1
|
Fan L, Tang K, Li J, Tan Y, Liu X, Bai Z, Tao A, Tan N. Mailuoning oral liquid ameliorates vasculitis in thromboangiitis obliterans rats via inactivating cGAS-STING-IRF3 and TLR4-MAPKs/NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118707. [PMID: 39181282 DOI: 10.1016/j.jep.2024.118707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mailuoning oral liquid (MLN O), one traditional Chinese patent medicine, has a good therapeutic effect on thromboangiitis obliterans (TAO) in clinical practice. However, the underlying mechanism remains unclear. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of MLN O against TAO based on network pharmacology and experimental verification. MATERIALS AND METHODS Network pharmacology was used to identify the intersectional targets and signaling pathways of MLN O and TAO. In vivo, the TAO model was established by injecting sodium laurate and dihydrotestosterone (DHT) into the femoral arteries of Wistar rats. Rats were given the indicated drugs by intragastric administration (i.g.), intravenous injection (i.v.), or subcutaneous injection (s.c.) per day for 21 days since a week before surgery. In vitro, HUVECs, RAW264.7, and THP-1 cells were stimulated by LPS and DHT to simulate the pathological changes of TAO. The anti-inflammatory, anticoagulant, and immunomodulatory effects of MLN O were evaluated by histological observation, blood biochemical indexes detection, H&E staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting and immunofluorescence assays. Furthermore, the vascular ring test was applied to explore the vasodilatory activity of MLN O. RESULTS MLN O significantly improved the pathological signs in TAO rats through its excellent anti-inflammatory, anticoagulant, immunomodulatory, and vasodilatory effects. Specifically, MLN O alleviated the gangrene and reduced the thrombosis in TAO rats, meanwhile, suppressed the expressions of inflammatory factors and clotting factors, which is related to the inactivations of cGAS-STING-IRF3 and TLR4-MAPKs/NF-κB signaling pathways. However, the superphysiological dose of DHT deteriorated the pathological development of TAO in vitro and in vivo. Moreover, the results of network pharmacology are consistent with the experimental verification. CONCLUSION Collectively, this study indicates for the first time that MLN O could alleviate TAO by inhibiting cGAS-STING-IRF3 and TLR4-MAPKs/NF-κB signaling pathways, which sheds light on a novel clinical therapeutic strategy for TAO.
Collapse
Affiliation(s)
- Lingling Fan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Li
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Jinling Pharmaceutical Co., Ltd., Nanjing, 210009, China
| | - Yajie Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqiong Liu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ziyu Bai
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Anhua Tao
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Chen J, Wang Y, Chen C, Song X, Shen X, Cao D, Zhao Z. Integrated network pharmacology and metabolomics reveal vascular protective effects of Ilex pubescens on thromboangiitis obliterans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155720. [PMID: 38763010 DOI: 10.1016/j.phymed.2024.155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Ilex pubescens Hook. et Arn (IP), traditionally known for its properties of promoting blood circulation, swelling and pain relief, heat clearing, and detoxification, has been used in the treatment of thromboangiitis obliterans (TAO). Despite its traditional applications, the specific mechanisms by which IP exerts its therapeutic effects on TAO remain unclear. AIM OF THE STUDY This study aims to uncover the underlying mechanisms in the therapeutic effects of IP on TAO, employing network pharmacology and metabolomic approaches. METHODS In this study, a rat TAO model was established by injecting sodium laurate through the femoral artery, followed by the oral administration of IP for 7 days. Plasma coagulation parameters were measured to assess the therapeutic effects of IP. The potential influence on the femoral artery and gastrocnemius muscle was histopathologically evaluated. Network pharmacology was employed to predict relevant targets and model pathways for TAO. