1
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
2
|
Hah JM, Martásek P, Roman LJ, Silverman RB. Aromatic reduced amide bond peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. J Med Chem 2003; 46:1661-9. [PMID: 12699384 DOI: 10.1021/jm0202932] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthase inhibitors could act as important therapies for disorders arising from overstimulation or overexpression of individual nitric oxide synthase (NOS) isoforms. But preservation of physiologically important nitric oxide functions require the use of isoform-selective inhibitors. Recently we reported reduced amide bond pseudodipeptide analogues as potent and selective neuronal nitric oxide synthase (nNOS) inhibitors (Hah, J.-M.; Roman, L. J.; Martasek, P.; Silverman, R. B. J. Med. Chem. 2001, 44, 2667-2670). To increase the lipophilicity a series of aromatic, reduced amide bond analogues (6-25) were designed and synthesized as potential selective nNOS inhibitors. The hypothesized large increase in isoform selectivity of nNOS over inducible NOS was not obtained in this series. However, the high potency with nNOS as well as high selectivity of nNOS over endothelial NOS was retained in some of these compounds (15, 17, 21), as well as good selectivity over inducible NOS. The most potent nNOS inhibitor among these compounds is N-(4S)-[4-amino-5-[2-(2-aminoethyl)phenylamino]-pentyl]-N'-nitroguanidine (17) (K(i) = 50 nM), which also shows the highest selectivity over eNOS (greater than 2100-fold) and 70-fold selectivity over iNOS. Further modification of compound 17 should lead to even more potent and selective nNOS inhibitors.
Collapse
Affiliation(s)
- Jung-Mi Hah
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | | | | | | |
Collapse
|
3
|
Yang XD, Ma JYC, Barger MW, Ma JKH. Transport and utilization of arginine and arginine-containing peptides by rat alveolar macrophages. Pharm Res 2002; 19:825-31. [PMID: 12134953 DOI: 10.1023/a:1016132200104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To demonstrate that rat alveolar macrophages (AM) exhibited the PepT1-like transporter for the uptake of arginine (Arg)-containing small peptides and utilized these peptides as direct substrates for nitric oxide (NO) production. NO is an important mediator that, on one hand, protects the lung from bacteria infection and, on the other hand, augments inflammatory lung injury. METHOD The uptake of small peptides by rat AM was evaluated using fluorescein isothiocyanate (FITC)-labeled (*) peptides (Arg-Lys*, Gly-Sar-Lys*, and beta-Ala-Lys*), high-performance liquid chromatography (HPLC) analysis of potential peptide degradation, and known inhibitors of Arg and PepT1 transport. NO production by AM through Arg and Arg-containing peptides was studied with and without inhibition by transport inhibitors. The presence of PepT1-like transporter on AM was evaluated using anti-PepT1 antisera and Western blot analysis. The substrate specificity of Arg-Gly and Arg-Gly-Asp was determined using purified inducible NO synthase (iNOS). The availability of Arg-containing peptides in the lung was determined by HPLC analysis of bronchoalveolar lavage (BAL) fluid. RESULTS The FITC-labeled peptides were internalized by AM without degradation. The uptake of Arg-Lys*, beta-Ala-Lys*, and Gly-Sar-Lys* was blocked (approximately 50%) by cephradine (an inhibitor of PepT1 for peptide transport) but not by Lys (an inhibitor on cationic amino acid transporter 2B for Arg transport). The NO production by AM through Arg-containing peptides was significantly blocked only by PepT1 inhibitors and by an anti-PepT1 antibody in a dose-dependent manner. These inhibitors had no effect on the AM production of NO using Arg as a substrate. Arg-Gly and Arg-Gly-Asp were found to be direct substrates for iNOS with similar Km and Vmax values to those of Arg. But, the production of NO by AM using these peptides as substrates was 2-fold higher than using Arg as a substrate. Both Arg-Gly and Arg-Gly-Asp were found in the BAL fluid. The presence of a PepT1-like transporter on AM was confirmed by Western blotting. CONCLUSION This study shows that AM exhibit PepT1-like transporter for small peptide uptake. Arginine-containing peptides, through the PepT1 transporter system, can serve as direct substrates of iNOS for the production of NO by AM.
