1
|
Xie L, Huang L, Fang X, Zha J, Su Y. Assessing Liver Function in Rat Models of Acute Liver Failure Using Single-Photon Emission Computed Tomography and Cytokine Levels. PLoS One 2025; 20:e0323531. [PMID: 40333907 PMCID: PMC12057927 DOI: 10.1371/journal.pone.0323531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE To evaluate liver function using dynamic hepatobiliary single-photon emission computed tomography (SPECT) in different rat models of acute liver failure. METHODS Twenty-four 6-8-week-old male Sprague-Dawley rats (weight 190-200 g) were evenly divided into four groups. Acute liver failure was induced by intraperitoneal injection of D-galactosamine (D-GalN, 600 mg/kg) and lipopolysaccharide (LPS, 10 µg/kg), common bile duct ligation surgery, and removing 70% of the liver mass. The fourth group served as the control without intervention. The time-activity curves for the liver and heart were generated from dynamic SPECT scans with 99mTc-ethylene hepatobiliary iminodiacetic acid (EHIDA). Image-derived functional parameters (5-minute heart/liver index [HLI5] and 15-minute receptor index [LHL15]) were calculated. Furthermore, correlations of image-derived parameters with serum interleukin-6 (IL-6) levels, liver aspartate aminotransferase (AST) and alanine transaminase (ALT) levels, and liver mRNA expression levels of tumor necrosis factor-α (TNF-α) and chemokine ligand-10 (CXCL-10) were analyzed. RESULTS All animals in the experimental groups exhibited varying degrees of liver damage. The SPECT images and indexes (HLI5 and LHL15) of the experimental groups significantly differed from those of the control group (P < 0.05). In the experimental groups, serum IL-6 levels and liver mRNA levels of TNF-α and CXCL-10 were significantly higher, while liver AST and ALT levels were significantly lower than those in the control group (P < 0.05). CONCLUSION Using SPECT with 99mTc-EHIDA, along with the calculated indexes and levels of various cytokines, presents a dependable method for assessing liver function.
Collapse
Affiliation(s)
- Long Xie
- Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Liqun Huang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xueting Fang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jinshun Zha
- Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yingrui Su
- Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Fei X, Li Z, Pan Z, Liang Y, Tan C, Cheng D, Yang Q. Avermectin B1 mediates antitumor activity and induces autophagy in osteosarcoma through the AMPK/ULK1 signaling pathway. Cancer Chemother Pharmacol 2024; 94:599-613. [PMID: 39235611 PMCID: PMC11438708 DOI: 10.1007/s00280-024-04695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor in children and adolescents. Conventional chemotherapy remains unsatisfactory due to drug toxicity and resistance issues. Therefore, there is an urgent need to develop more effective treatments for advanced osteosarcoma. In the current study, we focused on evaluating the anticancer efficacy of avermectin B1, a novel avermectin analog, against osteosarcoma cells. METHODS The half-inhibitory concentration of avermectin B1 was calculated in three osteosarcoma cell lines. Then, functional experiments were conducted to evaluate the effects of avermectin B1 on cell proliferation, the cell cycle, apoptosis and autophagy. Moreover, the AMPK/ULK1 signaling pathway was detected by Western blot assay. Finally, the in vivo effect of avermectin B1 on tumor growth and metastasis was investigated using the xenograft mouse model. To examine the role of the AMPK/ULK1 pathway, an AMPK-specific inhibitor (dorsomorphin) was used in combination with avermectin B1. RESULTS Avermectin B1 inhibited the proliferation of osteosarcoma cells in a dose-dependent manner based on CCK8 and colony formation assays. Then, it was found to inhibit migration and invasion by wound healing assay and cell migration and invasion assay. In addition, avermectin B1 induced osteosarcoma cell apoptosis and autophagy. In vivo, avermectin B1 effectively inhibited osteosarcoma cell growth and pulmonary metastasis. Mechanistically, avermectin B1 activated the AMPK/ULK1 pathway to exert antitumor activity in vitro and in vivo. Dorsomorphin significantly attenuated the Avermectin B1-induced antitumor activities. CONCLUSION Our study suggests that avermectin B1 is a potential agent to treat osteosarcoma cells through the AMPK/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Xiang Fei
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Zhaohui Li
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Zhen Pan
- Department of Orthopedics, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yonghui Liang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Chen Tan
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China
| | - Dongdong Cheng
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China.