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was used for the metabolic profile analysis of rat plasma. Immunohistochemistry (IHC) was used to verify the mechanisms by which IP promotes blood circulation in TAO. RESULTS The study revealed that IP improved blood biochemical function in TAO and played a significant role in vascular protection and maintaining normal blood vessels and gastrocnemius morphologies. Network pharmacology showed that IP compounds play a therapeutic role in modulating lipids and atherosclerosis. Metabolomic analysis revealed that the pathways involved in sphingolipid metabolism and steroid biosynthesis were significantly disrupted. The joint analysis showed a strong correlation between lysophosphatidylcholine and IP components, including triterpenoid and iridoid components, which support the curative action of IP through the modulation of sphingolipid metabolism. Furthermore, decreased expression levels of SPHK1/S1PR1, TNF-α, IL-1β, and IL-6 were observed in the IP-treated group, suggesting that IP exerts a protective effect on the vasculature primarily by regulating of the SPHK1/S1PR1 signaling pathway. CONCLUSION In this study, we found that IP protects the vasculature against injury and treats TAO by regulating the steady-state disturbance of the sphingolipid pathway. These findings suggest that IP promotes vasculature by modulating sphingolipid metabolism and SPHK1/S1PR1 signaling pathway and reduce levels of inflammatory factors, offering new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanyuan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Caixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianshu Song
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuting Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Di Cao
- Wannan Medical College, Wuhu 241002, China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
3
|
Zhu C, Li S. Role of CRH in colitis and colitis-associated cancer: a combinative result of central and peripheral effects? Front Endocrinol (Lausanne) 2024; 15:1363748. [PMID: 38616821 PMCID: PMC11010637 DOI: 10.3389/fendo.2024.1363748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Corticotropin-releasing factor family peptides (CRF peptides) comprise corticotropin releasing hormone (CRH), urocortin (UCN1), UCN2 and UCN3. CRH is first isolated in the brain and later with UCNs found in many peripheral cells/tissues including the colon. CRH and UCNs function via the two types of receptors, CRF1 and CRF2, with CRH mainly acting on CRF1, UCN1 on both CRF1 &CRF2 and UCN2-3 on CRF2. Compiling evidence shows that CRH participates in inflammation and cancers via both indirect central effects related to stress response and direct peripheral influence. CRH, as a stress-response mediator, plays a significant central role in promoting the development of colitis involving colon motility, immunity and gut flora, while a few anti-colitis results of central CRH are also reported. Moreover, CRH is found to directly influence the motility and immune/inflammatory cells in the colon. Likewise, CRH is believed to be greatly related to tumorigenesis of many kinds of cancers including colon cancer via the central action during chronic stress while the peripheral effects on colitis-associated-colon cancer (CAC) are also proved. We and others observe that CRH/CRF1 plays a significant peripheral role in the development of colitis and CAC in that CRF1 deficiency dramatically suppresses the colon inflammation and CAC. However, up to date, there still exist not many relevant experimental data on this topic, and there seems to be no absolute clearcut between the central and direct peripheral effects of CRH in colitis and colon cancer. Taken together, CRH, as a critical factor in stress and immunity, may participate in colitis and CAC as a centrally active molecule; meanwhile, CRH has direct peripheral effects regulating the development of colitis and CAC, both of which will be summarized in this review.