Collapse
|
4
|
Hadkar V, Skidgel RA. Carboxypeptidase D is up-regulated in raw 264.7 macrophages and stimulates nitric oxide synthesis by cells in arginine-free medium. Mol Pharmacol 2001; 59:1324-32. [PMID: 11306718 DOI: 10.1124/mol.59.5.1324] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane-bound carboxypeptidase D (CPD) is a B-type carboxypeptidase that specifically cleaves C-terminal Arg or Lys from peptides and proteins. RAW 264.7 cells contained significant membrane-bound CPD activity as shown by activity assays and immunoprecipitation. To determine whether CPD can increase nitric oxide (NO) synthesis by releasing precursor Arg, cells were activated in Arg-free medium with 50 U/ml interferon-gamma (IFN-gamma) and 0.1 microg/ml lipopolysaccharide (LPS) to up-regulate inducible NO synthase. Addition of the specific carboxypeptidase substrate, 200 microM furylacryloyl-Ala-Arg, stimulated NO production by 6-fold and this effect was blocked 83% by a specific inhibitor, DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid (MGTA). MGTA did not inhibit NO synthesis stimulated by added free Arg. Lys, an inhibitor of Arg transport, also blocked the effect of the carboxypeptidase substrate. In cells stimulated with IFN-gamma and LPS in Arg-free medium, CPD activity increased 2- to 3-fold between 8 and 16 h after treatment, but did not change in cells stimulated in medium containing 0.4 mM Arg. The NO synthase inhibitor N-monomethyl-L-arginine blocked the inhibitory Arg effect and the NO donor S-nitroso-acetylpenicillamine mimicked it, indicating that high levels of NO block the up-regulation of CPD. Immunohistochemical staining and Western analysis revealed an increase in CPD protein, and Northern analysis showed increased CPD mRNA upon stimulation of cells in Arg-free medium. CPD was localized both on the plasma membrane and in the Golgi. These data suggest that CPD expression is enhanced during inflammatory processes and may stimulate NO production by cleaving Arg from peptide substrates.
Collapse
Affiliation(s)
- V Hadkar
- Departments of Pharmacology and Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
5
|
Huang H, Martasek P, Roman LJ, Masters BS, Silverman RB. N(omega)-Nitroarginine-containing dipeptide amides. Potent and highly selective inhibitors of neuronal nitric oxide synthase. J Med Chem 1999; 42:3147-53. [PMID: 10447959 DOI: 10.1021/jm990111c] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective inhibition of the isoforms of nitric oxide synthase (NOS) could be therapeutically useful in the treatment of certain disease states arising from the overproduction of nitric oxide (NO). Recently, we reported the dipeptide methyl ester, D-Phe-D-Arg(NO)()2-OMe (19), as a modest inhibitor of nNOS (K(i) = 2 microM), but with selectivity over iNOS as high as 1800-fold (Silverman, R. B.; Huang, H.; Marletta, M. A.; Martasek, P. J. Med. Chem. 1997, 40, 2813-2817). Here a library of 152 dipeptide amides containing nitroarginine and amino acids other than Phe are synthesized and screened for activity. Excellent inhibitory potency and selectivity for nNOS over eNOS and iNOS is achieved with the dipeptide amides containing a basic amine side chain (20-24), which indicates a possible electrostatic (or hydrogen bonding) interaction at the enzyme active site. The most potent nNOS inhibitor among these compounds is L-Arg(NO)()2-L-Dbu-NH(2) (23) (K(i) = 130 nM), which also exhibits the highest selectivity over eNOS (>1500-fold) with a 192-fold selectivity over iNOS. These compounds do not exhibit time-dependent inhibition. The order and the chirality of the amino acids in the dipeptide amides have profound influences on the inhibitory potency as well as on the isoform selectivity. These dipeptide amide inhibitors open the door to the design of potent and highly selective inhibitors of nNOS.
Collapse
Affiliation(s)
- H Huang
- Department of Chemistry and Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3113, USA
| | | | | | | | | |
Collapse
|
6
|
Hu J, Fridlund J, el-Fakahany EE. Regulation of neuronal nitric oxide synthase by histone, protamine, and myelin basic protein. Neurochem Res 1995; 20:497-503. [PMID: 7544448 DOI: 10.1007/bf00973107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined the effects of endogenous basic proteins rich in the amino acid L-arginine on neuronal NO synthase activity by monitoring cyclic GMP formation in intact neuron-like neuroblastoma N1E-115 cells. Histone, protamine and myelin basic protein significantly stimulated cyclic GMP formation, both in a time- and concentration-dependent manner. These effects were blocked by hemoglobin and NO synthase inhibitors. Removal of the extracellular/intracellular Ca2+ gradient by a Ca2+ chelator completely abolished the cyclic GMP responses elicited by histone and protamine, suggesting that influx of extracellular Ca2+ might be involved in their activation of NO synthase. The effects of myelin basic protein on cyclic GMP formation, however, appeared to be due to Ca2+ release from intracellular stores. In cytosolic preparations of rat cerebellum, these basic proteins inhibited the metabolism of L-arginine into L-citrulline by NO synthase. We conclude from our findings that endogenous basic proteins might be involved in the regulation of neuronal NO synthase activity. Their effects on the enzyme could be either stimulatory or inhibitory, depending on whether the basic proteins exert their effects extracellularly or intracellularly, respectively.
