1
|
Mazur A, Ayyadevara S, Mainali N, Patchett S, Uden M, Roa RI, Fahy GM, Shmookler Reis RJ. Model biological systems demonstrate the inducibility of pathways that strongly reduce cryoprotectant toxicity. Cryobiology 2024; 115:104881. [PMID: 38437899 DOI: 10.1016/j.cryobiol.2024.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cryoprotectant toxicity is a limiting factor for the cryopreservation of many living systems. We were moved to address this problem by the potential of organ vitrification to relieve the severe shortage of viable donor organs available for human transplantation. The M22 vitrification solution is presently the only solution that has enabled the vitrification and subsequent transplantation with survival of large mammalian organs, but its toxicity remains an obstacle to organ stockpiling for transplantation. We therefore undertook a series of exploratory studies to identify potential pretreatment interventions that might reduce the toxic effects of M22. Hormesis, in which a living system becomes more resistant to toxic stress after prior subtoxic exposure to a related stress, was investigated as a potential remedy for M22 toxicity in yeast, in the nematode worm C. elegans, and in mouse kidney slices. In yeast, heat shock pretreatment increased survival by 18-fold after exposure to formamide and by over 9-fold after exposure to M22 at 30 °C; at 0 °C and with two-step addition, treatment with 90% M22 resulted in 100% yeast survival. In nematodes, surveying a panel of pretreatment interventions revealed 3 that conferred nearly total protection from acute whole-worm M22-induced damage. One of these protective pretreatments (exposure to hydrogen peroxide) was applied to mouse kidney slices in vitro and was found to strongly protect nuclear and plasma membrane integrity in both cortical and medullary renal cells exposed to 75-100% M22 at room temperature for 40 min. These studies demonstrate for the first time that endogenous cellular defenses, conserved from yeast to mammals, can be marshalled to substantially ameliorate the toxic effects of one of the most toxic single cryoprotectants and the toxicity of the most concentrated vitrification solution so far described for whole organs.
Collapse
Affiliation(s)
- Anna Mazur
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA
| | - Srinivas Ayyadevara
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock AR, 72205, USA
| | - Nirjal Mainali
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA
| | - Stephanie Patchett
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew Uden
- Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Roberto I Roa
- 21st Century Medicine, Inc., Fontana, CA, 92336, USA
| | | | - Robert J Shmookler Reis
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock AR, 72205, USA.
| |
Collapse
|
2
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
3
|
Park HEH, Hwang W, Ham S, Kim E, Altintas O, Park S, Son HG, Lee Y, Lee D, Heo WD, Lee SJV. A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nat Commun 2021; 12:5631. [PMID: 34561453 PMCID: PMC8463539 DOI: 10.1038/s41467-021-25920-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Insulin/IGF-1 signaling (IIS) regulates various physiological aspects in numerous species. In Caenorhabditis elegans, mutations in the daf-2/insulin/IGF-1 receptor dramatically increase lifespan and immunity, but generally impair motility, growth, and reproduction. Whether these pleiotropic effects can be dissociated at a specific step in insulin/IGF-1 signaling pathway remains unknown. Through performing a mutagenesis screen, we identified a missense mutation daf-18(yh1) that alters a cysteine to tyrosine in DAF-18/PTEN phosphatase, which maintained the long lifespan and enhanced immunity, while improving the reduced motility in adult daf-2 mutants. We showed that the daf-18(yh1) mutation decreased the lipid phosphatase activity of DAF-18/PTEN, while retaining a partial protein tyrosine phosphatase activity. We found that daf-18(yh1) maintained the partial activity of DAF-16/FOXO but restricted the detrimental upregulation of SKN-1/NRF2, contributing to beneficial physiological traits in daf-2 mutants. Our work provides important insights into how one evolutionarily conserved component, PTEN, can coordinate animal health and longevity.