Collapse
Affiliation(s)
| | - Shengnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Zhu C, Li S. The peripheral corticotropin releasing factor family's role in vasculitis. Vascul Pharmacol 2024; 154:107275. [PMID: 38184094 DOI: 10.1016/j.vph.2023.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Corticotropin releasing factor family peptides (CRF peptides) include 4 members, corticotropin releasing hormone (CRH), Urocortin (UCN1), UCN2 and UCN3. CRF peptides function via the two distinct receptors, CRF1 and CRF2. Among them, CRH/CRF1 has been recognized to influence immunity/inflammation peripherally. Both pro- and anti-inflammatory effects of CRH are reported. Likewise, UCNs, peripherally in cardiovascular system have been documented to have both potent protective and harmful effects, with UCN1 acting on both CRF1 & CRF2 and UCN2 & UCN3 on CRF2. We and others also observe protective and detrimental effects of CRF peptides/receptors on vasculature, with the latter of predominantly higher incidence, i.e., they play an important role in the development of vasculitis while in some cases they are found to counteract vascular inflammation. The pro-vasculitis effects of CRH & UCNs include increasing vascular endothelial permeability, interrupting endothelial adherens & tight junctions leading to hyperpermeability, stimulating immune/inflammatory cells to release inflammatory factors, and promoting angiogenesis by VEGF release while the anti-vasculitis effects may be just the opposite, depending on many factors such as different CRF receptor types, species and systemic conditions. Furthermore, CRF peptides' pro-vasculitis effects are found to be likely related to cPLA2 and S1P receptor signal pathway. This minireview will focus on summarizing the peripheral effects of CRF peptides on vasculature participating in the processes of vasculitis.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue, 101, Nanjing, China
| | - Shengnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue, 101, Nanjing, China.
| |
Collapse
|
5
|
Zou C, Liu L, Huang C, Hu S. Baiying qingmai formulation ameliorates thromboangiitis obliterans by inhibiting HMGB1/RAGE/NF-κB signaling pathways. Front Pharmacol 2022; 13:1018438. [PMID: 36304158 PMCID: PMC9592700 DOI: 10.3389/fphar.2022.1018438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Baiying Qingmai Formulation (BF) is a classical clinical prescription used for decades to treat thromboangiitis obliterans (TAO). Although it effectively relieves pain and ischemic ulcers in patients with TAO, its anti-TAO mechanisms remain unclear. The chemical components of BF were analyzed using high-performance liquid chromatography and the potential targets of the compounds identified in BF were analyzed using molecular docking. Further, the signaling pathways and molecular mechanism of BF in treating TAO were studied using a rat model of TAO. Seven compounds (gallic acid, catechin, chlorogenic acid, caffeic acid, paeoniflorin, quercetin, and paeonol) were identified in BF, and molecular docking predicted their high affinities with HMGB1/RAGE/NF-κB proteins. In in vivo studies, BF not only inhibited the protein expression of HMGB1, RAGE, ICAM-1, and VCAM-1; mRNA levels of HMGB1 and RAGE; and the phosphorylation of NF-κB, ERK, Janus kinase (JNK) and p38 MAPK in the femoral artery, but also reduced the levels of inflammatory cytokines (IL-6, TNF-α, IL-1β, HMGB1) and stable metabolite (TXB2) of cytokine promoting thrombosis (TXA2) in the plasma. Moreover, BF stimulated the secretion of stable metabolite (6-keto-PGF1α) of cytokine inhibiting thrombosis (PGI2) in the plasma. BF inhibited the inflammatory response and thrombosis in the femoral artery, thus reducing the degree of vascular occlusion, which alleviated the symptoms in rats with TAO. Our findings suggest that BF ameliorates TAO by inhibiting the activation of the ERK, JNK, p38 MAPK and HMGB1/RAGE/NF-κB signaling pathways, thereby providing novel ideas for the treatment of TAO and essential information for the further development and utilization of BF as a promising drug to treat TAO.
Collapse
Affiliation(s)
- Chongchong Zou
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chuanqi Huang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Song Hu
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Song Hu,
| |
Collapse
|
6
|
Urocortins as biomarkers in cardiovascular disease. Clin Sci (Lond) 2022; 136:1-14. [PMID: 34939089 DOI: 10.1042/cs20210732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The urocortins (Ucns) belong to the corticotropin-releasing factor (CRF) family of peptides and have multiple effects within the central nervous and the cardiovascular systems. With growing evidence indicating significant cardioprotective properties and cardiovascular actions of these peptides, the question arises as to whether the plasma profiles of the Ucns are altered in pathologic settings. While reports have shown conflicting results and findings have not been corroborated in multiple independent cohorts, it seems likely that plasma Ucn concentrations are elevated in multiple cardiovascular conditions. The degree of increase and accurate determination of circulating values of the Ucns requires further validation.