Collapse
Affiliation(s)
- J Hu
- Division of Neuroscience Research in Psychiatry, University of Minnesota School of Medicine, Minneapolis 55455, USA
| | | | | |
Collapse
|
7
|
Szabó C, Thiemermann C, Wu CC, Perretti M, Vane JR. Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo. Proc Natl Acad Sci U S A 1994; 91:271-5. [PMID: 7506416 PMCID: PMC42929 DOI: 10.1073/pnas.91.1.271] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An enhanced formation of nitric oxide (NO) due to induction of a calcium-independent (inducible) NO synthase (iNOS) contributes importantly to the cardiovascular failure caused by bacterial endotoxin. Repeated challenges with small doses of endotoxin result in tolerance to both peripheral vascular failure and death caused by subsequent injection of a higher dose of endotoxin. Here we investigate whether tolerance to endotoxin is associated with a lack of induction of iNOS in vivo and whether endogenous glucocorticoids play a role in the development of endotoxin tolerance. In anesthetized rats, i.v. administration of Escherichia coli endotoxin [lipopolysaccharide (LPS); 2 mg.kg-1] resulted in a prolonged decrease in mean arterial blood pressure (MAP) and hyporeactivity to the contractile responses elicited by norepinephrine (NE; 10 nM) in aortic rings ex vivo. Hyporeactivity to NE was partially reversed by NG-nitro-L-arginine methyl ester (0.3 mM) in vitro, suggesting that an enhanced formation of NO contributes to this hyporeactivity. There was a substantial increase in the activity of iNOS in the lung 3 h after i.v. injection of LPS (0.2 +/- 0.1 to 6.6 +/- 0.6 pmol.mg-1.min-1; n = 5; P < 0.01). Rats injected i.p. with LPS (0.5 mg.kg-1) for 4 consecutive days became tolerant to an i.v. injection of LPS (2 mg.kg-1) in that both hypotension and vascular hyporeactivity to NE were significantly attenuated. Moreover, in these endotoxin-tolerant rats, the induction of iNOS by LPS in the lung was attenuated by 63% +/- 6%. Injection of LPS caused a 9-fold increase in plasma corticosterone (CCS) levels within 2 h and CCS levels remained significantly elevated 6 and 24 h after LPS. Animals rendered tolerant to endotoxin by administration of a low dose of LPS (0.5 mg.kg-1, i.p.) for 4 days still had a 6-fold increase in plasma CCS levels 24 h after the last injection of LPS. When endotoxin-tolerant rats were treated with the glucocorticoid receptor antagonist RU 486 (50 mg.kg-1, p.o. 3 h prior to LPS), there was a restoration of the effects of LPS (2 mg.kg-1, i.v.) in causing hypotension, vascular hyporeactivity to NE, and iNOS induction in the lung. However, in control rats RU 486 enhanced neither the decrease in MAP nor the induction of iNOS in response to LPS (2 mg.kg-1, i.v.). Thus, cardiovascular tolerance to endotoxin is accompanied and explained by reduced induction of iNOS in vivo due to the elevation of endogenous glucocorticoid levels.