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
3
|
Yin H, Feng Y, Duan Y, Ma S, Guo Z, Wei Y. Hydrogen gas alleviates lipopolysaccharide-induced acute lung injury and inflammatory response in mice. J Inflamm (Lond) 2022; 19:16. [PMID: 36253774 PMCID: PMC9575233 DOI: 10.1186/s12950-022-00314-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Background Chronic inflammation and oxidant/antioxidant imbalance are two main pathological features associated with lipopolysaccharide (LPS)-induced acute lung injury (ALI). The following study investigated the protective role of hydrogen (H2), a gaseous molecule without known toxicity, in LPS-induced lung injury in mice and explored its potential molecular mechanisms. Methods Mice were randomly divided into three groups: H2 control group, LPS group, and LPS + H2 group. The mice were euthanized at the indicated time points, and the specimens were collected. The 72 h survival rates, cytokines contents, pathological changes, expression of Toll-like receptor 4 (TLR4), and oxidative stress indicators were analyzed. Moreover, under different culture conditions, RAW 264.7 mouse macrophages were used to investigate the potential molecular mechanisms of H2 in vitro. Cells were divided into the following groups: PBS group, LPS group, and LPS + H2 group. The cell viability, intracellular ROS, cytokines, and expression of TLR4 and nuclear factor kappa-B (NF-κB) were observed. Results Hydrogen inhalation increased the survival rate to 80%, reduced LPS-induced lung damage, and decreased inflammatory cytokine release in LPS mice. Besides, H2 showed remarked anti-oxidative activity to reduce the MDA and NO contents in the lung. In vitro data further indicated that H2 down-regulates the levels of ROS, NO, TNF-α, IL-6, and IL-1β in LPS-stimulated macrophages and inhibits the expression of TLR4 and the activation of nuclear factor kappa-B (NF-κB). Conclusion Hydrogen gas alleviates lipopolysaccharide-induced acute lung injury and inflammatory response most probably through the TLR4-NF-κB pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00314-x.
Collapse
Affiliation(s)
- Hongling Yin
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Yajing Feng
- grid.24516.340000000123704535Department of Center ICU, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Yi Duan
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Shaolin Ma
- grid.24516.340000000123704535Department of Critical Care Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Zhongliang Guo
- grid.452753.20000 0004 1799 2798Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Youzhen Wei
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| |
Collapse
|
4
|
Castillejos-López M, Torres-Espíndola LM, Huerta-Cruz JC, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Higuera-Iglesias A, Camarena Á, Torres-Soria AK, Salinas-Lara C, Fernández-Plata R, Alvarado-Vásquez N, Solís-Chagoyán H, Ruiz V, Aquino-Gálvez A. Ivermectin: A Controversial Focal Point during the COVID-19 Pandemic. Life (Basel) 2022; 12:1384. [PMID: 36143420 PMCID: PMC9502658 DOI: 10.3390/life12091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 pandemic has confirmed the apocalyptic predictions that virologists have been making for several decades. The challenge the world is facing is that of trying to find a possible treatment, and a viable and expedient option for addressing this challenge is the repurposing of drugs. However, in some cases, although these drugs are approved for use in humans, the mechanisms of action involved are unknown. In this sense, to justify its therapeutic application to a new disease, it is ideal, but not necessary, to know the basic mechanisms of action involved in a drug's biological effects. This review compiled the available information regarding the various effects attributed to Ivermectin. The controversy over its use for the treatment of COVID-19 is demonstrated by this report that considers the proposal unfeasible because the therapeutic doses proposed to achieve this effect cannot be achieved. However, due to the urgent need to find a treatment, an exhaustive and impartial review is necessary in order to integrate the knowledge that exists, to date, of the possible mechanisms through which the treatment may be helpful in defining safe doses and schedules of Ivermectin.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | | | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Anjarath Higuera-Iglesias
- Departamento de Investigación en Epidemiología Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángel Camarena
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Rosario Fernández-Plata
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Héctor Solís-Chagoyán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
5
|
