1
|
Long T, Alberich M, André F, Menez C, Prichard RK, Lespine A. The development of the dog heartworm is highly sensitive to sterols which activate the orthologue of the nuclear receptor DAF-12. Sci Rep 2020; 10:11207. [PMID: 32641726 PMCID: PMC7343802 DOI: 10.1038/s41598-020-67466-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
Prevention therapy against Dirofilaria immitis in companion animals is currently threatened by the emergence of isolates resistant to macrocyclic lactone anthelmintics. Understanding the control over developmental processes in D. immitis is important for elucidating new approaches to heartworm control. The nuclear receptor DAF-12 plays a role in the entry and exit of dauer stage in Caenorhabditis elegans and in the development of free-living infective third-stage larvae (iL3) of some Clade IV and V parasitic nematodes. We identified a DAF-12 ortholog in the clade III nematode D. immitis and found that it exhibited a much higher affinity for dafachronic acids than described with other nematode DAF-12 investigated so far. We also modelled the DimDAF-12 structure and characterized the residues involved with DA binding. Moreover, we showed that cholesterol derivatives impacted the molting process from the iL3 to the fourth-stage larvae. Since D. immitis is unable to synthesize cholesterol and only completes its development upon host infection, we hypothesize that host environment contributes to its further molting inside the host vertebrate. Our discovery contributes to a better understanding of the developmental checkpoints of D. immitis and offers new perspectives for the development of novel therapies against filarial infections.
Collapse
Affiliation(s)
- Thavy Long
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France.
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, H9X3V9, QC, Canada.
| | - Mélanie Alberich
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France
| | - François André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Cécile Menez
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France
| | - Roger K Prichard
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, H9X3V9, QC, Canada
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
2
|
Morshead ML, Sedore CA, Jones EG, Hall D, Plummer WT, Garrett T, Lucanic M, Guo M, Driscoll M, Phillips PC, Lithgow G. Caenorhabditis Intervention Testing Program: the farnesoid X receptor agonist obeticholic acid does not robustly extend lifespan in nematodes. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32550518 PMCID: PMC7253371 DOI: 10.17912/micropub.biology.000257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Christine A Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - E Grace Jones
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - David Hall
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - W Todd Plummer
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Theo Garrett
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Mark Lucanic
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Max Guo
- Division of Aging Biology, National Institute on Aging, Bethesda, Maryland 20892, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Gordon Lithgow
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| |
Collapse
|
3
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|
4
|
Dafachronic acid inhibits C. elegans germ cell proliferation in a DAF-12-dependent manner. Dev Biol 2017; 432:215-221. [PMID: 29066181 DOI: 10.1016/j.ydbio.2017.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/23/2022]
Abstract
Dafachronic acid (DA) is a bile acid-like steroid hormone that regulates dauer formation, heterochrony, and lifespan in C. elegans. Here, we describe that DA is an inhibitor of C. elegans germ stem cell proliferation in adult hermaphrodites. Using a C. elegans germ cell primary culture system, we show that DA inhibits the proliferation of germ cells in vitro. Exogenous DA reduces the frequency of large tumors in adult tumorous germline mutants and decreases the proliferation of wild-type germ stem cells in adult hermaphrodites. In contrast, DA has no appreciable effect on the proliferation of larval-stage germ cells in wild type. The inhibition of adult germ cell proliferation by DA requires its canonical receptor DAF-12. Blocking DA production by inactivating the cytochrome P450 DAF-9 increases germ cell proliferation in wild-type adult hermaphrodites and the frequency of large tumors in germline tumorous mutants, suggesting that DA inhibits the rate of germ cell proliferation under normal growth conditions.
Collapse
|
5
|
Dansey MV, Del Fueyo MC, Veleiro AS, Di Chenna PH. Synthesis of new C-25 and C-26 steroidal acids as potential ligands of the nuclear receptors DAF-12, LXR and GR. Steroids 2017; 121:40-46. [PMID: 28300583 DOI: 10.1016/j.steroids.2017.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/23/2017] [Accepted: 03/09/2017] [Indexed: 11/19/2022]
Abstract
A new methodology to obtain C-25 and C-26 steroidal acids starting from pregnenolone is described. Construction of the side chain was achieved by applying the Mukaiyama aldol reaction with a non-hydrolytic work-up to isolate the trapped silyl enol ether with higher yields. Using this methodology we synthesized three new steroidal acids as potential ligands of DAF-12, Liver X and Glucocorticoid nuclear receptors and studied their activity in reporter gene assays. Our results show that replacement of the 21-CH3 by a 20-keto group in the side chains of the cholestane scaffold of DAF-12 or Liver X receptors ligands causes the loss of the activity.
Collapse
Affiliation(s)
- María V Dansey
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina
| | - María C Del Fueyo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EG Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina
| | - Adriana S Veleiro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EG Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina.
| | - Pablo H Di Chenna
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EG Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Reis Rodrigues P, Kaul TK, Ho JH, Lucanic M, Burkewitz K, Mair WB, Held JM, Bohn LM, Gill MS. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans. G3 (BETHESDA, MD.) 2016; 6:1695-705. [PMID: 27172180 PMCID: PMC4889665 DOI: 10.1534/g3.116.026997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 01/20/2023]
Abstract
Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans.