Collapse
Affiliation(s)
- Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Eunah Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Heehwa G Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
4
|
Ayyadevara S, Ganne A, Hendrix RD, Balasubramaniam M, Shmookler Reis RJ, Barger SW. Functional assessments through novel proteomics approaches: Application to insulin/IGF signaling in neurodegenerative disease'. J Neurosci Methods 2018; 319:40-46. [PMID: 30412730 DOI: 10.1016/j.jneumeth.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Events that instigate disease may involve biochemical events distinct from changes in the steady-state levels of proteins. Even chronic degenerative disorders appear to involve changes such as post-translational modifications. NEW METHOD We have begun a series of proteomics analyses on proteins that have been fractionated by functional status. Because Alzheimer's disease (AD) is associated with metabolic perturbations such as Type-2 diabetes, fractionation hinged on binding to phosphatidylinositol trisphosphate (PIP3), key to insulin/insulin-like growth factor signaling. We compared mice on normal chow to counterparts subjected to diet-induced obesity (DIO) or to mice expressing human Aβ1-42 from a transgene. RESULTS The prevailing phenotypic finding in either experimental group was loss of PIP3 binding. Of the 1228 proteins that showed valid PIP3 binding in any group of mice, 55% exhibited a significant quantitative difference in the number of spectral counts as a function of DIO, 63% as function of the Aβ transgene, and 79% as a function of either variable. There was remarkable overlap among the proteins altered in the two experimental groups, and pathway analysis indicated effects on proteostasis, apoptosis, and synaptic vesicles. COMPARISON WITH EXISTING METHODS Most proteomics approaches only identify differences in the steady-state levels of proteins. Our overlay of a functional distinction permits new levels of discovery that may achieve novel insights into physiology in an unbiased and inclusive manner. CONCLUSIONS Proteomics analyses have revolutionized the discovery phase of biomedical research but are conventionally limited in scope. The creative use of fractionation prior to proteomic discovery is likely to provide important insights into AD and related disorders.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, United States; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Akshatha Ganne
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Rachel D Hendrix
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | | | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, United States; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Steven W Barger
- Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, United States; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| |
Collapse
|
5
|
Kim YS, Han YT, Jeon H, Cha DS. Antiageing properties of Damaurone D in Caenorhabditis elegans. J Pharm Pharmacol 2018; 70:1423-1429. [DOI: 10.1111/jphp.12979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/15/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
This study was conducted to evaluate the longevity potential of damaurone D (DaD), a component of the damask rose, in the animal model Caenorhabditis elegans.
Methods
To investigate the effect of DaD on the longevity, lifespan assay was carried out. Fluorescence intensity of transgenic mutants was quantified to test the expression levels of stress proteins. A genetic study using single gene knockout mutants was designed to determine the target genes of DaD.
Key findings
DaD prolonged the mean lifespan of wild-type nematodes by 16.7% under normal conditions and also improved their stress endurance under thermal, osmotic, and oxidative stress conditions. This longevity-promoting effect could be attributed to in vivo antioxidant capacity and its up-regulating effects on the expressions of stress-response proteins such as SOD-3 and HSP-16.2. In addition, DaD treatment attenuated food intake, body length, lipofuscin accumulation and age-dependent decline of motor ability. Gene-specific mutant studies showed the involvement of genes such as daf-2, age-1, and daf-16.
Conclusions
These results suggest that DaD has beneficial effects on the longevity, and thus it can be a valuable plant origin lead compound for the development of nutraceutical preparations targeting ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Yong Seong Kim
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| |
Collapse
|
6
|
Scholze MJ, Barbieux KS, De Simone A, Boumasmoud M, Süess CCN, Wang R, Gönczy P. PI(4,5)P 2 forms dynamic cortical structures and directs actin distribution as well as polarity in Caenorhabditis elegans embryos. Development 2018; 145:dev.164988. [PMID: 29724757 DOI: 10.1242/dev.164988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 01/25/2023]
Abstract
Asymmetric division is crucial for embryonic development and stem cell lineages. In the one-cell Caenorhabditis elegans embryo, a contractile cortical actomyosin network contributes to asymmetric division by segregating partitioning-defective (PAR) proteins to discrete cortical domains. In the current study, we found that the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) localizes to polarized dynamic structures in C. elegans zygotes, distributing in a PAR-dependent manner along the anterior-posterior (A-P) embryonic axis. PIP2 cortical structures overlap with F-actin, and coincide with the actin regulators RHO-1 and CDC-42, as well as ECT-2. Particle image velocimetry analysis revealed that PIP2 and F-actin cortical movements are coupled, with PIP2 structures moving slightly ahead of F-actin. Importantly, we established that PIP2 cortical structure formation and movement is actin dependent. Moreover, we found that decreasing or increasing the level of PIP2 resulted in severe F-actin disorganization, revealing interdependence between these components. Furthermore, we determined that PIP2 and F-actin regulate the sizing of PAR cortical domains, including during the maintenance phase of polarization. Overall, our work establishes that a lipid membrane component, PIP2, modulates actin organization and cell polarity in C. elegans embryos.