Chen S, Wu J, Li M, Sun Q, Gong Z, Letcher RJ, Liu C. A high-throughput screening assay for identification of chemicals with liver tumor promoting potential using a transgenic zebrafish line. CHEMOSPHERE 2022; 297:134169. [PMID: 35245594 DOI: 10.1016/j.chemosphere.2022.134169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Traditional high-throughput methods for identification of chemicals with liver tumor promotion potentials are based on established cancer cell lines, and rapid and cost-effective high-throughput screening assays in whole organisms are presently lacking. In this study, a transgenic zebrafish liver cancer model was employed to develop a method that could be used to identify chemicals with liver tumor promotion effect quickly and accurately. The method consisted of three parts, including exposure preparation, exposure process and image acquisition. In brief, after chemical exposure for 7 days, 96-well plate exposure system for zebrafish larvae was assessed by microplate reader. Then, the liver cancer promoting potential chemicals were evaluated by field area and field average intensity of fluorescence. The results were further validated by conducting histopathological examination. Our data demonstrated that the high-throughput screening assay developed in this study was reproducible and could be used to rapidly screen chemicals with liver tumor promoting potentials by using tris-(2-chloropropyl)-phosphate (TDCIPP) as a positive control. Furthermore, some other positive chemicals found in previous studies and environmental compounds were assessed using the established method. Results indicated that 86.7% of the positive chemicals and five environmental compounds out of seventeen compounds could enhance liver tumor progression.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Wu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Kim SY, Hassan AHE, Chung KS, Kim SY, Han HS, Lee HH, Jung SH, Lee KY, Shin JS, Jang E, Yoon S, Lee YS, Lee KT. Mosloflavone-Resveratrol Hybrid TMS-HDMF-5z Exhibits Potent In Vitro and In Vivo Anti-Inflammatory Effects Through NF-κB, AP-1, and JAK/STAT Inactivation. Front Pharmacol 2022; 13:857789. [PMID: 35529447 PMCID: PMC9068937 DOI: 10.3389/fphar.2022.857789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
TMS-HDMF-5z is a hybrid of the natural products mosloflavone and resveratrol. It was discovered to show potent inhibitory effects against lipopolysaccharide (LPS)-induced production of inflammatory mediators in RAW 264.7 macrophages. However, its mechanism of action is unknown. Hence this study aimed to demonstrate and explore in vitro and in vivo anti-inflammatory effects of TMS-HDMF-5z and its mechanism of action employing RAW 264.7 macrophages and carrageenan-induced hind paw edema. This work revealed that TMS-HDMF-5z suppressed the LPS-induced inducible nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein, mRNA, and promoter binding levels and tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and interferon-β (IFN-β) at the mRNA expression in RAW 264.7 macrophages. The results showed that TMS-HDMF-5z reduced the transcription and DNA binding activities of nuclear factor-κB (NF-κB) through inhibiting nuclear translocation of p65 and phosphorylation of κB inhibitor α (IκBα), IκB kinase (IKK), and TGF-β activated kinase 1 (TAK1). Additionally, TMS-HDMF-5z attenuated the LPS-induced transcriptional and DNA binding activities of activator protein-1 (AP-1) by suppressing nuclear translocation of phosphorylated c-Fos, c-Jun, and activating transcription factor 2 (ATF2). TMS-HDMF-5z also reduced the LPS-induced phosphorylation of Janus kinase 1/2 (JAK1/2), signal transducers and activators of transcription 1/3 (STAT1/3), p38 mitogen-activated protein kinase (MAPK), and MAPK-activated protein kinase 2 (MK2). In rats, TMS-HDMF-5z alleviated carrageenan-induced hind paw edema through the suppressing iNOS and COX-2 via NF-κB, AP-1, and STAT1/3 inactivation. Collectively, the TMS-HDMF-5z-mediated inhibition of NF-κB, AP-1, and STAT1/3 offer an opportunity for the development of a potential treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Seo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ahmed H E Hassan
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul, South Korea.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Su-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Seang-Hwan Jung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Kwang-Young Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul, South Korea
| | - Seolmin Yoon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea.,Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea.,Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, South Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
7
|
