for the dairy industry to promote desired milk microbial composition for improvement of milk quality and reduction of milk waste. We aimed to determine relationships among milk microbiota, MFAs, MOs, lactose, and somatic cell counts (SCC) from Holstein cows, using our previously published data. Raw milk samples were collected at three time points, ranging from early to late lactation. Data were analyzed using linear mixed-effects modeling and repeated-measures correlation. Unsaturated MFA and short-chain MFA had mostly negative relationships with potentially pathogenic genera, including Corynebacterium, Pseudomonas, and an unknown Enterobacteriaceae genus but numerous positive relationships with symbionts Bifidobacterium and Bacteroides. Conversely, many MOs were positively correlated with potentially pathogenic genera (e.g., Corynebacterium, Enterococcus, and Pseudomonas), and numerous MOs were negatively correlated with the symbiont Bifidobacterium. The neutral, nonfucosylated MO composed of eight hexoses had a positive relationship with SCC, while lactose had a negative relationship with SCC. One interpretation of these trends might be that in milk, MFAs disrupt primarily pathogenic bacterial cells, causing a relative increase in abundance of beneficial microbial taxa, while MOs respond to and act on pathogenic taxa primarily through antiadhesive methods. Further research is needed to confirm the potential mechanisms driving these correlations. IMPORTANCE Bovine milk can harbor microbes that cause mastitis, milk spoilage, and foodborne illness. Fatty acids found in milk can be antimicrobial and milk oligosaccharides can have antiadhesive, prebiotic, and immune-modulatory effects. Relationships among milk microbes, fatty acids, oligosaccharides, and inflammation have been reported for humans. To our knowledge, associations among the milk microbial composition, fatty acids, oligosaccharides, and lactose have not been reported for healthy lactating cows. Identifying these potential relationships in bovine milk will inform future efforts to characterize direct and indirect interactions of the milk components with the milk microbiota. Since many milk components are associated with herd management practices, determining if these milk components impact milk microbes may provide valuable information for dairy cow management and breeding practices aimed at minimizing harmful and spoilage-causing microbes in raw milk.
Collapse
Affiliation(s)
- Laurynne C. Coates
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Sierra D. Durham
- University of California, Davis, Food Science and Technology, Davis, California, USA
| | - David H. Storms
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Andrew D. Magnuson
- U.S. Department of Agriculture—Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Diane L. Van Hekken
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - Benjamin M. Plumier
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - John W. Finley
- U.S. Department of Agriculture—Agricultural Research Service, George Washington Carver Center, Beltsville, Maryland, USA
| | - Naomi K. Fukagawa
- U.S. Department of Agriculture—Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Peggy M. Tomasula
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - Danielle G. Lemay
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Matthew J. Picklo
- U.S. Department of Agriculture—Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Daniela Barile
- University of California, Davis, Food Science and Technology, Davis, California, USA
| | - Kenneth F. Kalscheur
- U.S. Department of Agriculture—Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, Wisconsin, USA
| | - Mary E. Kable
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| |
Collapse
|
5
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
6
|
Hoque MN, Rahman MS, Islam T, Sultana M, Crandall KA, Hossain MA. Induction of mastitis by cow-to-mouse fecal and milk microbiota transplantation causes microbiome dysbiosis and genomic functional perturbation in mice. Anim Microbiome 2022; 4:43. [PMID: 35794639 PMCID: PMC9258091 DOI: 10.1186/s42523-022-00193-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mastitis pathogenesis involves a wide range of opportunistic and apparently resident microorganims including bacteria, viruses and archaea. In dairy animals, microbes reside in the host, interact with environment and evade the host immune system, providing a potential for host-tropism to favor mastitis pathogenesis. To understand the host-tropism phenomena of bovine-tropic mastitis microbiomes, we developed a cow-to-mouse mastitis model. METHODS A cow-to-mouse mastitis model was established by fecal microbiota transplantation (FMT) and milk microbiota transplantation (MMT) to pregnant mice to assess microbiome dysbiosis and genomic functional perturbations through shotgun whole metagenome sequencing (WMS) along with histopathological changes in mice mammary gland and colon tissues. RESULTS The cow-to-mouse FMT and MMT from clinical mastitis (CM) cows induced mastitis syndromes in mice as evidenced by histopathological changes in mammary gland and colon