Collapse
Affiliation(s)
- Melina J Scholze
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Kévin S Barbieux
- Geodetic Engineering Laboratory (TOPO), Swiss Federal Institute of Technology (EPFL), Environmental Engineering Institute (IIE), CH-1015 Lausanne, Switzerland
| | - Alessandro De Simone
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Mathilde Boumasmoud
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Camille C N Süess
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Ruijia Wang
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
PIP3-binding proteins promote age-dependent protein aggregation and limit survival in C. elegans. Oncotarget 2018; 7:48870-48886. [PMID: 27429199 PMCID: PMC5226477 DOI: 10.18632/oncotarget.10549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Class-I phosphatidylinositol 3-kinase (PI3KI) converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 comprises two fatty-acid chains that embed in lipid-bilayer membranes, joined by glycerol to inositol triphosphate. Proteins with domains that specifically bind that head-group (e.g. pleckstrin-homology [PH] domains) are thus tethered to the inner plasma-membrane surface where they have an enhanced likelihood of interaction with other PIP3-bound proteins, in particular other components of their signaling pathways. Null alleles of the C. elegans age-1 gene, encoding the catalytic subunit of PI3KI, lack any detectable class-I PI3K activity and so cannot form PIP3. These mutant worms survive almost 10-fold longer than the longest-lived normal control, and are highly resistant to a variety of stresses including oxidative and electrophilic challenges. Traits associated with age-1 mutation are widely believed to be mediated through AKT-1, which requires PIP3 for both tethering and activation. Active AKT complex phosphorylates and thereby inactivates the DAF-16/FOXO transcription factor. However, extensive evidence indicates that pleiotropic effects of age-1-null mutations, including extreme longevity, cannot be explained by insulin like-receptor/AKT/FOXO signaling alone, suggesting involvement of other PIP3-binding proteins. We used ligand-affinity capture to identify membrane-bound proteins downstream of PI3KI that preferentially bind PIP3. Computer modeling supports a subset of candidate proteins predicted to directly bind PIP3 in preference to PIP2, and functional testing by RNAi knockdown confirmed candidates that partially mediate the stress-survival, aggregation-reducing and longevity benefits of PI3KI disruption. PIP3-specific candidate sets are highly enriched for proteins previously reported to affect translation, stress responses, lifespan, proteostasis, and lipid transport.
Collapse
|
8
|
Blazie SM, Geissel HC, Wilky H, Joshi R, Newbern J, Mangone M. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues. Genetics 2017; 206:757-774. [PMID: 28348061 PMCID: PMC5499184 DOI: 10.1534/genetics.116.196774] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis.
Collapse
Affiliation(s)
- Stephen M Blazie
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
| | - Heather C Geissel
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
| | - Henry Wilky
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| | - Rajan Joshi
- College of Letters and Sciences, Interdisciplinary Studies, Biological Sciences and Informatics, Arizona State University, Tempe, Arizona 85281
| | - Jason Newbern
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| |
Collapse
|
9
|
Faiman R, Solon-Biet S, Sullivan M, Huestis DL, Lehmann T. The contribution of dietary restriction to extended longevity in the malaria vector Anopheles coluzzii. Parasit Vectors 2017; 10:156. [PMID: 28340627 PMCID: PMC5366120 DOI: 10.1186/s13071-017-2088-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Variation in longevity has long been of interest in vector biology because of its implication in disease transmission through vectorial capacity. Recent studies suggest that Anopheles coluzzii adults persist during the ~7 month dry season via aestivation. Recently there has been a growing body of evidence linking dietary restriction and low ratio of dietary protein to carbohydrate with extended longevity of animals. Here, we evaluated the effects of dietary restriction and the protein : carbohydrate ratio on longevity of An. coluzzii. RESULTS In our experiment, we combined dietary regimes with temperature and relative humidity to assess their effects on An. coluzzii longevity, in an attempt to simulate aestivation under laboratory conditions. Our results showed significant effects of both the physical and the dietary variables on longevity, but that diet regimen had a considerably greater effect than those of the physical conditions. Higher temperature and lower humidity reduced longevity. At 22 °C dietary protein (blood) shortened longevity when sugar was not restricted (RH = 85%), but extended longevity when sugar was restricted (RH = 50%). CONCLUSIONS Dietary restriction extended longevity in accord with predictions, but protein : carbohydrate ratio had a negligible effect. We identified conditions that significantly extend longevity in malaria vectors, however, the extent of increase in longevity was insufficient to simulate aestivation.