Collapse
Affiliation(s)
- C Szabó
- William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
POSTER COMMUNICATIONS. Br J Pharmacol 1993. [DOI: 10.1111/j.1476-5381.1993.tb16290.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Cristol JP, Thiemermann C, Mitchell JA, Walder C, Vane JR. Support of renal blood flow after ischaemic-reperfusion injury by endogenous formation of nitric oxide and of cyclo-oxygenase vasodilator metabolites. Br J Pharmacol 1993; 109:188-94. [PMID: 7684301 PMCID: PMC2175578 DOI: 10.1111/j.1476-5381.1993.tb13552.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Ischaemia-reperfusion injury in the kidney is associated with a loss of autoregulation, an increase in renal vascular resistance (RVR), a decrease of renal blood flow (RBF) and ultimately acute renal failure. The aim of this study was to investigate the role of the release of endogenous nitric oxide (NO) in the recovery of RBF after ischaemic injury of the renal vascular bed. 2. Anaesthetized rats (thiopentone sodium; 120 mg kg-1, i.p.) were submitted to acute renal ischaemia followed by 2 or 6 h of reperfusion (I/R). Reperfusion was associated with a significant reduction in RBF, an increase in RVR, and an impairment of the vasodilator effect of acetylcholine (ACh). 3. NG-nitro-L-arginine methyl ester (L-NAME, 30 micrograms kg-1 min-1, i.v., n = 5) significantly prevented the recovery of RBF after I/R injury. Similarly, inhibition of prostanoid formation with indomethacin (5 mg kg-1, i.v., n = 4) significantly enhanced the rise in RVR associated with I/R injury. 4. Infusion of L-arginine (L-Arg; 1 or 3 mg kg-1 min-1, i.v., n = 5 and 4, respectively) or D-Arg (1 mg kg-1 min-1, i.v., n = 6), starting 30 min after occlusion, did not improve the recovery of RBF. Furthermore, infusion of L-Arg (20 mg kg-1 min-1 for 15 min; n = 4) had no effect on the I/R-induced impairment of the vasodilator responses to ACh. 5. To elucidate the relative importance of the constitutive and inducible NO synthase isoforms for the formation of NO after I/R, calcium-dependent (constitutive) and calcium-independent (inducible) NO synthase activities were measured in kidney homogenates obtained from ischaemic or non-ischaemic kidneys. A calcium-independent NO synthase activity was not detectable in kidney homogenates obtained from either sham-operated control rats or from animals subjected to I/R. Moreover, dexamethasone(3 mg kg-1, i.v., 60 min prior to I/R, n = 6), an inhibitor of the induction of NO synthase,had no effect on either RBF or RVR in rats subjected to I/R. In contrast to I/R, lipopolysaccaride(LPS, endotoxin; 5 mg kg-1, i.p., n = 3) caused a significant induction of a calcium-independent NO synthase activity in the kidney.6. These results confirm the importance of the release of vasodilator cyclo-oxygenase metabolites in the compromised renal circulation and indicate that the formation of NO derived from the constitutive, but not the inducible NO synthase, is also important for the maintenance of RBF after I/R injury of the renal vascular bed.
Collapse
Affiliation(s)
- J P Cristol
- William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London
| | | | | | | | | |
Collapse
|
10
|
Szabó C, Mitchell JA, Thiemermann C, Vane JR. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol 1993; 108:786-92. [PMID: 7682137 PMCID: PMC1908041 DOI: 10.1111/j.1476-5381.1993.tb12879.x] [Citation(s) in RCA: 313] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The role of an enhanced formation of nitric oxide (NO) and the relative importance of the constitutive and inducible NO synthase (NOS) for the development of immediate (within 60 min) and delayed (at 180 min) vascular hyporeactivity to noradrenaline was investigated in a model of circulatory shock induced by endotoxin (lipopolysaccharide; LPS) in the rat. 2. Male Wistar rats were anaesthetized and instrumented for the measurement of mean arterial blood pressure (MAP) and heart rate. In addition, the calcium-dependent and calcium-independent NOS activity was measured ex vivo by the conversion of [3H]-arginine to [3H]-citrulline in homogenates from several organs obtained from vehicle- and LPS-treated rats. 3. E. coli LPS (10 mg kg-1, i.v. bolus) caused a rapid (within 5 min) and sustained fall in MAP. At 30 and 60 min after LPS, pressor responses to noradrenaline (0.3, 1 or 3 micrograms kg-1, i.v.) were significantly reduced. The pressor responses were restored by NG-nitro-L-arginine methyl ester (L-NAME, 1 mg kg-1, i.v. at 60 min), a potent inhibitor of NO synthesis. In contrast, L-NAME did not potentiate the noradrenaline-induced pressor responses in control animals. 4. Dexamethasone (3 mg kg-1, i.v., 60 min prior to LPS), a potent inhibitor of the induction of NOS, did not alter initial MAP or pressor responses to noradrenaline in control rats, but significantly attenuated the LPS-induced fall in MAP at 15 to 60 min after LPS. Dexamethasone did not influence the development of the LPS-induced immediate (within 60 min) hyporeactivity to noradrenaline. However,dexamethasone pretreatment prevented the hypotension and vascular hyporeactivity at 180 min.5. At 60 min after LPS a moderate increase in the activity of a calcium-independent (inducible) NOS activity was detected in the aorta, but not in any of the other tissues studied. However, at 180 min after LPS, a significant NOS induction was observed in the lung, liver, spleen, mesentery, heart and aorta.This NOS induction was substantially prevented by pretreatment with dexamethasone.6. These results suggest that the immediate hypotension and vascular hyporeactivity to noradrenaline in endotoxin shock is caused by an enhanced formation of NO due to activation of the constitutive enzyme. The delayed hypotension and vascular hyporeactivity, however, is due to enhanced NO formation by the LPS-induced enzyme.