Collapse
Affiliation(s)
- Pedro Reis Rodrigues
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Tiffany K Kaul
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jo-Hao Ho
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Mark Lucanic
- The Buck Institute for Research on Aging, Novato, California 94945
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - William B Mair
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - Jason M Held
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Matthew S Gill
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
7
|
Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nat Commun 2015; 6:8060. [PMID: 26290173 DOI: 10.1038/ncomms9060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022] Open
Abstract
Under adverse conditions, Caenorhabditis elegans enters a diapause stage called the dauer larva. External cues signal the nuclear hormone receptor DAF-12, the activity of which is regulated by its ligands: dafachronic acids (DAs). DAs are synthesized from cholesterol, with the last synthesis step requiring NADPH, and their absence stimulates dauer formation. Here we show that NADPH levels determine dauer formation in a regulatory mechanism involving key carbohydrate and redox metabolic enzymes. Elevated trehalose biosynthesis diverts glucose-6-phosphate from the pentose phosphate pathway, which is the major source of cellular NADPH. This enhances dauer formation due to the decrease in the DA level. Moreover, DAF-12, in cooperation with DAF-16/FoxO, induces negative feedback of DA synthesis via activation of the trehalose-producing enzymes TPS-1/2 and inhibition of the NADPH-producing enzyme IDH-1. Thus, the dauer developmental decision is controlled by integration of the metabolic flux of carbohydrates and cellular redox potential.
Collapse
|
8
|
Ermolovich YV, Zhabinskii VN, Khripach VA. Formation of the steroidal C-25 chiral center via the asymmetric alkylation methodology. Org Biomol Chem 2015; 13:776-82. [PMID: 25388008 DOI: 10.1039/c4ob02123a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel approach for the preparation of steroids containing a chiral center at C-25 is reported. The key stereochemistry inducing step was asymmetric alkylation of pseudoephenamine amides of steroidal C-26 acids. The reaction proceeded with high diastereoselectivity (dr > 99 : 1). The developed methodology was successfully applied to the synthesis of (25R)- and (25S)-cholestenoic acids as well as (25R)- and (25S)-26-hydroxy brassinolides.
Collapse
Affiliation(s)
- Yu V Ermolovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st., 5/2, 220141 Minsk, Belarus.
| | | | | |
Collapse
|
9
|
Harrison N, Lone MA, Kaul TK, Reis Rodrigues P, Ogungbe IV, Gill MS. Characterization of N-acyl phosphatidylethanolamine-specific phospholipase-D isoforms in the nematode Caenorhabditis elegans. PLoS One 2014; 9:e113007. [PMID: 25423491 PMCID: PMC4244089 DOI: 10.1371/journal.pone.0113007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/17/2014] [Indexed: 12/27/2022] Open
Abstract
N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368), but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms.
Collapse
Affiliation(s)
- Neale Harrison
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Museer A. Lone
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Tiffany K. Kaul
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Pedro Reis Rodrigues
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Ifedayo Victor Ogungbe
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Matthew S. Gill
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
10
|
Mahanti P, Bose N, Bethke A, Judkins JC, Wollam J, Dumas KJ, Zimmerman AM, Campbell SL, Hu PJ, Antebi A, Schroeder FC. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan. Cell Metab 2014; 19:73-83. [PMID: 24411940 PMCID: PMC3924769 DOI: 10.1016/j.cmet.2013.11.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/25/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023]
Abstract
Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized, primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin D and liver X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network, including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs.
Collapse
Affiliation(s)
- Parag Mahanti
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Neelanjan Bose
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Axel Bethke
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joshua C Judkins
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joshua Wollam
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany
| | - Kathleen J Dumas
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna M Zimmerman
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sydney L Campbell
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Patrick J Hu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Internal Medicine and Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Nuclear hormone receptor regulation of microRNAs controls innate immune responses in C. elegans. PLoS Pathog 2013; 9:e1003545. [PMID: 23990780 PMCID: PMC3749966 DOI: 10.1371/journal.ppat.1003545] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Nuclear hormone receptors respond to small molecules such as retinoids or steroids and regulate development. Signaling in the conserved p38/PMK-1 MAP kinase pathway regulates innate immunity. In this study, we show that the Caenorhabditis elegans nuclear receptor DAF-12 negatively regulates the defense against pathogens via the downstream let-7 family of microRNAs, which directly target SKN-1, a gene downstream of PMK-1. These findings identify nuclear hormone receptors as components of innate immunity that crosstalk with the p38/PMK-1 MAP kinase pathway. When infected by the Pseudomonas aeruginosa, the nematode Caenorhabditis elegans invokes an innate immune response that protects the worm from pathogenic attack. The appropriate level of immune response in C. elegans requires the accurate regulation of multiple signal pathways, especially signals of repression, which attenuate the expression of pathogen-responsive genes. In the current study, we identified the nuclear hormone receptor DAF-12 and its downstream let-7 family of microRNAs, mir-84 and mir-241, are required for the regulation of C. elegans innate immunity against P. aeruginosa infection. Dafachronic acids, as DAF-12 ligands, can dramatically suppress the resistance of C. elegans to P. aeruginosa infection. Inhibition of the conserved PMK-1/p38 MAP kinase pathway can markedly attenuate the promoted resistance of daf-12 and let-7 family of microRNAs mutants to P. aureginosa infection. However, neither daf-12 nor let-7 family of microRNAs affect the activation of PMK-1/p38. Moreover, our data also reveals the role of SKN-1 in integrating the signals from the PMK-1/p38 MAPK and DAF-12-let-7s pathways to mediate the C. elegans innate immune response.