tissues. The WMS of 24 samples including six milk (CM = 3, healthy; H = 3), six fecal (CM = 4, H = 2) samples from cows, and six fecal (CM = 4, H = 2) and six mammary tissue (CM = 3, H = 3) samples from mice generating 517.14 million reads (average: 21.55 million reads/sample) mapped to 2191 bacterial, 94 viral and 54 archaeal genomes. The Kruskal-Wallis test revealed significant differences (p = 0.009) in diversity, composition, and relative abundances in microbiomes between CM- and H-metagenomes. These differences in microbiome composition were mostly represented by Pseudomonas aeruginosa, Lactobacillus crispatus, Klebsiella oxytoca, Enterococcus faecalis, Pantoea dispersa in CM-cows (feces and milk), and Muribaculum spp., Duncaniella spp., Muribaculum intestinale, Bifidobacterium animalis, Escherichia coli, Staphylococcus aureus, Massilia oculi, Ralstonia pickettii in CM-mice (feces and mammary tissues). Different species of Clostridia, Bacteroida, Actinobacteria, Flavobacteriia and Betaproteobacteria had a strong co-occurrence and positive correlation as the indicator species of murine mastitis. However, both CM cows and mice shared few mastitis-associated microbial taxa (1.14%) and functional pathways regardless of conservation of mastitis syndromes, indicating the higher discrepancy in mastitis-associated microbiomes among lactating mammals. CONCLUSIONS We successfully induced mastitis by FMT and MMT that resulted in microbiome dysbiosis and genomic functional perturbations in mice. This study induced mastitis in a mouse model through FMT and MMT, which might be useful for further studies- focused on pathogen(s) involved in mastitis, their cross-talk among themselves and the host.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Keith A Crandall
- Computational Biology Institute and Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
7
|
Hu X, Li S, Mu R, Guo J, Zhao C, Cao Y, Zhang N, Fu Y. The Rumen Microbiota Contributes to the Development of Mastitis in Dairy Cows. Microbiol Spectr 2022; 10:e0251221. [PMID: 35196821 PMCID: PMC8865570 DOI: 10.1128/spectrum.02512-21] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
Mastitis, a highly prevalent disease in dairy cows, is commonly caused by local infection of the mammary gland. Our previous studies have suggested that the gut microbiota plays an important role in the development of mastitis in mice. However, the effects of rumen microbiota on bovine mastitis and the related mechanisms remain unclear. In this study, we assessed the effects and mechanisms of rumen microbiota on bovine mastitis based on the subacute rumen acidosis (SARA) model induced by feeding Holstein Frisian cows a high-concentrate diet for 8 weeks. Then, the inflammatory responses in the mammary gland and the bacterial communities of rumen fluid, feces, and milk were analyzed. The results showed that SARA induced mastitis symptoms in the mammary gland; activated a systemic inflammatory response; and increased the permeability of the blood-milk barrier, gut barrier, and rumen barrier. Further research showed that lipopolysaccharides (LPS), derived from the gut of SARA cows, translocated into the blood and accumulated in the mammary glands. Furthermore, the abundance of Stenotrophomonas was increased in the rumen of SARA cows, and mastitis was induced by oral administration of Stenotrophomonas in lactating mice. In conclusion, our findings suggested that mastitis is induced by exogenous pathogenic microorganisms as well as by endogenous pathogenic factors. Specifically, the elevated abundance of Stenotrophomonas in the rumen and LPS translocation from the rumen to the mammary gland were important endogenous factors that induced mastitis. Our study provides a foundation for novel therapeutic strategies that target the rumen microbiota in cow mastitis. IMPORTANCE Mastitis is a common and frequently occurring disease of humans and animals, especially in dairy farming, which has caused huge economic losses and brought harmful substance residues, drug-resistant bacteria, and other public health risks. The traditional viewpoint indicates that mastitis is mainly caused by exogenous pathogenic bacteria infecting the mammary gland. Our study found that the occurrence of mastitis was induced by the endogenous pathway. Evidence has shown that rumen-derived LPS enters the mammary gland through blood circulation, damaging the blood-milk barrier and then inducing inflammation of the mammary gland in cows. In addition, a higher abundance of Stenotrophomonas in the rumen was closely associated with the development of mastitis. This study provides a basis for novel therapeutic strategies that exploit the rumen microbiota against mastitis in cows.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Shuang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ruiying Mu
- Linqu County Animal Husbandry Development Center, Linqu, People's Republic of China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
8
|
Gomes VCL, Del Piero F, Langohr IM, Aguiar LH, Anderson A, Sones JL, Pinto CR. Equine focal mucopurulent placentitis associated with
Stenotrophomonas maltophilia. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. C. L. Gomes