Collapse
|
7
|
Li MD, Wang YF, Yang MW, Hong FF, Yang SL. Risk Factors, Mechanisms and Treatments of Thromboangiitis Obliterans: An Overview of Recent Research. Curr Med Chem 2021; 27:6057-6072. [PMID: 31419926 DOI: 10.2174/0929867326666190816233042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thromboangiitis obliterans (TAO) is a nonatherosclerotic thromboticocclusive vasculitis that affects the vessels of the small and medium-sized extremities. No explicit etiology or pathogenesis of TAO has been proven, and more effective treatments are needed. OBJECTIVE The study aimed to summarize and present an overview of recent advances regarding the risk factors, mechanisms and treatments of TAO and to organize the related information in figures to provide a comparatively complete reference. METHODS We searched PubMed for English-language literature about TAO without article type limits, including articles about the risk factors, pathological mechanisms and treatments of TAO in the last 10 years with essential supplements (references over ranges and English abstracts of Russian literature). RESULTS After screening content of works of literature, 99 references were evaluated. We found that risk factors of TAO include smoking, gene factors and periodontal diseases. The underlying mechanism of TAO involves oxidative stress, immunity, hemodynamic changes, inflammation and so on. Moreover, similarities in genetic factors and cigarette relevance existed between periodontal diseases and TAO, so further study of relationship was required. For TAO treatment, medicine, endovascular intervention and revascularization surgery, autologous cell therapy and novel therapies were also mentioned. Besides, a hypothesis that infection triggers autoimmunity in TAO could be speculated, in which TLR4 plays a key role. CONCLUSION 1. A hypothesis is put forward that infections can trigger autoimmunity in TAO development, in which TLR4, as a key agent, can activate immune signaling pathways and induce autoimmune cytokines expression. 2. It is suggested to reconsider the association between periodontal diseases and TAO, as they share the same high-risk population. Controlling periodontal disease severity in TAO studies may provide new clues. 3. For TAO treatment, endovascular intervention and autologous cell therapy both showed promising long-term therapeutic effectiveness, in which autologous cell therapy is becoming more popular, although more clinical comparisons are needed.
Collapse
Affiliation(s)
- Meng-di Li
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yi-Fan Wang
- Institute of Cancer Research, Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330006, China
| | - Mei-Wen Yang
- Department of Nursing, Nanchang University hospital, Nanchang, Jiangxi 330006, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
8
|
Shapouri-Moghaddam A, Saeed Modaghegh MH, Rahimi HR, Ehteshamfar SM, Tavakol Afshari J. Molecular mechanisms regulating immune responses in thromboangiitis obliterans: A comprehensive review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:215-224. [PMID: 31156780 PMCID: PMC6528722 DOI: 10.22038/ijbms.2019.31119.7513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thromboangiitis obliterans (TAO) is a thrombotic-occlusive as well as an inflammatory peripheral vascular disease with unknown etiology. Recent evidence has supported the immunopathogenesis of the disease, however, the factors contributing to the altered immune function and vascular tissue inflammation are still unclear. This review was intended to collate the more current knowledge on the regulatory molecules involved in TAO from an immunoreactive perspective. The homeostasis of the immune system as well as a variety of progenitor cell populations appear to be affected during TAO and these alterations are associated with intrinsic signaling defects that are directing to an improved understanding of the crosstalk between angiogenesis and the immune system, as well as the potential of new co-targeting strategies applying both immunotherapy and angiogenic therapy.