Collapse
Affiliation(s)
- C Szabó
- William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London
| | | | | | | |
Collapse
|
11
|
Thiemermann C, Szabó C, Mitchell JA, Vane JR. Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide. Proc Natl Acad Sci U S A 1993; 90:267-71. [PMID: 7678341 PMCID: PMC45641 DOI: 10.1073/pnas.90.1.267] [Citation(s) in RCA: 262] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study investigates the role of nitric oxide (NO) and the induction of a calcium-independent NO synthase (NOS) in development of vascular hyporeactivity to norepinephrine (NE) and vascular decompensation associated with hemorrhagic shock (HS) in the anesthetized rat. HS for 120 min caused a time-dependent reduction of the pressor responses to NE. This hyporeactivity is mediated by an enhanced release of NO by the constitutive NOS, for it was reversed by NG-nitro-L-arginine methyl ester (NO2Arg), an inhibitor of both constitutive and inducible NOS, but it was not prevented by dexamethasone, an inhibitor of NOS induction. Vascular decompensation following prolonged periods of HS was characterized by a failure of control animals to maintain arterial blood pressures despite reinfusion of blood. This progressive decrease in blood pressure is mediated by enhanced formation of NO by the inducible NOS, for it was prevented by NO2Arg or dexamethasone. A strong increase in calcium-independent (inducible) NOS activity was observed in several organs after 150 and 330 min of HS, being most pronounced in lung, liver, and spleen. HS for 330, but not 150, min also caused hyporeactivity of rat aortic rings to vasoconstrictors, which was associated with induction of calcium-independent NOS activity in this tissue. Aortic hyporeactivity was prevented by dexamethasone pretreatment in vivo and reversed by NO2Arg in vitro. HS was not associated with an increase in plasma endotoxin levels, showing that endotoxin does not account for induction of NOS in this model. Thus, excessive NO formation induces vascular hyporeactivity and decompensation in HS, indicating that NOS inhibitors, particularly of the inducible NOS, may improve the therapeutic outcome of patients suffering from HS.
Collapse
MESH Headings
- Amino Acid Oxidoreductases/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Aorta, Thoracic/physiopathology
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Blood Pressure/drug effects
- Heart Rate/drug effects
- In Vitro Techniques
- Lipopolysaccharides/pharmacokinetics
- Lipopolysaccharides/toxicity
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/physiopathology
- NG-Nitroarginine Methyl Ester
- Nitric Oxide/metabolism
- Nitric Oxide Synthase
- Norepinephrine/pharmacology
- Organ Specificity
- Rats
- Rats, Wistar
- Shock, Hemorrhagic/physiopathology
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- C Thiemermann
- William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London, United Kingdom
| | | | | | | |
Collapse
|
12
|
Abstract
Nitric oxide (.NO) synthase (NOS) activity in subcellular fractions from cultured endothelial cells (EC) and lipopolysaccharide-activated J774.2 monocyte/macrophages was investigated by monitoring the .NO-mediated increase in intracellular cyclic GMP in LLC-PK1 pig kidney epithelial cells. The constitutive NOS in EC (NOSc) was largely membrane-bound, whereas the inducible NOS in J774.2 cells (NOSi) was equally distributed among cytosol and membrane(s). Both the cytosolic NOSc in EC and the membrane-bound NOSi in J774.2 cells were strictly Ca(2+)-dependent, whereas the membrane-bound NOSc in EC and the cytosolic NOSi in J774.2 cells were not. L-Homoarginine and L-arginine-containing small peptides, such as L-arginyl-L-phenylalanine, replaced L-arginine as a substrate for the NOSc in EC and the Ca(2+)-independent NOSi in J774.2 cells, but not the Ca(2+)-dependent NOSi. Thus, irrespective of their intracellular localisation, at least three isoforms of NOS exist, which can be differentiated by their substrate specificity and Ca(2+)-dependency.
Collapse
Affiliation(s)
- M Hecker
- William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London, UK
| | | | | |
Collapse
|