- Department of Veterinary Clinical Sciences Louisiana State University Baton Rouge LouisianaUSA
| | - F. Del Piero
- Department of Pathobiological Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - I. M. Langohr
- Department of Pathobiological Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - L. H. Aguiar
- Department of Veterinary Clinical Sciences Louisiana State University Baton Rouge LouisianaUSA
| | - A. Anderson
- Department of Pathobiological Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - J. L. Sones
- Department of Veterinary Clinical Sciences Louisiana State University Baton Rouge LouisianaUSA
| | - C. R. Pinto
- Department of Veterinary Clinical Sciences Louisiana State University Baton Rouge LouisianaUSA
| |
Collapse
|
9
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
10
|
Shimizu T, Tsuyuki Y, Shimoike K, Iyori K, Miyamoto T, Harada K. Antimicrobial resistance and multilocus sequence types of Stenotrophomonas maltophilia isolated from dogs and cats in Japan. J Med Microbiol 2021; 70. [PMID: 33826489 DOI: 10.1099/jmm.0.001344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As the representative multidrug-resistant pathogen, Stenotrophomonas maltophilia has multiple intrinsic and acquired resistances, including carbapenem resistance. In companion animals, the antimicrobial susceptibility and sequence types (STs) of S. maltophilia are not well understood due to its limited isolation rate. We investigated the antimicrobial susceptibilities and multilocus sequence types (MLSTs) of 38 S. maltophilia strains isolated from dogs and cats in Japan. Prevalence of resistance was detected for imipenem (100 %), aztreonam (94.7 %), piperacillin (65.8 %), trimethoprim-sulfamethoxazole (65.8 %), and ceftazidime (60.5 %). Rates of resistances to chloramphenicol, minocycline, and levofloxacin were low (2.6-5.3 %). MLST analysis revealed that all 38 strains were assigned to 34 STs, including 11 previously reported STs and 23 newly identified STs. Phylogenetic analysis of MLSTs enabled categorization of 13 isolates (34.2 %) into genogroup 6, which is a major genogroup of human isolates. Multinational surveillance would be needed to clarify the significance of antimicrobial-resistant S. maltophilia isolates from companion animals.
Collapse
Affiliation(s)
- Takae Shimizu
- Department of Veterinary Internal Medicine, Tottori University, Minami 4-101, Koyama, Tottori-shi, Tottori 680-8553, Japan
| | - Yuzo Tsuyuki
- Sanritsu Zelkova Veterinary Laboratory Inc., 2-5-8 Kuji, Takatsu, Kawasaki-shi, Kanagawa 213-0032, Japan
| | - Kenta Shimoike
- Vet Derm Tokyo Inc., 910 Shobuzawa, Fujisawa-shi, Kanagawa 252-0823, Japan
| | - Keita Iyori
- Vet Derm Tokyo Inc., 910 Shobuzawa, Fujisawa-shi, Kanagawa 252-0823, Japan
| | - Tadashi Miyamoto
- Miyamoto Animal Hospital, 2265-8 Kurokawa, Yamaguchi-shi, Yamaguchi 753-0851, Japan
| | - Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, Minami 4-101, Koyama, Tottori-shi, Tottori 680-8553, Japan
| |
Collapse
|
11
|
Farhan MG, Abd El-Hamid MI, Hassan MN. Propidium monoazide conventional PCR and DNA sequencing: detection of negative culture bacterial pathogens causing subclinical mastitis. J Appl Microbiol 2020; 128:1595-1605. [PMID: 31965693 DOI: 10.1111/jam.14584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 11/29/2022]
Abstract
AIMS This study was conducted to early detect the negative culture bacterial pathogens causing subclinical mastitis for the fast diagnosis of the disease and the reduction of some milk-transmitted pathogenic bacteria to human consumers. METHODS AND RESULTS A total of 171 positive California mastitis test (CMT) milk samples collected from asymptomatic dairy cows in Sharkia Governorate, Egypt were examined by conventional bacteriological methods. The obtained results revealed that Streptococcus species (77·2%), followed by Staphylococcus species (48·6%) and Escherichia coli (25·7%) were the most predominant bacterial pathogens isolated from positive culture milk samples, whereas Enterobacter and Pseudomonas species were the lowest ones (1·2%, for each). Herein, 13 (7.6%) negative culture milk samples were subjected to propidium monoazide (PMA) conventional PCR assay, followed by DNA sequencing of purified PCR amplicons. Sequence analysis identified seven different types of negative culture bacterial pathogens comprising as following; 4 Enterococcus hirae, 2 Bacillus cereus, 2 Staphylococcus aureus, 1 Bacillus mycoides, 1 Bacillus subtilis, 1 Enterococcus faecium and 1 Escherichia coli. CONCLUSIONS All the detected negative culture bacterial pathogens by PMA-PCR assay, followed by DNA sequencing were incriminated in causing subclinical mastitis disease and had serious implications on human public health through consumption of milk contaminated with those recovered bacterial pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY The used methods could be useful in the routine detection of negative culture bacterial pathogens present in milk and consequently, it will help in the rapid diagnosis of subclinical mastitis disease and the reduction of many milk-transmitted diseases to human.