Collapse
|
12
|
|
13
|
Wollam J, Magner DB, Magomedova L, Rass E, Shen Y, Rottiers V, Habermann B, Cummins CL, Antebi A. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol 2012; 10:e1001305. [PMID: 22505847 PMCID: PMC3323522 DOI: 10.1371/journal.pbio.1001305] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/02/2012] [Indexed: 01/10/2023] Open
Abstract
Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elisabeth Rass
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Yidong Shen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Veerle Rottiers
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Carolyn L. Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Adam Antebi
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
14
|
Zhi X, Zhou XE, Melcher K, Motola DL, Gelmedin V, Hawdon J, Kliewer SA, Mangelsdorf DJ, Xu HE. Structural conservation of ligand binding reveals a bile acid-like signaling pathway in nematodes. J Biol Chem 2012; 287:4894-903. [PMID: 22170062 PMCID: PMC3281614 DOI: 10.1074/jbc.m111.315242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/23/2011] [Indexed: 01/28/2023] Open
Abstract
Bile acid-like molecules named dafachronic acids (DAs) control the dauer formation program in Caenorhabditis elegans through the nuclear receptor DAF-12. This mechanism is conserved in parasitic nematodes to regulate their dauer-like infective larval stage, and as such, the DAF-12 ligand binding domain has been identified as an important therapeutic target in human parasitic hookworm species that infect more than 600 million people worldwide. Here, we report two x-ray crystal structures of the hookworm Ancylostoma ceylanicum DAF-12 ligand binding domain in complex with DA and cholestenoic acid (a bile acid-like metabolite), respectively. Structure analysis and functional studies reveal key residues responsible for species-specific ligand responses of DAF-12. Furthermore, DA binds to DAF-12 mechanistically and is structurally similar to bile acids binding to the mammalian bile acid receptor farnesoid X receptor. Activation of DAF-12 by cholestenoic acid and the cholestenoic acid complex structure suggest that bile acid-like signaling pathways have been conserved in nematodes and mammals. Together, these results reveal the molecular mechanism for the interplay between parasite and host, provide a structural framework for DAF-12 as a promising target in treating nematode parasitism, and provide insight into the evolution of gut parasite hormone-signaling pathways.
Collapse
Affiliation(s)
| | | | - Karsten Melcher
- From the Laboratory of Structural Sciences and
- Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | | | - Verena Gelmedin
- the Department of Microbiology, Immunology, and Tropical Medicine, George Washington University Medical Center, Washington, D. C. 20037, and
| | - John Hawdon
- the Department of Microbiology, Immunology, and Tropical Medicine, George Washington University Medical Center, Washington, D. C. 20037, and
| | | | - David J. Mangelsdorf
- the Departments of Pharmacology and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - H. Eric Xu
- From the Laboratory of Structural Sciences and
- the VARI-SIMM Center, Center for Structure and Function of Drug Targets, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
15
|
Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans. Nat Chem Biol 2011; 7:891-3. [DOI: 10.1038/nchembio.698] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 08/26/2011] [Indexed: 11/09/2022]
|
16
|
Abstract
Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids (BAs), and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and BA homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
17
|
Hochbaum D, Zhang Y, Stuckenholz C, Labhart P, Alexiadis V, Martin R, Knölker HJ, Fisher AL. DAF-12 regulates a connected network of genes to ensure robust developmental decisions. PLoS Genet 2011; 7:e1002179. [PMID: 21814518 PMCID: PMC3140985 DOI: 10.1371/journal.pgen.1002179] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 05/23/2011] [Indexed: 02/07/2023] Open
Abstract
The nuclear receptor DAF-12 has roles in normal development, the decision to pursue dauer development in unfavorable conditions, and the modulation of adult aging. Despite the biologic importance of DAF-12, target genes for this receptor are largely unknown. To identify DAF-12 targets, we performed chromatin immunoprecipitation followed by hybridization to whole-genome tiling arrays. We identified 1,175 genomic regions to be bound in vivo by DAF-12, and these regions are enriched in known DAF-12 binding motifs and act as DAF-12 response elements in transfected cells and in transgenic worms. The DAF-12 target genes near these binding sites include an extensive network of interconnected heterochronic and microRNA genes. We also identify the genes encoding components of the miRISC, which is required for the control of target genes by microRNA, as a target of DAF-12 regulation. During reproductive development, many of these target genes are misregulated in daf-12(0) mutants, but this only infrequently results in developmental phenotypes. In contrast, we and others have found that null daf-12 mutations enhance the phenotypes of many miRISC and heterochronic target genes. We also find that environmental fluctuations significantly strengthen the weak heterochronic phenotypes of null daf-12 alleles. During diapause, DAF-12 represses the expression of many heterochronic and miRISC target genes, and prior work has demonstrated that dauer formation can suppress the heterochronic phenotypes of many of these target genes in post-dauer development. Together these data are consistent with daf-12 acting to ensure developmental robustness by committing the animal to adult or dauer developmental programs despite variable internal or external conditions.
Collapse
Affiliation(s)
- Daniel Hochbaum
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yue Zhang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carsten Stuckenholz
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Paul Labhart
- Active Motif, Carlsbad, California, United States of America
| | | | - René Martin
- ChiroBlock GmbH, Wolfen, Germany
- Department Chemie, Technische Universität Dresden, Dresden, Germany
| | | | - Alfred L. Fisher
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Lucanic M, Held JM, Vantipalli MC, Klang IM, Graham JB, Gibson BW, Lithgow GJ, Gill MS. N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 2011; 473:226-9. [PMID: 21562563 PMCID: PMC3093655 DOI: 10.1038/nature10007] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/17/2011] [Indexed: 02/01/2023]
Abstract
Dietary restriction is a robust means of extending adult lifespan and postponing age-related disease in many species, including yeast, nematode worms, flies and rodents. Studies of the genetic requirements for lifespan extension by dietary restriction in the nematode Caenorhabditis elegans have implicated a number of key molecules in this process, including the nutrient-sensing target of rapamycin (TOR) pathway and the Foxa transcription factor PHA-4 (ref. 7). However, little is known about the metabolic signals that coordinate the organismal response to dietary restriction and maintain homeostasis when nutrients are limited. The endocannabinoid system is an excellent candidate for such a role given its involvement in regulating nutrient intake and energy balance. Despite this, a direct role for endocannabinoid signalling in dietary restriction or lifespan determination has yet to be demonstrated, in part due to the apparent absence of endocannabinoid signalling pathways in model organisms that are amenable to lifespan analysis. N-acylethanolamines (NAEs) are lipid-derived signalling molecules, which include the mammalian endocannabinoid arachidonoyl ethanolamide. Here we identify NAEs in C. elegans, show that NAE abundance is reduced under dietary restriction and that NAE deficiency is sufficient to extend lifespan through a dietary restriction mechanism requiring PHA-4. Conversely, dietary supplementation with the nematode NAE eicosapentaenoyl ethanolamide not only inhibits dietary-restriction-induced lifespan extension in wild-type worms, but also suppresses lifespan extension in a TOR pathway mutant. This demonstrates a role for NAE signalling in ageing and indicates that NAEs represent a signal that coordinates nutrient status with metabolic changes that ultimately determine lifespan.