Collapse
Affiliation(s)
- Roy Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA.
| | | | - Margery Sullivan
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA
| | - Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA.,Office of Global Health Diplomacy, U.S. Department of State, 1800 G Street NW, Suite 10300, Washington, DC, 20006, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
10
|
Mohandas N, Hu M, Stroehlein AJ, Young ND, Sternberg PW, Lok JB, Gasser RB. Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. Parasit Vectors 2016; 9:64. [PMID: 26842675 PMCID: PMC4741068 DOI: 10.1186/s13071-016-1341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Background In the present study, we reconstructed the insulin/insulin-like growth factor 1 signalling (IIS) pathway for Haemonchus contortus, which is one of the most important eukaryotic pathogens of livestock worldwide and is related to the free-living nematode Caenorhabditis elegans. Methods We curated full-length open-reading frames from assembled transcripts, defined the complement of genes that encode proteins involved in this pathway and then investigated the transcription profiles of these genes for all key developmental stages of H. contortus. Results The core components of the IIS pathway are similar to their respective homologs in C. elegans. However, there is considerable variation in the numbers of isoforms between H. contortus and C. elegans and an absence of AKT-2 and DDL-2 homologs from H. contortus. Interestingly, DAF-16 has a single isoform in H. contortus compared with 12 in C. elegans, suggesting novel functional roles in the parasitic nematode. Some IIS proteins, such as DAF-18 and SGK-1, vary in their functional domains, indicating distinct roles from their homologs in C. elegans. Conclusions This study paves the way for the further characterization of key signalling pathways in other socioeconomically important parasites and should help understand the complex mechanisms involved in developmental processes. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1341-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Namitha Mohandas
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Andreas J Stroehlein
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Neil D Young
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Robin B Gasser
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| |
Collapse
|
11
|
Briga M, Verhulst S. What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments? Exp Gerontol 2015; 71:21-6. [DOI: 10.1016/j.exger.2015.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022]
|
12
|
Use of p-value plots to diagnose and remedy problems with statistical analysis of microarray data. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0339-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Rhoads TW, Prasad A, Kwiecien NW, Merrill AE, Zawack K, Westphall MS, Schroeder FC, Kimble J, Coon JJ. NeuCode Labeling in Nematodes: Proteomic and Phosphoproteomic Impact of Ascaroside Treatment in Caenorhabditis elegans. Mol Cell Proteomics 2015; 14:2922-35. [PMID: 26392051 DOI: 10.1074/mcp.m115.049684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 01/05/2023] Open
Abstract
The nematode Caenorhabditis elegans is an important model organism for biomedical research. We previously described NeuCode stable isotope labeling by amino acids in cell culture (SILAC), a method for accurate proteome quantification with potential for multiplexing beyond the limits of traditional stable isotope labeling by amino acids in cell culture. Here we apply NeuCode SILAC to profile the proteomic and phosphoproteomic response of C. elegans to two potent members of the ascaroside family of nematode pheromones. By consuming labeled E. coli as part of their diet, C. elegans nematodes quickly and easily incorporate the NeuCode heavy lysine isotopologues by the young adult stage. Using this approach, we report, at high confidence, one of the largest proteomic and phosphoproteomic data sets to date in C. elegans: 6596 proteins at a false discovery rate ≤ 1% and 6620 phosphorylation isoforms with localization probability ≥75%. Our data reveal a post-translational signature of pheromone sensing that includes many conserved proteins implicated in longevity and response to stress.