Collapse
Affiliation(s)
- M G Farhan
- Department of Animal Management and Treatment, Fakous Veterinary Administration, Sharkia Governorate, Fakous, Egypt
| | - M I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M N Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Composition of the teat canal and intramammary microbiota of dairy cows subjected to antimicrobial dry cow therapy and internal teat sealant. J Dairy Sci 2018; 101:10191-10205. [PMID: 30172408 DOI: 10.3168/jds.2018-14858] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
Antimicrobial dry cow therapy (DCT) is an important component of mastitis control programs aimed to eliminate existing intramammary infections and prevent the development of new ones during the dry period. However, to what extent the microbiota profiles of different niches of the udder change during the dry period and following administration of DCT remains poorly understood. Therefore, the main objective of the present study was to qualitatively evaluate dynamics of the microbiota of teat canal (TC) and mammary secretions (i.e., milk and colostrum) of healthy udder quarters subjected to DCT using a long-acting antimicrobial product, containing penicillin G and novobiocin, in combination with internal teat sealant. To this end, TC swabs (n = 58) and their corresponding milk (n = 29) and colostrum samples (n = 29) were collected at the time of drying off and immediately after calving from clinically healthy udder quarters of Holstein dairy cows from a commercial dairy farm. All samples were subjected to DNA extraction and high-throughput sequencing of the V1-V2 hypervariable regions of bacterial 16S rRNA genes. Overall, shifts were more pronounced within the microbiota of mammary secretions than the TC. In particular, microbiota of colostrum samples collected immediately after calving were less species-rich compared with the pre-DCT milk samples. Proportions of several bacterial genera belonging to the phylum Proteobacteria, including Pseudomonas, Stenotrophomonas, and unclassified Alcaligenaceae, were enriched within the microbiota of colostrum samples, whereas Firmicutes genera, including Butyrivibrio, unclassified Clostridiaceae, and unclassified Bacillales, were overrepresented in pre-DCT milk microbiota. Apart from shifts in the proportion of main bacterial genera and phyla, qualitative analysis revealed a high degree of commonality between pre-DCT and postpartum microbiota of both niches of the udder. Most importantly, a considerable number of bacterial genera and species commonly regarded as mastitis pathogens or opportunists (or both), including Staphylococcus spp., unclassified Enterobacteriaceae, and Corynebacterium spp., were shared between pre-DCT and postpartum microbiota of mammary secretions. Percentage of shared bacterial genera and species was even higher between pre-DCT and postpartum microbiota of TC samples, suggesting that the DCT approach of the present study had limited success in eliminating a considerable proportion of bacteria during the dry period.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Okuno NT, Freire IR, Segundo RTRS, Silva CR, Marin VA. Polymerase Chain Reaction Assay for Detection of Stenotrophomonas maltophilia in Cheese Samples Based on the smeT Gene. Curr Microbiol 2018; 75:1555-1559. [DOI: 10.1007/s00284-018-1559-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|
14
|
Jayol A, Corlouer C, Haenni M, Darty M, Maillard K, Desroches M, Lamy B, Jumas-Bilak E, Madec JY, Decousser JW. Are animals a source of Stenotrophomonas maltophilia in human infections? Contributions of a nationwide molecular study. Eur J Clin Microbiol Infect Dis 2018; 37:1039-1045. [PMID: 29488120 DOI: 10.1007/s10096-018-3203-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/26/2018] [Indexed: 01/25/2023]
Abstract
Stenotrophomonas maltophilia (Sm) is an archetypal environmental opportunistic bacterium responsible for health care-associated infections. The role of animals in human Sm infections is unknown. This study aims to reveal the genetic and phylogenetic relationships between pathogenic strains of Sm, both animal and human, and identify a putative role for animals as a reservoir in human infection. We phenotypically and genotypically characterized 61 Sm strains responsible for animal infections (mainly respiratory tract infections in horses) from a French nationwide veterinary laboratory network. We tested antimicrobial susceptibility and performed MLST and genogrouping using the concatenation of the seven housekeeping genes from the original MLST scheme. Excluding the eight untypeable strains owing to the lack of gene amplification, only 10 out of the 53 strains yielded a known ST (ST5, ST39, ST162, ST8, ST27, ST126, ST131). The genogroup distribution highlighted not only genogroups (genogroups 5 and 9) comprised exclusively of animal strains but also genogroups shared by human and animal strains. Interestingly, these shared genogroups were primarily groups 2 and 6, which have previously been identified as the two most frequent genogroups among human-pathogenic Sm strains, especially among respiratory pathogens. The antimicrobial susceptibility testing underlined the presence of acquired resistance: 18.8 and 7.5% of the tested isolates were resistant to the sulfonamide-trimethoprim combination and ciprofloxacin, respectively. Animal strains of Sm shared phylogenetic traits with some of the most successful human strains. The exact relationships between the human and animal strains, and the genetic support of these common traits, need to be determined.