Collapse
Affiliation(s)
- Mark Lucanic
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Geier FM, Want EJ, Leroi AM, Bundy JG. Cross-Platform Comparison of Caenorhabditis elegans Tissue Extraction Strategies for Comprehensive Metabolome Coverage. Anal Chem 2011; 83:3730-6. [DOI: 10.1021/ac2001109] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Florian M. Geier
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, SW7 2AZ, United Kingdom
| | - Elizabeth J. Want
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, SW7 2AZ, United Kingdom
| | - Armand M. Leroi
- Department of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, SW7 2AZ, United Kingdom
| | - Jacob G. Bundy
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington, SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Gáliková M, Klepsatel P, Senti G, Flatt T. Steroid hormone regulation of C. elegans and Drosophila aging and life history. Exp Gerontol 2011; 46:141-7. [PMID: 20854888 DOI: 10.1016/j.exger.2010.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/19/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
In the last two decades it has become clear that hormones and gene mutations in endocrine signaling pathways can exert major effects on lifespan and related life history traits in worms, flies, mice, and other organisms. While most of this research has focused on insulin/insulin-like growth factor-1 signaling, a peptide hormone pathway, recent work has shown that also lipophilic hormones play an important role in modulating lifespan and other life history traits. Here we review how steroid hormones, a particular group of lipophilic hormones, affect life history traits in the nematode worm (Caenorhabditis elegans) and the fruit fly (Drosophila melanogaster), with a particular focus on longevity. Interestingly, a comparison suggests that parallel endocrine principles might be at work in worms and flies in these species and that steroid hormones interact with the gonad to affect lifespan.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Population Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
21
|
Cheong MC, Na K, Kim H, Jeong SK, Joo HJ, Chitwood DJ, Paik YK. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity. J Biol Chem 2010; 286:7248-56. [PMID: 21186286 DOI: 10.1074/jbc.m110.189183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the biochemical mechanism underlying the effect of sterol deprivation on longevity in Caenorhabditis elegans, we treated parent worms (P0) with 25-azacoprostane (Aza), which inhibits sitosterol-to-cholesterol conversion, and measured mean lifespan (MLS) in F2 worms. At 25 μM (∼EC(50)), Aza reduced total body sterol by 82.5%, confirming sterol depletion. Aza (25 μM) treatment of wild-type (N2) C. elegans grown in sitosterol (5 μg/ml) reduced MLS by 35%. Similar results were obtained for the stress-related mutants daf-16(mu86) and gas-1(fc21). Unexpectedly, Aza had essentially no effect on MLS in the stress-resistant daf-2(e1370) or mitochondrial complex II mutant mev-1(kn1) strains, indicating that Aza may target both insulin/IGF-1 signaling (IIS) and mitochondrial complex II. Aza increased reactive oxygen species (ROS) levels 2.7-fold in N2 worms, but did not affect ROS production by mev-1(kn1), suggesting a direct link between Aza treatment and mitochondrial ROS production. Moreover, expression of the stress-response transcription factor SKN-1 was decreased in amphid neurons by Aza and that of DAF-28 was increased when DAF-6 was involved, contributing to lifespan reduction.
Collapse
Affiliation(s)
- Mi Cheong Cheong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Branicky R, Desjardins D, Liu JL, Hekimi S. Lipid transport and signaling in Caenorhabditis elegans. Dev Dyn 2010; 239:1365-77. [PMID: 20151418 DOI: 10.1002/dvdy.22234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The strengths of the Caenorhabditis elegans model have been recently applied to the study of the pathways of lipid storage, transport, and signaling. As the lipid storage field has recently been reviewed, in this minireview we (1) discuss some recent studies revealing important physiological roles for lipases in mobilizing lipid reserves, (2) describe various pathways of lipid transport, with a particular focus on the roles of lipoproteins, (3) debate the utility of using C. elegans as a model for human dyslipidemias that impinge on atherosclerosis, and (4) describe several systems where lipids affect signaling, highlighting the particular properties of lipids as information-carrying molecules. We conclude that the study of lipid biology in C. elegans exemplifies the advantages afforded by a whole-animal model system where interactions between tissues and organs, and functions such as nutrient absorption, distribution, and storage, as well as reproduction can all be studied simultaneously.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
23
|
Martin R, Entchev EV, Kurzchalia TV, Knölker HJ. Steroid hormones controlling the life cycle of the nematode Caenorhabditis elegans: stereoselective synthesis and biology. Org Biomol Chem 2010; 8:739-50. [DOI: 10.1039/b918488k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Martin R, Entchev EV, Däbritz F, Kurzchalia TV, Knölker HJ. Synthesis and Hormonal Activity of the (25S)-Cholesten-26-oic Acids - Potent Ligands for the DAF-12 Receptor inCaenorhabditis elegans. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Panowski SH, Dillin A. Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol Metab 2009; 20:259-64. [PMID: 19646896 DOI: 10.1016/j.tem.2009.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 01/16/2023]
Abstract
Aging research has advanced greatly in the nematode Caenorhabditis elegans over the past 20 years, and we are now beginning to piece together distinct pathways that impinge on the aging process. The knowledge base that has been obtained through genetic analysis strongly suggests that endocrine signalling has a key role in most, if not all, of the pathways that alter the aging process of multicellular organisms such as the worm. In this review, we provide an overview of two well-studied aging pathways in C. elegans, the insulin/IGF-1 and germline signalling pathways, in which endocrine signalling is clearly important. We also incorporate recent data to create a model of how endocrine signalling in these pathways might occur.