Collapse
Affiliation(s)
| | - Aman Prasad
- ‖Biochemistry, and **Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | | | | | - Kelson Zawack
- ‡‡Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853
| | | | - Frank C Schroeder
- ‡‡Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853
| | - Judith Kimble
- ‖Biochemistry, and **Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Joshua J Coon
- From the Departments of ‡Chemistry, §Biomolecular Chemistry, ¶Genome Center,
| |
Collapse
|
14
|
Ayyadevara S, Tazearslan C, Alla R, Jiang JC, Jazwinski SM, Shmookler Reis RJ. Rec-8 dimorphism affects longevity, stress resistance and X-chromosome nondisjunction in C. elegans, and replicative lifespan in S. cerevisiae. Front Genet 2014; 5:211. [PMID: 25136348 PMCID: PMC4120681 DOI: 10.3389/fgene.2014.00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 12/18/2022] Open
Abstract
A quantitative trait locus (QTL) in the nematode C. elegans, “lsq4,” was recently implicated by mapping longevity genes. QTLs for lifespan and three stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing the expression of many sperm-specific genes, suggesting an effect on spermatogenesis. Quantitative analysis of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen “dual-candidate” genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin) reduced its transcripts 4-fold, to a level similar to the longer-lived strain, while extending lifespan 25–26%, whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency (reflecting X-chromosome non-disjunction), traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased “leaky” expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as non-disjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741) by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival is widespread, exemplifying antagonistic pleiotropy (opposing effects on lifespan vs. reproduction), and/or balancing selection wherein genomic disruption increases genetic variation under harsh conditions.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Cagdas Tazearslan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Ramani Alla
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - James C Jiang
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center New Orleans, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center New Orleans, LA, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA ; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
15
|
Li F, Lok JB, Gasser RB, Korhonen PK, Sandeman MR, Shi D, Zhou R, Li X, Zhou Y, Zhao J, Hu M. Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. Int J Parasitol 2014; 44:485-96. [PMID: 24727120 PMCID: PMC4516220 DOI: 10.1016/j.ijpara.2014.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 01/25/2023]
Abstract
Infective L3s (iL3s) of parasitic nematodes share common behavioural, morphological and developmental characteristics with the developmentally arrested (dauer) larvae of the free-living nematode Caenorhabditis elegans. It is proposed that similar molecular mechanisms regulate entry into or exit from the dauer stage in C. elegans, and the transition from free-living to parasitic forms of parasitic nematodes. In C. elegans, one of the key factors regulating the dauer transition is the insulin-like receptor (designated Ce-DAF-2) encoded by the gene Ce-daf-2. However, nothing is known about DAF-2 homologues in most parasitic nematodes. Here, using a PCR-based approach, we identified and characterised a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2 displays significant sequence homology to insulin receptors (IR) in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2 is consistent with that of the human IR, suggesting that it is involved in the formation of the IR complex. The Hc-daf-2 gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the iL3 compared with other stages. To compare patterns of expression between Hc-daf-2 and Ce-daf-2, reporter constructs fusing the Ce-daf-2 or Hc-daf-2 promoter to sequence encoding GFP were microinjected into the N2 strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2. Taken together, these findings provide a first insight into the roles of Hc-daf-2/Hc-DAF-2 in the biology and development of H. contortus, particularly in the transition to parasitism.
Collapse
Affiliation(s)
- Facai Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, Victoria 3010, Australia; Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 16-18 Kaiserswerther Street, Berlin 14195, Germany
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, Victoria 3010, Australia
| | - Mark R Sandeman
- School of Applied Sciences and Engineering, Monash University, Northways Road, Churchill, Victoria 3842, Australia
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China.
| |
Collapse
|
16
|
Smith MA, Zhang Y, Polli JR, Wu H, Zhang B, Xiao P, Farwell MA, Pan X. Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: identification of novel gene targets. Reprod Toxicol 2013; 40:69-75. [PMID: 23735997 DOI: 10.1016/j.reprotox.2013.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Abstract
Effects and mechanisms of chronic exposure to low levels of nicotine is an area fundamentally important however less investigated. We employed the model organism Caenorhabditis elegans to investigate potential impacts of chronic (24h) and low nicotine exposure (6.17-194.5 μM) on stimulus-response, reproduction, and gene expressions. Nicotine significantly affects the organism's response to touch stimulus (p=0.031), which follows a dose-dependent pattern. Chronic nicotine exposure promotes early egg-laying events and slightly increased egg productions during the first 72 h of adulthood. The expressions of 10 (egl-10, egl-44, hlh-14, ric-3, unc-103, unc-50, unc-68, sod-1, oxi-1, and old-1) out of 18 selected genes were affected significantly. Other tested genes were cat-4, egl-19, egl-47, egl-5, lin-39, unc-43, pink-1, and age-1. Changes in gene expression were more evident at low dosages than at relatively high levels. Genes implicated in reproduction, cholinergic signaling, and stress response were regulated by nicotine, suggesting widespread physiological impacts of nicotine.