Collapse
Affiliation(s)
- Aurélie Jayol
- Laboratory of Bacteriology and Infection Control, Department of Microbiology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, 94000, Créteil, France
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (LEA-IAME Paris, France), University of Fribourg, Fribourg, Switzerland
| | - Camille Corlouer
- Laboratory of Bacteriology and Infection Control, Department of Microbiology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, 94000, Créteil, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES, Lyon, France
| | - Mélanie Darty
- Next Generation Sequencing Platform, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | | | - Marine Desroches
- Laboratory of Bacteriology and Infection Control, Department of Microbiology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, 94000, Créteil, France
| | - Brigitte Lamy
- Department of Bacteriology, Archet 2 Hospital, Nice Academic Hospital, Nice, France
- INSERM U1065, C3M, Team 6, Nice, France
| | - Estelle Jumas-Bilak
- Infection Control Department, Montpellier University Hospital, Montpellier, France
- UMR5569 HydroSciences Montpellier, Equipe «Pathogènes Hydriques Santé Environnements», Faculté de Pharmacie, 15 Avenue Charles Flahault BP 14491 34093 Montpellier UMR 5119 ECOSYM, Equipe Pathogènes et Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université Montpellier 1, Montpellier, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES, Lyon, France
| | - Jean-Winoc Decousser
- Laboratory of Bacteriology and Infection Control, Department of Microbiology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, 94000, Créteil, France.
- EA 7380 Dynamyc Université Paris-Est Créteil (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), Faculté de Médecine de Créteil, 8 rue du Général Sarrail, 94010, Créteil, France.
| |
Collapse
|
15
|
Denet E, Vasselon V, Burdin B, Nazaret S, Favre-Bonté S. Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties. PLoS One 2018; 13:e0192308. [PMID: 29401523 PMCID: PMC5798789 DOI: 10.1371/journal.pone.0192308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Stenotrophomonas maltophilia is found ubiquitously in the environment and is an important emerging nosocomial pathogen. S. maltophilia has been recently described as an Amoebae-Resistant Bacteria (ARB) that exists as part of the microbiome of various free-living amoebae (FLA) from waters. Co-culture approaches with Vermamoeba vermiformis demonstrated the ability of this bacterium to resist amoebal digestion. In the present study, we assessed the survival and growth of six environmental and one clinical S. maltophilia strains within two amoebal species: Acanthamoeba castellanii and Willaertia magna. We also evaluated bacterial virulence properties using the social amoeba Dictyostelium discoideum. A co-culture approach was carried out over 96 hours and the abundance of S. maltophilia cells was measured using quantitative PCR and culture approach. The presence of bacteria inside the amoeba was confirmed using confocal microscopy. Our results showed that some S. maltophilia strains were able to multiply within both amoebae and exhibited multiplication rates up to 17.5 and 1166 for A. castellanii and W. magna, respectively. In contrast, some strains were unable to multiply in either amoeba. Out of the six environmental S. maltophilia strains tested, one was found to be virulent. Surprisingly, this strain previously isolated from a soil amoeba, Micriamoeba, was unable to infect both amoebal species tested. We further performed an assay with a mutant strain of S. maltophilia BurA1 lacking the efflux pump ebyCAB gene and found the mutant to be more virulent and more efficient for intra-amoebal multiplication. Overall, the results obtained strongly indicated that free-living amoebae could be an important ecological niche for S. maltophilia.