Collapse
Affiliation(s)
- Siler H Panowski
- Howard Hughes Medical Institute, Glenn Center for Aging Research, Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, CA 92037, USA
| | | |
Collapse
|
26
|
The steroid hormone receptor EcR finely modulates Drosophila lifespan during adulthood in a sex-specific manner. Mech Ageing Dev 2009; 130:547-52. [PMID: 19486910 DOI: 10.1016/j.mad.2009.05.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 05/15/2009] [Accepted: 05/23/2009] [Indexed: 01/13/2023]
Abstract
The steroid hormone ecdysone influences Drosophila lifespan. Longevity is extended in mutants deficient for ecdysone synthesis or mutants of the ecdysone receptor (EcR). However, the underlying mechanisms remain unclear. Here we conditionally inactivated EcR by RNA interference or expression of dominant negative forms, using the RU486 inducible system. A mild ubiquitous inactivation of EcR during adulthood was sufficient to slow the aging of male flies, whereas a stronger EcR inactivation decreased longevity. Surprisingly, ubiquitous inactivation of EcR strongly decreased female lifespan. This deleterious effect was suppressed in sterile ovo(D1) mutant females, suggesting that EcR represses a negative signal for lifespan produced in ovaries. These results reveal a complex adult and sex-specific control of lifespan by steroid signalling in Drosophila.
Collapse
|
27
|
Kleemann GA, Murphy CT. The endocrine regulation of aging in Caenorhabditis elegans. Mol Cell Endocrinol 2009; 299:51-7. [PMID: 19059305 DOI: 10.1016/j.mce.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 10/13/2008] [Accepted: 10/30/2008] [Indexed: 01/29/2023]
Abstract
In recent years, there has been significant growth in our understanding of the regulation of longevity. The most notable change is the identification and detailed description of a number of molecular pathways modulating the rate of aging. A good portion of this new data has come from studies using the genetic model organism Caenorhabditis elegans. In this review, we provide an overview of physiological systems that are involved in the modulation of aging in C. elegans, then discuss the known endocrine signaling systems that are likely to couple these systems together. Finally, we present a working model describing how aging may be regulated as a coordinated system, communicating through endocrine signals.
Collapse
Affiliation(s)
- G A Kleemann
- Lewis-Sigler Institute for Integrative Genomics and Dept. of Molecular Biology, Princeton University, 148 Carl Icahn Lab, Washington Road, Princeton, NJ 08544, United States
| | | |
Collapse
|
28
|
Toivonen JM, Partridge L. Endocrine regulation of aging and reproduction in Drosophila. Mol Cell Endocrinol 2009; 299:39-50. [PMID: 18682271 DOI: 10.1016/j.mce.2008.07.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/10/2008] [Accepted: 07/03/2008] [Indexed: 12/19/2022]
Abstract
Hormonal signals can modulate lifespan and reproductive capacity across the animal kingdom. The use of model organisms such as worms, flies and mice has been fundamentally important for aging research in the discovery of genetic alterations that can extend healthy lifespan. The effects of mutations in the insulin and insulin-like growth factor-like signaling (IIS) pathways are evolutionarily conserved in that they can increase lifespan in all three animal models. Additionally, steroids and other lipophilic signaling molecules modulate lifespan in diverse organisms. Here we shall review how major hormonal pathways in the fruit fly Drosophila melanogaster interact to influence reproductive capacity and aging.
Collapse
Affiliation(s)
- Janne M Toivonen
- Institute of Healthy Aging, UCL Research Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
29
|
Martin R, Schmidt AW, Theumer G, Krause T, Entchev EV, Kurzchalia TV, Knölker HJ. Synthesis and biological activity of the (25R)-cholesten-26-oic acids--ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans. Org Biomol Chem 2009; 7:909-20. [PMID: 19225674 DOI: 10.1039/b817358c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the stereoselective transformation of diosgenin (4a) to (25R)-Delta(4)-dafachronic acid (1a),(25R)-Delta(7)-dafachronic acid (2a), and (25R)-cholestenoic acid (3a), which represent potential ligands forthe hormonal receptor DAF-12 in Caenorhabditis elegans. Key-steps of our synthetic approach are amodified Clemmensen reduction of diosgenin (4a) and a double bond shift from the 5,6- to the 7,8-position. In the 25R-series, the Delta(7)-dafachronic acid 2a exhibits the highest hormonal activity.
Collapse
Affiliation(s)
- René Martin
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Martin R, Saini R, Bauer I, Gruner M, Kataeva O, Zagoriy V, Entchev EV, Kurzchalia TV, Knölker HJ. 4α-Bromo-5α-cholestan-3β-ol and nor-5α-cholestan-3β-ol derivatives—stereoselective synthesis and hormonal activity in Caenorhabditis elegans. Org Biomol Chem 2009; 7:2303-9. [DOI: 10.1039/b904001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Martin R, Däbritz F, Entchev EV, Kurzchalia TV, Knölker HJ. Stereoselective synthesis of the hormonally active (25S)-delta7-dafachronic acid, (25S)-Delta4-dafachronic acid, (25S)-dafachronic acid, and (25S)-cholestenoic acid. Org Biomol Chem 2008; 6:4293-5. [PMID: 19005586 DOI: 10.1039/b815064h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a stereoselective synthesis of the (25S)-cholestenoic-26-acids which are highly efficient ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans.