Chaccour C, Abizanda G, Irigoyen-Barrio Á, Casellas A, Aldaz A, Martínez-Galán F, Hammann F, Gil AG. Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats. Sci Rep 2020; 10:17073. [PMID: 33051517 PMCID: PMC7555481 DOI: 10.1038/s41598-020-74084-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ivermectin is a widely used antiparasitic drug with known efficacy against several single-strain RNA viruses. Recent data shows significant reduction of SARS-CoV-2 replication in vitro by ivermectin concentrations not achievable with safe doses orally. Inhaled therapy has been used with success for other antiparasitics. An ethanol-based ivermectin formulation was administered once to 14 rats using a nebulizer capable of delivering particles with alveolar deposition. Rats were randomly assigned into three target dosing groups, lower dose (80-90 mg/kg), higher dose (110-140 mg/kg) or ethanol vehicle only. A toxicology profile including behavioral and weight monitoring, full blood count, biochemistry, necropsy and histological examination of the lungs was conducted. The pharmacokinetic profile of ivermectin in plasma and lungs was determined in all animals. There were no relevant changes in behavior or body weight. There was a delayed elevation in muscle enzymes compatible with rhabdomyolysis, that was also seen in the control group and has been attributed to the ethanol dose which was up to 11 g/kg in some animals. There were no histological anomalies in the lungs of any rat. Male animals received a higher ivermectin dose adjusted by adipose weight and reached higher plasma concentrations than females in the same dosing group (mean Cmax 86.2 ng/ml vs. 26.2 ng/ml in the lower dose group and 152 ng/ml vs. 51.8 ng/ml in the higher dose group). All subjects had detectable ivermectin concentrations in the lungs at seven days post intervention, up to 524.3 ng/g for high-dose male and 27.3 ng/g for low-dose females. nebulized ivermectin can reach pharmacodynamic concentrations in the lung tissue of rats, additional experiments are required to assess the safety of this formulation in larger animals.
Collapse
Affiliation(s)
- Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain.
- Ifakara Health Institute, 67501, Ifakara, United Republic of Tanzania.
- Facultad de Medicina, Universidad de Navarra, 31008, Pamplona, Spain.
| | - Gloria Abizanda
- Centro de Investigación Médica Aplicada, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Ángel Irigoyen-Barrio
- Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008, Pamplona, Spain
- Drug Development Unit Universidad de Navarra, 31008, Pamplona, Spain
| | - Aina Casellas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain
- Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Azucena Aldaz
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008, Pamplona, Spain
| | | | - Felix Hammann
- Department of General Internal Medicine, Clinical Pharmacology and Toxicology, Inselspital, Bern, University Hospital, 3010, Bern, Switzerland
| | - Ana Gloria Gil
- Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008, Pamplona, Spain
- Drug Development Unit Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|
8
|
Zhang H, Sha J, Feng X, Hu X, Chen Y, Li B, Fan H. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3β/STAT3-NF-κB signaling pathway in rats. Int Immunopharmacol 2019; 74:105717. [PMID: 31254953 DOI: 10.1016/j.intimp.2019.105717] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) is a serious complication of sepsis and an important cause of death in intensive care. Studies have shown that DEX can inhibit inflammation. However, the anti-inflammatory effect and protective mechanism of DEX in lipopolysaccharide (LPS) induced ALI are still unclear. ALI model was established by intraperitoneal injection of LPS (10 mg/kg) in Sprague-Dawley (SD) male rats. Firstly, at 4, 6, 8, 12 and 24 h after LPS treatment, lung injury including pathologic histology, lung edema, and inflammation were detected. The optimal time point for lung injury was determined to be 12 h, at which time DEX was added to further test. Furthermore, STAT3 inhibitor (NSC74859) and GSK-3β inhibitor (SB216763) were added to verify the role of STAT3, GSK-3β and NF-κB in ameliorated ALI. Our results show that DEX pretreatment significantly decreased lung Wet-to-Dry weight (W/D) ratio and MPO activity and ameliorated LPS induced lung histopathological alterations. In addition, we confirmed that DEX can increased the phosphorylation of STAT3 and GSK-3β, and inhibit the phosphorylation of nuclear factor-κB (NF-κB) p65 in the inflammatory response induced by LPS. What's more, NSC74859 inhibited the phosphorylation of STAT3 and reversed the protect effect of DEX on LPS. SB216763 inhibited the phosphorylation of NF-κB and reversed the damage effect of LPS and plays the same anti-inflammatory effect as DEX. In summary, our data demonstrated that DEX can ameliorate ALI induced by LPS through GSK-3β/STAT3-NF-κB pathway.