Collapse
Affiliation(s)
- Elodie Denet
- Université Lyon 1, UMR CNRS 5557/UMR INRA 1418 Ecologie Microbienne, Villeurbanne, France
- * E-mail:
| | - Valentin Vasselon
- Université Lyon 1, UMR CNRS 5557/UMR INRA 1418 Ecologie Microbienne, Villeurbanne, France
| | - Béatrice Burdin
- Université Lyon 1, Centre Technologique des Microstructures, Villeurbanne, France
| | - Sylvie Nazaret
- Université Lyon 1, UMR CNRS 5557/UMR INRA 1418 Ecologie Microbienne, Villeurbanne, France
| | - Sabine Favre-Bonté
- Université Lyon 1, UMR CNRS 5557/UMR INRA 1418 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
16
|
Li N, Wang Y, You C, Ren J, Chen W, Zheng H, Liu Z. Variation in Raw Milk Microbiota Throughout 12 Months and the Impact of Weather Conditions. Sci Rep 2018; 8:2371. [PMID: 29402950 PMCID: PMC5799204 DOI: 10.1038/s41598-018-20862-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Milk microbiota has a great influence on the safety and quality of dairy products. However, few studies have investigated the variations of bacterial composition in raw milk. In this study, raw milk samples were collected in 12 successive months, and their bacterial compositions were determined by 16 S rRNA gene sequencing. The highest diversity of bacterial composition was detected in June, while the lowest was in December. Firmicutes, Proteobacteria and Actinobacteria were the most abundant phyla and exhibited a counter-balanced relationship. Pseudomonas, Lactococcus and Acinetobacter were the most prevalent genera (>1%), and a tiny core microbiota (Acinetobacter and Pseudomonas) was observed. Temperature and humidity were the determining factors for most variation in bacterial compositions at both the phylum and genus levels. Higher abundances of Pseudomonas, Propionibacterium and Flavobacterium were correlated with low temperature. Furthermore, Pseudomonas/Propionibacterium and Lactobacillus/Bifidobacterium were two pairs of genera that had synergistic effects. Associations between the microbiota and milk quality parameters were analyzed. The abundances of Propionibacterium and Pseudoalteromonas were negatively correlated to total bacterial count, which meant that they helped to maintain milk quality, while a series of environmental microorganisms contributed to the spoilage of raw milk.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Jing Ren
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Wanyi Chen
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China. .,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, IRD, Fudan University, Shanghai, 200032, China.
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China.
| |
Collapse
|
17
|
Wang Y, He T, Shen Z, Wu C. Antimicrobial Resistance in Stenotrophomonas spp. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0005-2017. [PMID: 29350131 PMCID: PMC11633551 DOI: 10.1128/microbiolspec.arba-0005-2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Bacteria of the genus Stenotrophomonas are found throughout the environment, in close association with soil, sewage, and plants. Stenotrophomonas maltophilia, the first member of this genus, is the predominant species, observed in soil, water, plants, animals, and humans. It is also an opportunistic pathogen associated with the increased number of infections in both humans and animals in recent years. In this article, we summarize all Stenotrophomonas species (mainly S. maltophilia) isolated from animals and food products of animal origin and further distinguish all isolates based on antimicrobial susceptibility and resistance phenotypes. The various mechanisms of both intrinsic and acquired antimicrobial resistance, which were mainly identified in S. maltophilia isolates of nosocomial infections, have been classified as follows: multidrug efflux pumps; resistance to β-lactams, aminoglycosides, quinolones, trimethoprim-sulfamethoxazole, and phenicols; and alteration of lipopolysaccharide and two-component regulatory systems. The dissemination, coselection, and persistence of resistance determinants among S. maltophilia isolates have also been elaborated.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Tao He
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Patel RJ, Pandit RJ, Bhatt VD, Kunjadia PD, Nauriyal DS, Koringa PG, Joshi CG, Kunjadia AP. Metagenomic approach to study the bacterial community in clinical and subclinical mastitis in buffalo. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Gelasakis AI, Angelidis AS, Giannakou R, Filioussis G, Kalamaki MS, Arsenos G. Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds. J Dairy Sci 2016; 99:3698-3708. [PMID: 26898280 DOI: 10.3168/jds.2015-10694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/09/2016] [Indexed: 11/19/2022]
Abstract
The objectives of this study were (1) to record the major pathogens associated with subclinical mastitis (SCM), (2) to calculate their incidence during the milking period, and (3) to estimate the effect of SCM on daily milk yield (DMY) for goats reared under low-input management schemes. Dairy goats (n=590) of Skopelos and indigenous Greek breeds from 4 herds were randomly selected for the study. The study included monthly monitoring, milk yield recording, and bacteriological analyses of milk of individual goats during the course of 2 successive milking periods. Incidence and cumulative incidence were calculated for SCM cases. Moreover, 2 mixed linear regression models were built to assess the effects of (1) SCM and (2) different pathogens isolated from SCM cases, on DMY. The estimated incidence and cumulative incidence of SCM for the first and the second year of the study were 69.5 and 96.4 new cases of SCM/1,000 goat-months, and 24.1 and 31.7%, respectively. A total of 755 milk samples were subjected to microbiological examination, resulting in 661 positive cultures. Coagulase-negative and coagulase-positive staphylococci were isolated from 50.2 and 34.5% of the positive cultures, respectively. The incidence of infections (new infections per 1,000 goat-months) for the first and the second year of the study were 34 and 53 for coagulase-negative staphylococci, 23 and 28 for coagulase-positive staphylococci, 3 and 5 for Streptococcus/Enterococcus spp., and 5.5 and 9.1 for gram-negative bacteria. Goats with SCM had lower DMY when compared with goats without SCM (ca. 47g/d, corresponding to a 5.7% decrease in DMY). In particular, goats with SCM due to coagulase-positive staphylococci infection produced approximately 80g/d less milk (a reduction of ca. 9.7%) compared with uninfected ones, whereas SCM due to gram-negative bacteria resulted in approximately 15% reduction in DMY. Investigating the epidemiology of SCM and its effects on production traits is critical for the establishment of effective preventive measures against SCM and for the assessment of the sustainability of production in low-input dairy goat herds.