Collapse
Affiliation(s)
- Michael A Smith
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bharill P, Ayyadevara S, Alla R, Shmookler Reis RJ. Extreme Depletion of PIP3 Accompanies the Increased Life Span and Stress Tolerance of PI3K-null C. elegans Mutants. Front Genet 2013; 4:34. [PMID: 23543623 PMCID: PMC3610087 DOI: 10.3389/fgene.2013.00034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/01/2013] [Indexed: 12/16/2022] Open
Abstract
The regulation of animal longevity shows remarkable plasticity, in that a variety of genetic lesions are able to extend lifespan by as much as 10-fold. Such studies have implicated several key signaling pathways that must normally limit longevity, since their disruption prolongs life. Little is known, however, about the proximal effectors of aging on which these pathways are presumed to converge, and to date, no pharmacologic agents even approach the life-extending effects of genetic mutation. In the present study, we have sought to define the downstream consequences of age-1 nonsense mutations, which confer 10-fold life extension to the nematode Caenorhabditis elegans – the largest effect documented for any single mutation. Such mutations insert a premature stop codon upstream of the catalytic domain of the AGE-1/p110α subunit of class-I PI3K. As expected, we do not detect class-I PI3K (and based on our sensitivity, it constitutes <14% of wild-type levels), nor do we find any PI3K activity as judged by immunodetection of phosphorylated AKT, which strongly requires PIP3 for activation by upstream kinases, or immunodetection of its product, PIP3. In the latter case, the upper 95%-confidence limit for PIP3 is 1.4% of the wild-type level. We tested a variety of commercially available PI3K inhibitors, as well as three phosphatidylinositol analogs (PIAs) that are most active in inhibiting AKT activation, for effects on longevity and survival of oxidative stress. Of these, GDC-0941, PIA6, and PIA24 (each at 1 or 10 μM) extended lifespan by 7–14%, while PIAs 6, 12, and 24 (at 1 or 10 μM) increased survival time in 5 mM peroxide by 12–52%. These effects may have been conferred by insulinlike signaling, since a reporter regulated by the DAF-16/FOXO transcription factor, SOD-3::GFP, was stimulated by these PIAs in the same rank order (PIA24 > PIA6 > PIA12) as lifespan. A second reporter, PEPCK::GFP, was equally activated (∼40%) by all three.
Collapse
Affiliation(s)
- Puneet Bharill
- McClellan VA Medical Center, Central Arkansas Veterans Healthcare System Little Rock, AR, USA ; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | | | | | | |
Collapse
|
18
|
Zhang Y, Chen D, Ennis AC, Polli JR, Xiao P, Zhang B, Stellwag EJ, Overton A, Pan X. Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans. Arch Toxicol 2012; 87:371-82. [PMID: 22990136 DOI: 10.1007/s00204-012-0936-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/28/2012] [Indexed: 01/09/2023]
Abstract
The economic, environmental, and human health impacts of the deepwater horizon (DWH) oil spill have been of significant concern in the general public and among scientists. This study employs parallel experiments to test the effects of crude oil from the DWH oil well, chemical dispersant Corexit 9500A, and dispersant-oil mixture on growth and reproduction in the model organism Caenorhabditis elegans. Both the crude oil and the dispersant significantly inhibited the reproduction of C. elegans. Dose-dependent inhibitions of hatched larvae production were observed in worms exposed to both crude oil and dispersant. Importantly, the chemical dispersant Corexit 9500A potentiated crude oil effects; dispersant-oil mixture induced more significant effects than oil or dispersant-alone exposures. While oil-alone exposure and dispersant-alone exposure have none to moderate inhibitory effects on hatched larvae production, respectively, the mixture of dispersant and oil induced much more significant inhibition of offspring production. The production of hatched larvae was almost completely inhibited by several high concentrations of the dispersant-oil mixture. This suggests a sensitive bioassay for future investigation of oil/dispersant impacts on organisms. We also investigated the effects of crude oil/dispersant exposure at the molecular level by measuring the expressions of 31 functional genes. Results showed that the dispersant and the dispersant-oil mixture induced aberrant expressions of 12 protein-coding genes (cat-4, trxr-2, sdhb-1, lev-8, lin-39, unc-115, prdx-3, sod-1, acr-16, ric-3, unc-68, and acr-8). These 12 genes are associated with a variety of biological processes, including egg-laying, oxidative stress, muscle contraction, and neurological functions. In summary, the toxicity potentiating effect of chemical dispersant must be taken into consideration in future crude oil cleanup applications.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Department of Biology, East Carolina University, N108 Howell Science Complex, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fuellen G, Dengjel J, Hoeflich A, Hoeijemakers J, Kestler HA, Kowald A, Priebe S, Rebholz-Schuhmann D, Schmeck B, Schmitz U, Stolzing A, Sühnel J, Wuttke D, Vera J. Systems biology and bioinformatics in aging research: a workshop report. Rejuvenation Res 2012; 15:631-41. [PMID: 22950424 DOI: 10.1089/rej.2012.1360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an "aging society," health span extension is most important. As in 2010, talks in this series of meetings in Rostock-Warnemünde demonstrated that aging is an apparently very complex process, where computational work is most useful for gaining insights and to find interventions that counter aging and prevent or counteract aging-related diseases. The specific topics of this year's meeting entitled, "RoSyBA: Rostock Symposium on Systems Biology and Bioinformatics in Ageing Research," were primarily related to "Cancer and Aging" and also had a focus on work funded by the German Federal Ministry of Education and Research (BMBF). The next meeting in the series, scheduled for September 20-21, 2013, will focus on the use of ontologies for computational research into aging, stem cells, and cancer. Promoting knowledge formalization is also at the core of the set of proposed action items concluding this report.