Collapse
Affiliation(s)
- Huayun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jichen Sha
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
9
|
Potential mechanisms underlying the protective effects of salvianic acid A against atherosclerosis in vivo and vitro. Biomed Pharmacother 2019; 109:945-956. [DOI: 10.1016/j.biopha.2018.10.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022] Open
|
10
|
Guo S, Jiang K, Wu H, Yang C, Yang Y, Yang J, Zhao G, Deng G. Magnoflorine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Suppressing NF-κB and MAPK Activation. Front Pharmacol 2018; 9:982. [PMID: 30214410 PMCID: PMC6125611 DOI: 10.3389/fphar.2018.00982] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 01/27/2023] Open
Abstract
Acute lung injury (ALI) which is featured by a strong pulmonary inflammation, is a major cause of morbidity and mortality in critically ill patients. Magnoflorine, a quaternary alkaloid isolated from Chinese herb Magnolia or Aristolochia, has been reported to have potent anti-inflammatory properties. However, the effect of magnoflorine on lipopolysaccharide (LPS)-induced ALI in mice has not been reported. The purpose of the present study is to investigate the anti-inflammatory effect of magnoflorine on LPS-induced ALI and elucidate its possible molecular mechanisms in RAW264.7 cells. The results of histopathological changes as well as the myeloperoxidase (MPO) activity indicated that magnoflorine significantly alleviated the lung injury induced by LPS. In addition, qPCR results showed that magnoflorine dose-dependently decreased the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. Immunofluorescence assay also confirmed that the level of Toll-like receptor 4 (TLR4) induced by LPS was inhibited by magnoflorine treatment. Further experiments were performed using Western blotting to detect the expression of related proteins in the NF-κB and MAPK signaling pathways. The results showed that magnoflorine suppressed the levels of phosphorylated p65, IκBα, p38, ERK, and JNK. In conclusion, all data indicate that magnoflorine could protect against LPS-induced inflammation in ALI at least partially by inhibiting TLR4-mediated NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Anti-inflammatory effects and mechanism of the total flavonoids from Artemisia scoparia Waldst. et kit. in vitro and in vivo. Biomed Pharmacother 2018; 104:390-403. [PMID: 29787986 DOI: 10.1016/j.biopha.2018.05.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/30/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Artemisia scoparia Waldst. et Kit. is traditionally used for the treatment of jaundice urinary retention, itching wet sores, infectious icteric hepatitis and influenza in Uighur medicine. This study aimed to further illuminate the anti-inflammatory effects and mechanism of the total flavonoids (ASTF) from Artemisia scoparia Waldst. et Kit. In vitro, RAW 264.7 cells were pretreated with ASTF 1 h before stimulation with LPS (1 μg/mL) for 24 h. Then, the concentrations of NO, PGE2, TNF-α, IL-6 and MCP-1 in the medium were determined. Intracellular oxidative stress was detected using DCFH-DA. Immunofluorescent analysis, western blot and qRT-PCR were carried out to illuminate the mechanism of anti-inflammatory effects of ASTF. In vivo, mice were given an intragastric administration of ASTF 1 h before an intranasal administration of LPS. After 24 h, bronchoalveolar lavage fluid (BALF) was collected to measure the number of total cells, macrophage and neutrophils. The levels of TNF-α and IL-6 in BALF were quantified by ELISA kits. Lung specimens were isolated for histopathological examinations and lung wet-to-dry weight (W/D) ratio. We found that ASTF significantly inhibited the production of NO, PGE2, TNF-α, IL-6, MCP-1 and reactive oxygen species (ROS) in LPS-stimulated RAW 264.7 cells. ASTF can obviously inhibit the degredation of IκBa and inhibit the nucleus translocations of p-NF-κB p65, p-ERK1/2 and p-p38 in RAW 264.7 cells stimulated by LPS. ASTF also markedly decreased the protein and mRNA expression of TNF-α and IL-6 in a dose-dependent manner. When pretreated with ASTF, alveolar hemorrhage and neutrophil infiltration, as well as pulmonary histopathologic changes, were substantially suppressed in lung tissues in the murine acute lung injury model. The lung wet-to-dry weight (W/D) ratio was strongly decreased. These results suggested that ASTF showed important anti-inflammatory activity and might provide protective effects against LPS-induced ALI. The anti-inflammatory effect of ASTF might attribute to its suppression of NF-κB and MAPK signaling pathway.