Collapse
Affiliation(s)
- René Martin
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Magner DB, Antebi A. Caenorhabditis elegans nuclear receptors: insights into life traits. Trends Endocrinol Metab 2008; 19:153-60. [PMID: 18406164 PMCID: PMC2744080 DOI: 10.1016/j.tem.2008.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/13/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Nuclear receptors are a class of hormone-gated transcription factors found in metazoans that regulate global changes in gene expression when bound to their cognate ligands. Despite species diversification, nuclear receptors function similarly across taxa, having fundamental roles in detecting intrinsic and environmental signals, and subsequently in coordinating transcriptional cascades that direct reproduction, development, metabolism and homeostasis. These endocrine receptors function in vivo in part as molecular switches and timers that regulate transcriptional cascades. Several Caenorhabditis elegans nuclear receptors integrate intrinsic and extrinsic signals to regulate the dauer diapause and longevity, molting, and heterochronic circuits of development, and are comparable to similar in vivo endocrine regulated processes in other animals.
Collapse
Affiliation(s)
- Daniel B. Magner
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030
| | - Adam Antebi
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
34
|
Patel DS, Fang LL, Svy DK, Ruvkun G, Li W. Genetic identification of HSD-1, a conserved steroidogenic enzyme that directs larval development inCaenorhabditis elegans. Development 2008; 135:2239-49. [DOI: 10.1242/dev.016972] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In C. elegans, steroid hormones function in conjunction with insulin/IGF-1-like signaling in promoting reproductive development over entry into the diapausal dauer stage. The NCR-1 and -2 (NPC1-related) intracellular cholesterol transporters function redundantly in preventing dauer arrest,presumably by regulating the availability of substrates for steroid hormone synthesis. We have identified hsd-1 as a new component of this cholesterol trafficking/processing pathway, using an ncr-1 enhancer screen. HSD-1 is orthologous to 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerases(3β-HSDs), which are key steroidogenic enzymes in vertebrates, and is exclusively expressed in two neuron-like XXX cells that are crucial in preventing dauer arrest, suggesting that it is involved in biosynthesis of dauer-preventing steroid hormones. The hsd-1 null mutant displays defects in inhibiting dauer arrest: it forms dauers in the deletion mutant backgrounds of ncr-1 or daf-28/insulin; as a single mutant,it is hypersensitive to dauer pheromone. We found that hsd-1 defects can be rescued by feeding mutant animals with several steroid intermediates that are either downstream of or in parallel to the 3β-HSD function in the dafachronic acid biosynthetic pathway, suggesting that HSD-1 functions as a 3β-HSD. Interestingly, sterols that rescued hsd-1 defects also bypassed the need for the NCR-1 and/or -2 functions, suggesting that HSD-1-mediated steroid hormone production is an important functional output of the NCR transporters. Finally, we found that the HSD-1-mediated signal activates insulin/IGF-I signaling in a cell non-autonomous fashion, suggesting a novel mechanism for how these two endocrine pathways intersect in directing development.
Collapse
Affiliation(s)
- Dhaval S. Patel
- Department of Biological Structure, University of Washington, Seattle, WA,USA
| | - Lily L. Fang
- Department of Biological Structure, University of Washington, Seattle, WA,USA
| | - Danika K. Svy
- Department of Biological Structure, University of Washington, Seattle, WA,USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA,USA
| | - Weiqing Li
- Department of Biological Structure, University of Washington, Seattle, WA,USA
| |
Collapse
|
35
|
Entchev EV, Schwudke D, Zagoriy V, Matyash V, Bogdanova A, Habermann B, Zhu L, Shevchenko A, Kurzchalia TV. LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans. J Biol Chem 2008; 283:17550-60. [PMID: 18390550 DOI: 10.1074/jbc.m800965200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LET-767 from Caenorhabditis elegans belongs to a family of short chain dehydrogenases/reductases and is homologous to 17beta-hydroxysterol dehydrogenases of type 3 and 3-ketoacyl-CoA reductases. Worms subjected to RNA interference (RNAi) of let-767 displayed multiple growth and developmental defects in the first generation and arrested in the second generation as L1 larvae. To determine the function of LET-767 in vivo, we exploited a biochemical complementation approach, in which let-767 (RNAi)-arrested larvae were rescued by feeding with compounds isolated from wild type worms. The arrest was only rescued by the addition of triacylglycerides extracted from worms but not from various natural sources, such as animal fats and plant oils. The mass spectrometric analyses showed alterations in the fatty acid content of triacylglycerides. Essential for the rescue were odd-numbered fatty acids with monomethyl branched chains. The rescue was improved when worms were additionally supplemented with long chain even-numbered fatty acids. Remarkably, let-767 completely rescued the yeast 3-ketoacyl-CoA reductase mutant (ybr159Delta). Because worm ceramides exclusively contain a monomethyl branched chain sphingoid base, we also investigated ceramides in let-767 (RNAi). Indeed, the amount of ceramides was greatly reduced, and unusual sphingoid bases were observed. Taken together, we conclude that LET-767 is a major 3-ketoacyl-CoA reductase in C. elegans required for the bulk production of monomethyl branched and long chain fatty acids, and the developmental arrest in let-767 (RNAi) worms is caused by the deficiency of the former.