Collapse
Affiliation(s)
- Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Department of Medicine, Rostock University, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee TW, Delongchamp RR. A Method for Gene Group Analysis and Its Application. KOREAN JOURNAL OF APPLIED STATISTICS 2012. [DOI: 10.5351/kjas.2012.25.2.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Tazearslan C, Cho M, Suh Y. Discovery of functional gene variants associated with human longevity: opportunities and challenges. J Gerontol A Biol Sci Med Sci 2012; 67:376-83. [PMID: 22156437 PMCID: PMC3309874 DOI: 10.1093/gerona/glr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/10/2011] [Indexed: 11/14/2022] Open
Abstract
Age is a major risk factor for many human diseases. Extremely long-lived individuals, such as centenarians, have managed to ward off age-related diseases and serve as human models to search for the genetic factors that influence longevity. The discovery of evolutionarily conserved pathways with major impact on life span in animal models has provided tantalizing opportunities to test the relevance of these pathways for human longevity. Here we specifically focus on the insulin/insulin-like growth factor-1 signaling as a prime candidate pathway. Coupled with the rapid advances in ultra high-throughput sequencing technologies, it is now feasible to comprehensively analyze all possible sequence variants in candidate genes segregating with a longevity phenotype and to investigate the functional consequences of the associated variants. A better understanding of the functional genes that affect healthy longevity in humans may lead to a rational basis for intervention strategies that can delay or prevent age-related diseases.
Collapse
Affiliation(s)
| | | | - Yousin Suh
- Department of Genetics
- Department of Medicine
- Institute for Aging Research and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
- Institute of Aging Research, Guangdong Medical College, Dongguan, China
| |
Collapse
|
22
|
Liang R, Khanna A, Muthusamy S, Li N, Sarojini H, Kopchick JJ, Masternak MM, Bartke A, Wang E. Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 2011; 10:1080-8. [PMID: 21967153 PMCID: PMC3587961 DOI: 10.1111/j.1474-9726.2011.00751.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long-lived mutant mice, both Ames dwarf and growth hormone receptor gene-disrupted or knockout strains, exhibit heightened cognitive robustness and altered IGF1 signaling in the brain. Here, we report, in both these long-lived mice, that three up-regulated lead microRNAs, miR-470, miR-669b, and miR-681, are involved in posttranscriptional regulation of genes pertinent to growth hormone/IGF1 signaling. All three are most prominently localized in the hippocampus and correspond to reduced expression of key IGF1 signaling genes: IGF1, IGF1R, and PI3 kinase. The decline in these genes' expression translates into decreased phosphorylation of downstream molecules AKT and FoxO3a. Cultures transfected with either miR-470, miR-669b, or miR-681 show repressed endogenous expression of all three genes of the IGF1 signaling axis, most significantly IGF1R, while other similarly up-regulated microRNAs, including let-7g and miR-509, do not induce the same levels of repression. Transduction study in IGF1-responsive cell cultures shows significantly reduced IGF1R expression, and AKT to some extent, most notably by miR-681. This is accompanied by decreased levels of downstream phosphorylated forms of AKT and FoxO3a upon IGF1 stimulation. Suppression of IGF1R by the three microRNAs is further validated by IGF1R 3'UTR reporter assays. Taken together, our results suggest that miR-470, miR-669b, and miR-681 are all functionally able to suppress IGF1R and AKT, two upstream genes controlling FoxO3a phosphorylation status. Their up-regulation in growth hormone signaling-deficient mutant mouse brain suggests reduced IGF1 signaling at the posttranscriptional level, for numerous gains of neuronal function in these long-lived mice.