Collapse
|
12
|
Paeoniflorin Ameliorates Atherosclerosis by Suppressing TLR4-Mediated NF-κB Activation. Inflammation 2017; 40:2042-2051. [DOI: 10.1007/s10753-017-0644-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Lee HH, Shin JS, Lee WS, Ryu B, Jang DS, Lee KT. Biflorin, Isolated from the Flower Buds of Syzygium aromaticum L., Suppresses LPS-Induced Inflammatory Mediators via STAT1 Inactivation in Macrophages and Protects Mice from Endotoxin Shock. JOURNAL OF NATURAL PRODUCTS 2016; 79:711-720. [PMID: 26977531 DOI: 10.1021/acs.jnatprod.5b00609] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 μM, respectively) was more potent than 2 (IC50 > 60 and 46.0 μM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1.
Collapse
Affiliation(s)
- Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, ‡Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, §Reactive Oxygen Species Medical Research Center College of Pharmacy, and ⊥Department of Physiology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, ‡Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, §Reactive Oxygen Species Medical Research Center College of Pharmacy, and ⊥Department of Physiology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Woo-Seok Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, ‡Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, §Reactive Oxygen Species Medical Research Center College of Pharmacy, and ⊥Department of Physiology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Byeol Ryu
- Department of Pharmaceutical Biochemistry, College of Pharmacy, ‡Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, §Reactive Oxygen Species Medical Research Center College of Pharmacy, and ⊥Department of Physiology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Dae Sik Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, ‡Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, §Reactive Oxygen Species Medical Research Center College of Pharmacy, and ⊥Department of Physiology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, ‡Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, §Reactive Oxygen Species Medical Research Center College of Pharmacy, and ⊥Department of Physiology, School of Medicine, Kyung Hee University , Seoul 130-701, Republic of Korea
| |
Collapse
|
14
|
Niu X, Wang Y, Li W, Zhang H, Wang X, Mu Q, He Z, Yao H. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway. Int Immunopharmacol 2015; 29:779-786. [PMID: 26391063 DOI: 10.1016/j.intimp.2015.08.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/06/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Yu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Hailin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qingli Mu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huan Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
15
|
Chen T, Mou Y, Tan J, Wei L, Qiao Y, Wei T, Xiang P, Peng S, Zhang Y, Huang Z, Ji H. The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2015; 25:55-64. [PMID: 25614226 DOI: 10.1016/j.intimp.2015.01.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/10/2014] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
CDDO-Me, initiated in a phase II clinical trial, is a potential useful therapeutic agent for cancer and inflammatory dysfunctions, whereas the therapeutic efficacy of CDDO-Me on LPS-induced acute lung injury (ALI) has not been reported as yet. The purpose of the present study was to explore the protective effect of CDDO-Me on LPS-induced ALI in mice and to investigate its possible mechanism. BalB/c mice received CDDO-Me (0.5mg/kg, 2mg/kg) or dexamethasone (5mg/kg) intraperitoneally 1h before LPS stimulation and were sacrificed 6h later. W/D ratio, lung MPO activity, number of total cells and neutrophils, pulmonary histopathology, IL-6, IL-1β, and TNF-α in the BALF were assessed. Furthermore, we estimated iNOS, IL-6, IL-1β, and TNF-α mRNA expression and NO production as well as the activation of the three main MAPKs, AkT, IκB-α and p65. Pretreatment with CDDO-Me significantly ameliorated W/D ratio, lung MPO activity, inflammatory cell infiltration, and inflammatory cytokine production in BALF from the in vivo study. Additionally, CDDO-Me had beneficial effects on the intervention for pathogenesis process at molecular, protein and transcriptional levels in vitro. These analytical results provided evidence that CDDO-Me could be a potential therapeutic candidate for treating LPS-induced ALI.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yi Mou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Jiani Tan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Linlin Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yixue Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Tingting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Pengjun Xiang