Collapse
Affiliation(s)
- Eugeni V Entchev
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen D, Riddle DL. Function of the PHA-4/FOXA transcription factor during C. elegans post-embryonic development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:26. [PMID: 18312672 PMCID: PMC2292151 DOI: 10.1186/1471-213x-8-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 02/29/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND pha-4 encodes a forkhead box (FOX) A transcription factor serving as the C. elegans pharynx organ identity factor during embryogenesis. Using Serial Analysis of Gene Expression (SAGE), comparison of gene expression profiles between growing stages animals and long-lived, developmentally diapaused dauer larvae revealed that pha-4 transcription is increased in the dauer stage. RESULTS Knocking down pha-4 expression by RNAi during post-embryonic development showed that PHA-4 is essential for dauer recovery, gonad and vulva development. daf-16, which encodes a FOXO transcription factor regulated by insulin/IGF-1 signaling, shows overlapping expression patterns and a loss-of-function post-embryonic phenotype similar to that of pha-4 during dauer recovery. pha-4 RNAi and daf-16 mutations have additive effects on dauer recovery, suggesting these two regulators may function in parallel pathways. Gene expression studies using RT-PCR and GFP reporters showed that pha-4 transcription is elevated under starvation, and a conserved forkhead transcription factor binding site in the second intron of pha-4 is important for the neuronal expression. The vulval transcription of lag-2, which encodes a ligand for the LIN-12/Notch lateral signaling pathway, is inhibited by pha-4 RNAi, indicating that LAG-2 functions downstream of PHA-4 in vulva development. CONCLUSION Analysis of PHA-4 during post-embryonic development revealed previously unsuspected functions for this important transcriptional regulator in dauer recovery, and may help explain the network of transcriptional control integrating organogenesis with the decision between growth and developmental arrest at the dauer entry and exit stages.
Collapse
Affiliation(s)
- Di Chen
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Donald L Riddle
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
37
|
Abstract
A dissection of longevity in Caenorhabditis elegans reveals that animal life span is influenced by genes, environment, and stochastic factors. From molecules to physiology, a remarkable degree of evolutionary conservation is seen.
Collapse
Affiliation(s)
- Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
38
|
Abstract
Over the past 15 years it has become clear that mutations in genes that regulate endocrine signalling pathways can prolong lifespan. Lifespan can be increased by altered endocrine signalling in a group of cells or a single tissue, which indicates that crosstalk between tissues functions to coordinate ageing of the organism. These endocrine pathways might serve as targets for the manipulation of the ageing process and prevention of age-related diseases.
Collapse
Affiliation(s)
- Steven J Russell
- Joslin Diabetes Center and Harvard Medical School, 1 Joslin Place, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
39
|
Abstract
Pathways that control aging act via regulated biochemical processes, among which metabolism of xenobiotics (potentially harmful chemical agents encountered as environmental toxicants, for example, drugs, or produced internally) is one possible candidate. A new study of long-lived Ghrhr mutant mice reports that increased bile acid levels activate xenobiotic metabolism via the nuclear receptor, farnesoid X receptor. This increases resistance to xenobiotic stress, possibly contributing to longevity.
Collapse
Affiliation(s)
- David Gems
- Department of Biology, University College London, London, UK.
| |
Collapse
|
40
|
|
41
|
Mooijaart SP, Kuningas M, Westendorp RGJ, Houwing-Duistermaat JJ, Slagboom PE, Rensen PCN, van Heemst D. Liver X Receptor Alpha Associates With Human Life Span. J Gerontol A Biol Sci Med Sci 2007; 62:343-9. [PMID: 17452725 DOI: 10.1093/gerona/62.4.343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the nematode Caenorhabditis elegans, nuclear hormone receptor DAF-12 regulates the decision to go into a resistant dauer diapause, in which the worm exhibits a decreased rate of aging. Using sequence similarity searches, we previously identified the liver X receptor alpha (LXRalpha) as one of the human nuclear hormone receptors the protein sequence of which is most similar to C. elegans DAF-12. Here, we studied whether variation in the gene encoding LXRalpha associates with human life span. In the Leiden 85-Plus Study, a population-based prospective follow-up study, we genotyped four polymorphisms spanning the gene coding for LXRalpha (NR1H3) and tagged four common haplotypes. Among 563 participants, haplotype 2 associated with reduced mortality during the 7-year follow-up (hazard ratio 0.78; p =.015), predominantly caused by reduced mortality from infectious disease (hazard ratio 0.31; p =.023). Haplotype 2 also associated with higher levels of plasma apolipoprotein E, a target gene of the LXRalpha (p =.018), and higher levels of triglycerides (p =.041). Genetic variation in the gene coding for the LXRalpha (NR1H3) associates with human life span.
Collapse
Affiliation(s)
- Simon P Mooijaart
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
42
|
Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A. A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci U S A 2007; 104:5014-9. [PMID: 17360327 PMCID: PMC1821127 DOI: 10.1073/pnas.0700847104] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Broad aspects of Caenorhabditis elegans life history, including larval developmental timing, arrest at the dauer diapause, and longevity, are regulated by the nuclear receptor DAF-12. Endogenous DAF-12 ligands are 3-keto bile acid-like steroids, called dafachronic acids, which rescue larval defects of hormone-deficient mutants, such as daf-9/cytochrome P450 and daf-36/Rieske oxygenase, and activate DAF-12. Here we examined the effect of dafachronic acid on pathways controlling lifespan. Dafachronic acid supplementation shortened the lifespan of long-lived daf-9 mutants and abolished their stress resistance, indicating that the ligand is "proaging" in response to signals from the dauer pathways. However, the ligand extended the lifespan of germ-line ablated daf-9 and daf-36 mutants, showing that it is "antiaging" in the germ-line longevity pathway. Thus, dafachronic acid regulates C. elegans lifespan according to signaling state. These studies provide key evidence that bile acid-like steroids modulate aging in animals.