Collapse
Affiliation(s)
- Ruqiang Liang
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| | - Amit Khanna
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| | - Senthilkumar Muthusamy
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| | - Na Li
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| | - Harshini Sarojini
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| | | | - Michal M. Masternak
- Department of Medicine, Southern Illinois University, Springfield, Illinois
- Burnet School of Biomedical Sciences, University of Central Florida, Orlando, Florida
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska St., No 32, 60-479 Poznan, Poland
| | - Andrzej Bartke
- Department of Medicine, Southern Illinois University, Springfield, Illinois
| | - Eugenia Wang
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
23
|
Shmookler Reis RJ, Ayyadevara S, Crow WA, Lee T, Delongchamp RR. Gene categories differentially expressed in C. elegans age-1 mutants of extraordinary longevity: new insights from novel data-mining procedures. J Gerontol A Biol Sci Med Sci 2011; 67:366-75. [PMID: 22021389 DOI: 10.1093/gerona/glr186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two nonsense mutants of age-1, the Caenorhabditis elegans gene encoding phosphoinositide 3-kinase, live nearly 10-fold longer than wild-type controls and are exceptionally resistant to several stresses. Genome-wide expression analyses implicated downregulation of many more genes than were upregulated in second-generation age-1 homozygotes. Functional-annotation analysis, based on Gene Ontology terms, suggested that novel mechanisms may mediate the stronger phenotypes observed for these worms than with milder age-1 disruption. For the current study, the same microarray data were reanalyzed using novel meta-analytic procedures that we developed recently. First, gene p values were corrected for systematic biases based on the observed distribution for nonexpressed genes; these values were then combined to derive an aggregate p value for each functional-annotation term while adjusting for intergene covariance. This resulted in much better coverage of relevant gene categories, including many that were independently supported by other data. The number of nonredundant GO categories significantly distinguishing age-1 alleles of exceptional longevity increased from sevenfold to greater than ninefold, improving both sensitivity and specificity of selection for altered pathways and implicating previously unsuspected longevity mechanisms. Of 150 genes whose differential expression underlay significant GO terms in both comparisons, over half were up- or down-regulated in accord with longevity, whereas one third showed altered expression uniquely in the longest-lived age-1-null strains, consistent with the activation or suppression of pathways peculiar to strong age-1 mutants.
Collapse
|
24
|
Shmookler Reis RJ, Xu L, Lee H, Chae M, Thaden JJ, Bharill P, Tazearslan C, Siegel E, Alla R, Zimniak P, Ayyadevara S. Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging (Albany NY) 2011; 3:125-47. [PMID: 21386131 PMCID: PMC3082008 DOI: 10.18632/aging.100275] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many lifespan-modulating genes are involved in either generation of oxidative substrates and end-products, or their detoxification and removal. Among such metabolites, only lipoperoxides have the ability to produce free-radical chain reactions. For this study, fatty-acid profiles were compared across a panel of C. elegans mutants that span a tenfold range of longevities in a uniform genetic background. Two lipid structural properties correlated extremely well with lifespan in these worms: fatty-acid chain length and susceptibility to oxidation both decreased sharply in the longest-lived mutants (affecting the insulinlike-signaling pathway). This suggested a functional model in which longevity benefits from a reduction in lipid peroxidation substrates, offset by a coordinate decline in fatty-acid chain length to maintain membrane fluidity. This model was tested by disrupting the underlying steps in lipid biosynthesis, using RNAi knockdown to deplete transcripts of genes involved in fatty-acid metabolism. These interventions produced effects on longevity that were fully consistent with the functions and abundances of their products. Most knockdowns also produced concordant effects on survival of hydrogen peroxide stress, which can trigger lipoperoxide chain reactions.
Collapse
|
25
|
Abstract
The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more. Assuming that the ancestor we share with nematodes aged rapidly, this means that over evolutionary time mutations have increased lifespan more than 2,000-fold. Which genes can extend lifespan? Can we augment their activities and live even longer? After centuries of wistful poetry and wild imagination, we are now getting answers, often unexpected ones, to these fundamental questions.
Collapse
Affiliation(s)
- Cynthia J Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA.
| |
Collapse
|
26
|
Abstract
The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more. Assuming that the ancestor we share with nematodes aged rapidly, this means that over evolutionary time mutations have increased lifespan more than 2,000-fold. Which genes can extend lifespan? Can we augment their activities and live even longer? After centuries of wistful poetry and wild imagination, we are now getting answers, often unexpected ones, to these fundamental questions.
Collapse
Affiliation(s)
- Cynthia J Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA.
| |
Collapse
|