- School of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Sixun Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
16
|
Xie X, Sun S, Zhong W, Soromou LW, Zhou X, Wei M, Ren Y, Ding Y. Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2014; 19:103-9. [DOI: 10.1016/j.intimp.2013.12.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 11/25/2022]
|
17
|
Wu Q, Li R, Soromou LW, Chen N, Yuan X, Sun G, Li B, Feng H. p-Synephrine suppresses lipopolysaccharide-induced acute lung injury by inhibition of the NF-κB signaling pathway. Inflamm Res 2014; 63:429-39. [PMID: 24487736 DOI: 10.1007/s00011-014-0715-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/06/2013] [Accepted: 01/22/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE We investigated whether p-synephrine exerts potent anti-inflammatory effects against acute lung injury (ALI) induced by lipopolysaccharide (LPS) in vivo, and we further investigated the inhibitory mechanism of p-synephrine in LPS-induced ALI. METHODS Lipopolysaccharide (0.5 mg/kg) was instilled intranasally in phosphate-buffered saline to induce acute lung injury, and 6, 24, and 48 h after LPS was given, bronchoalveolar lavage fluid was obtained to measure pro-inflammatory mediator. We also evaluated the effects of p-synephrine on LPS-induced the severity of pulmonary injury. The phosphorylation of nuclear factor-κB (NF-κB) p65 protein was analyzed by Western blotting. RESULTS Our data showed that p-synephrine significantly reduced the amount of inflammatory cells, the lung wet-to-dry weight (W/D) ratio, reactive oxygen species, myeloperoxidase activity and enhanced superoxide dismutase (SOD) in mice with LPS-induced ALI. Tumor necrosis factor α and interleukin (IL)-6 concentrations decreased significantly while the concentration of IL-10 was significantly increased after p-synephrine pretreatment. In addition, p-synephrine suppressed not only the phosphorylation of NF-κB but also the degradation of its inhibitor (IκBα). CONCLUSIONS These results suggested that the inhibition of NF-κB activation and the regulation of SOD are involved in the mechanism of p-synephrine's protection against ALI.
Collapse
Affiliation(s)
- Qianchao Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tang Y, Chen Y, Chu Z, Yan B, Xu L. Protective effect of cryptotanshinone on lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 2014; 723:494-500. [DOI: 10.1016/j.ejphar.2013.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 11/30/2022]
|
19
|
Wu Q, Sun G, Yuan X, Soromou LW, Chen N, Xiong Y, Feng H. Tubeimoside-1 attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Immunopharmacol Immunotoxicol 2013; 35:514-23. [DOI: 10.3109/08923973.2013.810643] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Prime-O-glucosylcimifugin attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2013; 16:139-47. [PMID: 23623941 PMCID: PMC7106058 DOI: 10.1016/j.intimp.2013.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 12/14/2022]
Abstract
Prime-O-glucosylcimifugin is an active chromone isolated from Saposhnikovia root which has been reported to have various activities, such as anti-convulsant, anticancer, anti-inflammatory properties. The purpose of this study was to evaluate the effect of prime-O-glucosylcimifugin on acute lung injury (ALI) induced by lipopolysaccharide in mice. BALB/c mice received intraperitoneal injection of Prime-O-glucosylcimifugin 1h before intranasal instillation (i.n.) of lipopolysaccharide (LPS). Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and interleukin (IL)-6 in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Pulmonary histological changes were evaluated by hematoxylin-eosin, myeloperoxidase (MPO) activity in the lung tissue and lung wet/dry weight ratios were observed. Furthermore, the mitogen-activated protein kinases (MAPK) signaling pathway activation and the phosphorylation of IκBα protein were determined by Western blot analysis. Prime-O-glucosylcimifugin showed promising anti-inflammatory effect by inhibiting the activation of MAPK and NF-κB signaling pathway.
Collapse
|
21
|
Sun J, Chi G, Soromou LW, Chen N, Guan M, Wu Q, Wang D, Li H. Preventive effect of Imperatorin on acute lung injury induced by lipopolysaccharide in mice. Int Immunopharmacol 2012; 14:369-74. [DOI: 10.1016/j.intimp.2012.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 12/22/2022]
|