Collapse
Affiliation(s)
- A I Gelasakis
- Department of Animal Production, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece.
| | - A S Angelidis
- Laboratory of Milk Hygiene and Technology, Department of Food Hygiene and Technology, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - R Giannakou
- Department of Animal Production, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - G Filioussis
- Laboratory of Microbiology and Infectious Diseases, Department of Infectious, Parasitic Diseases and Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - M S Kalamaki
- Department of Animal Production, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - G Arsenos
- Department of Animal Production, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| |
Collapse
|
20
|
Deredjian A, Alliot N, Blanchard L, Brothier E, Anane M, Cambier P, Jolivet C, Khelil MN, Nazaret S, Saby N, Thioulouse J, Favre-Bonté S. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Res Microbiol 2016; 167:313-324. [PMID: 26774914 DOI: 10.1016/j.resmic.2016.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/31/2015] [Accepted: 01/02/2016] [Indexed: 12/13/2022]
Abstract
The occurrence of Stenotrophomonas maltophilia was monitored in organic amendments and agricultural soils from various sites in France and Tunisia. S. maltophilia was detected in horse and bovine manures, and its abundance ranged from 0.294 (±0.509) × 10(3) to 880 (±33.4) × 10(3) CFU (g drywt)(-1) of sample. S. maltophilia was recovered from most tested soil samples (104/124). Its abundance varied from 0.33 (±0.52) to 414 (±50) × 10(3) CFU (g drywt)(-1) of soil and was not related to soil characteristics. Antibiotic resistance properties of a set of environmental strains were compared to a clinical set, and revealed a high diversity of antibiotic resistance profiles, given both the numbers of resistance and the phenotypes. Manure strains showed resistance phenotypes, with most of the strains resisting between 7 and 9 antibiotics. While French soil strains were sensitive to most antibiotics tested, some Tunisian strains displayed resistance phenotypes close to those of clinical French strains. Screening for metal resistance among 66 soil strains showed a positive relationship between antibiotic and metal resistance. However, the prevalence of antibiotic resistance phenotypes in the studied sites was not related to the metal content in soil samples.
Collapse
Affiliation(s)
- Amélie Deredjian
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Nolwenn Alliot
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Laurine Blanchard
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Elisabeth Brothier
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Makram Anane
- Centre de Recherches et de Technologies des Eaux, Laboratoire Traitement et Recyclage des Eaux, LP 95, 2050, Hammam-Lif, Tunisia.
| | - Philippe Cambier
- INRA AgroParisTech, ECOSYS, 1 avenue Lucien Brétignières, 78850 Thiverval-Grignon, France.
| | - Claudy Jolivet
- INRA, Unité InfoSol, 2163 Avenue de la Pomme de Pin, 45075 Orléans, France.
| | | | - Sylvie Nazaret
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| | - Nicolas Saby
- INRA, Unité InfoSol, 2163 Avenue de la Pomme de Pin, 45075 Orléans, France.
| | - Jean Thioulouse
- Université de Lyon, Université Lyon 1, CNRS UMR 5558 Biométrie et Biologie Evolutive, Villeurbanne cedex F-69622, France.
| | - Sabine Favre-Bonté
- Université de Lyon, Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, Villeurbanne cedex F-69622, France.