Collapse
Affiliation(s)
- Birgit Gerisch
- *Max-Planck-Institut fuer Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, Germany
| | - Veerle Rottiers
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
| | - Dongling Li
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
| | - Daniel L. Motola
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Carolyn L. Cummins
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Hans Lehrach
- *Max-Planck-Institut fuer Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, Germany
| | - David J. Mangelsdorf
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Adam Antebi
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Fielenbach N, Guardavaccaro D, Neubert K, Chan T, Li D, Feng Q, Hutter H, Pagano M, Antebi A. DRE-1: An Evolutionarily Conserved F Box Protein that Regulates C. elegans Developmental Age. Dev Cell 2007; 12:443-55. [PMID: 17336909 DOI: 10.1016/j.devcel.2007.01.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 01/20/2007] [Accepted: 01/26/2007] [Indexed: 11/26/2022]
Abstract
During metazoan development, cells acquire both positional and temporal identities. The Caenorhabditis elegans heterochronic loci are global regulators of larval temporal fates. Most encode conserved transcriptional and translational factors, which affect stage-appropriate programs in various tissues. Here, we describe dre-1, a heterochronic gene, whose mutant phenotypes include precocious terminal differentiation of epidermal stem cells and altered temporal patterning of gonadal outgrowth. Genetic interactions with other heterochronic loci place dre-1 in the larval-to-adult switch. dre-1 encodes a highly conserved F box protein, suggesting a role in an SCF ubiquitin ligase complex. Accordingly, RNAi knockdown of the C. elegans SKP1-like homolog SKR-1, the cullin CUL-1, and ring finger RBX homologs yielded similar heterochronic phenotypes. DRE-1 and SKR-1 form a complex, as do the human orthologs, hFBXO11 and SKP1, revealing a phyletically ancient interaction. The identification of core components involved in SCF-mediated modification and/or proteolysis suggests an important level of regulation in the heterochronic hierarchy.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Baylor College of Medicine, Huffington Center on Aging, Department of Molecular and Cellular Biology, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Broué F, Liere P, Kenyon C, Baulieu EE. A steroid hormone that extends the lifespan of Caenorhabditis elegans. Aging Cell 2007; 6:87-94. [PMID: 17266678 DOI: 10.1111/j.1474-9726.2006.00268.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Removing the germline of Caenorhabditis elegans extends lifespan. This lifespan extension requires the nuclear receptor DAF-12 and the cytochrome P450 DAF-9, suggesting that a lipophilic hormone is involved. Here we show that C. elegans contains several hormonal steroids that are also present in humans, including pregnenolone (3beta-hydroxy-pregn-5-en-20-one; PREG) and other pregnane and androstane derivatives. We find that PREG can extend the lifespan of C. elegans. Moreover, PREG levels rise when the germline is removed in a daf-9-dependent fashion. PREG extends the lifespan of germline-defective daf-9 mutants dramatically, but has no effect on daf-12 mutants. Thus, germline removal may extend lifespan, at least in part, by stimulating the synthesis of PREG.
Collapse
Affiliation(s)
- Florence Broué
- INSERM UMR788, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, Cedex, France
| | | | | | | |
Collapse
|
45
|
Braendle C, Milloz J, Félix MA. Mechanisms and evolution of environmental responses in Caenorhabditis elegans. Curr Top Dev Biol 2007; 80:171-207. [PMID: 17950375 DOI: 10.1016/s0070-2153(07)80005-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We review mechanistic and evolutionary aspects of interactions between the model organism Caenorhabditis elegans and its environment. In particular, we focus on environmental effects affecting developmental mechanisms. We describe natural and laboratory environments of C. elegans and provide an overview of the different environmental responses of this organism. We then show how two developmental processes respond to changes in the environment. First, we discuss the development of alternative juvenile stages, the dauer and non-dauer larva. This example illustrates how development responds to variation in the environment to generate complex phenotypic variation. Second, we discuss the development of the C. elegans vulva. This example illustrates how development responds to variation in the environment while generating an invariant final phenotype.
Collapse
Affiliation(s)
- Christian Braendle
- Institut Jacques Monod, CNRS-Universities of Paris 6/7, Tour 43 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
46
|
Bellino FL. Advances in endocrinology of aging research, 2005-2006. Exp Gerontol 2006; 41:1228-33. [PMID: 17110071 PMCID: PMC1804294 DOI: 10.1016/j.exger.2006.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 12/30/2022]
Abstract
The purpose of this brief review is to highlight some of the more important advances in endocrinology of aging research over the past year. Four advances were chosen and briefly described. First, exploration of the early steps in the generation of the internal steroidal hormonal signal involved in lifespan extension via the insulin/IGF-like signaling pathway in the nematode by two research groups revealed that the product of cholestanoic acid derivatives metabolized by a cytochrome P-450-like protein activates a protein with homology to the mammalian nuclear receptor superfamily, a process strikingly similar to the steroid hormone signaling pathway documented in mammalian systems. Second is the discovery that sirtuins, proteins that regulate lifespan in model organisms, enhance pancreatic insulin secretion in mice following a glucose challenge, suggesting the potential to regulate mammalian lifespan through regulation of the insulin signaling pathway. Third, the newly discovered hormone klotho, which also plays a role in regulating lifespan, in this case in mice, is reported to not only negatively affect insulin sensitivity but, perhaps more importantly, significantly affects calcium and phosphate metabolism as a required cofactor of Fgf-23 signaling. Finally the gonadotropin FSH is shown to directly affect bone density in mice separate from any direct effect of estrogen, suggesting that reproductive hormones other than estrogen can directly impact menopause-associated pathophysiology in non-reproductive tissues.
Collapse
Affiliation(s)
- Francis L Bellino
- Biology of Aging Program, National Institute on Aging Bethesda, MD 20891, USA.
| |
Collapse
|
47
|
Rottiers V, Antebi A. Control of Caenorhabditis elegans life history by nuclear receptor signal transduction. Exp Gerontol 2006; 41:904-9. [PMID: 16963217 DOI: 10.1016/j.exger.2006.06.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/19/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Caenorhabditis elegans diapause, reproductive development, and life span are influenced by the DAF-12 nuclear hormone receptor signaling pathway. Here, we describe how this nuclear receptor integrates environmental and physiologic cues and regulates developmental age, reproduction and aging.
Collapse
Affiliation(s)
- Veerle Rottiers
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|