Collapse
Affiliation(s)
- Abbas Shapouri-Moghaddam
- Immunology Research Group, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Reza Rahimi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed-Morteza Ehteshamfar
- Immunology Research Group, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Group, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
10
|
Liu C, Kong X, Wu X, Wang X, Guan H, Wang H, Wang L, Jin X, Yuan H. Alleviation of A disintegrin and metalloprotease 10 (ADAM10) on thromboangiitis obliterans involves the HMGB1/RAGE/ NF-κB pathway. Biochem Biophys Res Commun 2018; 505:282-289. [PMID: 30245136 DOI: 10.1016/j.bbrc.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/01/2018] [Indexed: 01/01/2023]
Abstract
Thromboangiitis obliterans (TAO), also known as Buerger's disease, is a nonatherosclerotic inflammatory disease that influences medium- and small-sized blood vessels of extremities. However, mechanisms underlying TAO are still unclear. As a mediator associated with inflammation, A disintegrin and metalloprotease 10 (ADAM10) was hypothesized to play inhibitory roles in the development of TAO. Thus, the objective of this study is to investigate the effects of ADAM10 in a sodium laurate-induced TAO rat model and elucidate underlying mechanisms. Male Wistar rats were randomly divided into four groups (n = 6) for treatment: sham-operated (SHAM), TAO model (TAO), ADAM10 low dose injection (3 mg/kg; ADAM10-LD) and ADAM10 high dose injection (6 mg/kg; ADAM10-HD). After 14-day treatment, color Doppler ultrasound and hematology analysis indicated TAO rats displayed higher whole blood viscosity and blood platelet count compared with those in the SHAM group. Histologic evaluation and transmission electron microscopy revealed that the ultrastructural damages of vascular smooth muscle and endothelial cells were observed in TAO rats, such as fractured endoplasmic reticulum, decreased cell counts, and fibrillation. On the other hand, the typical signs and symptoms of TAO rats were significantly alleviated via ADAM10 treatment with a dose-dependent pattern. Real-time PCR and western blot results revealed that the expression of high-mobility-group box 1 (HMGB1), receptor for advanced glycation end-products (RAGE) and nuclear factor-kappa B (NF-κB) increased in TAO rats whereas decreased by ADAM10 treatment in both mRNA and protein levels. In conclusion, the results suggest ADAM10 alleviates symptoms of sodium laurate-induced TAO in rats via the RAGE/NF-κB signaling pathway and provides insight into the molecular basis and a potential therapeutic strategy for TAO.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; Department of Vascular Surgery, The People's Hospital of Anqiu, Anqiu, Shandong, 262100, China
| | - Xiangqian Kong
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Xinsheng Wang
- Department of Vascular Surgery, The People's Hospital of Anqiu, Anqiu, Shandong, 262100, China
| | - Hongliang Guan
- Department of Vascular Surgery, Shanxian Central Hospital of Shandong, Heze, Shandong, 274399, China
| | - Haiqing Wang
- Department of Vascular Surgery, Jining First People's Hospital, Jining, Shandong, 272011, China
| | - Lei Wang
- Department of Vascular Surgery, The People's Hospital of Anqiu, Anqiu, Shandong, 262100, China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
11
|
Levistilide A Ameliorates NLRP3 Expression Involving the Syk-p38/JNK Pathway and Peripheral Obliterans in Rats. Mediators Inflamm 2018; 2018:7304096. [PMID: 30158835 PMCID: PMC6109531 DOI: 10.1155/2018/7304096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/23/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation is one of the most important pathogeneses of thromboangiitis obliterans (TAO). The NLRP3 inflammasome plays a vital role in the body's immune response and disease development. It can be activated by numerous types of pathogens or danger signals. As the core of the inflammatory response, the NLRP3 inflammasome may provide a new target for the treatment of various inflammatory diseases. Levistilide A (LA) is a phthalide dimer isolated from umbelliferous plants. Its pharmacological effect is largely unknown. This study revealed the effects of LA on endothelial cell activation, NLRP3, IL-1β, TNF-α, IL-32, and CCL-2, VCAM-1, MCP-1, and the spleen tyrosine kinase (Syk)--p38/JNK signaling axis and its effect on vasculitis in rats. Results LA inhibited endothelial activation and the expression of IL-1β, TNF-α, IL-32, CCL-2, VCAM-1, and MCP-1. LA directly obstructed Syk phosphorylation and activity in a dose-dependent manner, inhibited the activity of p38 and JNK, and reduced the expression of NLRP3 in human umbilical vein endothelial cells and vascular tissue of rats with vasculitis. Conclusion LA suppressed NLRP3 gene expression by blocking the Syk--p38/JNK pathway and reduced damage to the rats' limbs in the thromboangiitis obliterans model.