| |
Collapse
|
21
|
Zhang R, Huo W, Zhu W, Mao S. Characterization of bacterial community of raw milk from dairy cows during subacute ruminal acidosis challenge by high-throughput sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1072-9. [PMID: 24961605 DOI: 10.1002/jsfa.6800] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/08/2014] [Accepted: 06/19/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Four cannulated primiparous Holstein dairy cows (84 ± 25 DIM) were used in a 2 × 2 crossover experimental design. The two diets contained 40% (low-concentrate diet, or control diet, LC) and 70% (high-concentrate diet, or SARA induction diet, HC) concentrate feeds respectively. Milk samples were collected on days 17, 18 and 19 of each experimental period. DNA was extracted from each milk sample, and pyrosequencing was applied to analyse the milk microbial community. RESULTS Regardless of diet, the bacterial community of milk was dominated by Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes. HC feeding showed a higher proportion of some mastitis-causing pathogen bacteria, such as Stenotrophomonas maltophilia, Streptococcus parauberis and Brevundimonas diminuta, as well as of psychrotrophic bacteria, such as Pseudomonas, Brevundimonas, Sphingobacterium, Alcaligenes, Enterobacter and Lactobacillus. However, the diversity of the milk bacterial microbiota (ACE, Chao, and Shannon index) was not affected by HC feeding. CONCLUSION To the best of our knowledge, this is the first report on the use of pyrosequencing for evaluating the impacts of nutrition on changes in the composition of milk microbiota. These findings indicate that HC feeding may increase the risk of dairy cows suffering from mastitis, decrease the organoleptic quality of raw milk and dairy products, and limit the shelf life of processed fluid milk.
Collapse
Affiliation(s)
- Ruiyang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
22
|
Characterization of maltocin P28, a novel phage tail-like bacteriocin from Stenotrophomonas maltophilia. Appl Environ Microbiol 2013; 79:5593-600. [PMID: 23835182 DOI: 10.1128/aem.01648-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is an important global opportunistic pathogen for which limited therapeutics are available because of the emergence of multidrug-resistant strains. A novel bacteriocin, maltocin P28, which is produced by S. maltophilia strain P28, may be the first identified phage tail-like bacteriocin from S. maltophilia. Maltocin P28 resembles a contractile but nonflexible phage tail structure based on electron microscopy, and it is sensitive to trypsin, proteinase K, and heat. SDS-PAGE analysis of maltocin P28 revealed two major protein bands of approximately 43 and 20 kDa. The N-terminal amino acid residues of these two major subunits were sequenced, and the maltocin P28 gene cluster was located on the S. maltophilia P28 chromosome. Our sequence analysis results indicate that this maltocin gene cluster consists of 23 open reading frames (ORFs), and that its gene organization is similar to that of the P2 phage genome and R2 pyocin gene cluster. ORF17 and ORF18 encode the two major structural proteins, which correspond to gpFI (tail sheath) and gpFII (tail tube) of P2 phage, respectively. We found that maltocin P28 had bactericidal activity against 38 of 81 tested S. maltophilia strains. Therefore, maltocin P28 is a promising therapeutic substitute for antibiotics for S. maltophilia infections.
Collapse
|
23
|
Kuehn JS, Gorden PJ, Munro D, Rong R, Dong Q, Plummer PJ, Wang C, Phillips GJ. Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis. PLoS One 2013; 8:e61959. [PMID: 23634219 PMCID: PMC3636265 DOI: 10.1371/journal.pone.0061959] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/17/2013] [Indexed: 01/02/2023] Open
Abstract
Inflammation and infection of bovine mammary glands, commonly known as mastitis, imposes significant losses each year in the dairy industry worldwide. While several different bacterial species have been identified as causative agents of mastitis, many clinical mastitis cases remain culture negative, even after enrichment for bacterial growth. To understand the basis for this increasingly common phenomenon, the composition of bacterial communities from milk samples was analyzed using culture independent pyrosequencing of amplicons of 16S ribosomal RNA genes (16S rDNA). Comparisons were made of the microbial community composition of culture negative milk samples from mastitic quarters with that of non-mastitic quarters from the same animals. Genomic DNA from culture-negative clinical and healthy quarter sample pairs was isolated, and amplicon libraries were prepared using indexed primers specific to the V1–V2 region of bacterial 16S rRNA genes and sequenced using the Roche 454 GS FLX with titanium chemistry. Evaluation of the taxonomic composition of these samples revealed significant differences in the microbiota in milk from mastitic and healthy quarters. Statistical analysis identified seven bacterial genera that may be mainly responsible for the observed microbial community differences between mastitic and healthy quarters. Collectively, these results provide evidence that cases of culture negative mastitis can be associated with bacterial species that may be present below culture detection thresholds used here. The application of culture-independent bacterial community profiling represents a powerful approach to understand long-standing questions in animal health and disease.
Collapse
Affiliation(s)
- Joanna S. Kuehn
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Patrick J. Gorden
- Department of Veterinary Diagnostics and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Daniel Munro
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Ruichen Rong
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Qunfeng Dong
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- Department of Computer Science and Engineering, University of North Texas, Denton, Texas, United States of America
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Diagnostics and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Chong Wang
- Department of Veterinary Diagnostics and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Gregory J. Phillips
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|