Collapse
|
12
|
Vasoprotective effects of urocortin 1 against atherosclerosis in vitro and in vivo. PLoS One 2014; 9:e110866. [PMID: 25462164 PMCID: PMC4251828 DOI: 10.1371/journal.pone.0110866] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
AIM Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide induces potent and long-lasting hypotension and coronary vasodilation. However, the relationship of Ucn1 with atherosclerosis remains unclear. The present study was performed to clarify the effects of Ucn1 on atherosclerosis. METHODS We assessed the effects of Ucn1 on the inflammatory response and proliferation of human endothelial cells (ECs), human macrophage foam cell formation, migration and proliferation of human VSMCs, extracellular matrix expression in VSMCs, and the development of atherosclerosis in apolipoprotein E-deficient (Apoe-/-) mice. RESULTS Ucn1 significantly suppressed cell proliferation without inducing apoptosis, and lipopolysaccharide-induced up-regulation of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in human ECs. Ucn1 significantly reduced oxidized low-density lipoprotein-induced foam cell formation with a significant down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase 1 in human monocyte-derived macrophages. Ucn1 significantly suppressed the migration and proliferation of human VSMCs and increased the activities of matrix metalloproteinase-2 (MMP2) and MMP9 in human VSMCs. Intraperitoneal injection of Ucn1 into Apoe-/- mice for 4 weeks significantly retarded the development of aortic atherosclerotic lesions. CONCLUSIONS This study provided the first evidence that Ucn1 prevents the development of atherosclerosis by suppressing EC inflammatory response and proliferation, macrophage foam cell formation, and VSMC migration and proliferation. Thus, Ucn1 could serve as a novel therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
|
13
|
Liu Y, Fang X, Yuan J, Sun Z, Li C, Li R, Li L, Zhu C, Wan R, Guo R, Jin L, Li S. The role of corticotropin-releasing hormone receptor 1 in the development of colitis-associated cancer in mouse model. Endocr Relat Cancer 2014; 21:639-51. [PMID: 25015995 DOI: 10.1530/erc-14-0239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with ulcerative colitis are at a very high risk of developing colorectal cancer. Corticotrophin-releasing hormone (CRH) family peptides and their receptors (CRHRs) are found to modulate inflammation and tumor cell growth. However, the role of CRH family peptides and their receptors in the inflammation-related colon cancer is still unknown. The aim of this study was to investigate the functions of CRHR1 signaling on the development of colitis-associated cancer (CAC). Crhr1-deficient (Crhr1(-/-)) mice were used to explore the role of CRHR1 in the development of azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced CAC. WT (Crhr1(+/+)) littermates were set as control. We found that the expression of CRHR1 and its endogenous ligands: urocortin and CRH were enhanced in the colon of Crhr1(+/+) mice during treatment with AOM and DSS. Tumorigenesis was significantly reduced in Crhr1(-/-) mice, determined by analysis of survival rate (increased by 20%), weight loss (decreased by 10%), tumor formation (decreased by 60% in tumor number), histological scores (decreased by 58%), and cytokine production. During early CAC tumorigenesis, Crhr1(-/-) mice exhibited much less tumorigenesis, accompanied by lower inflammatory response, including decreased IL1β, IL6 and TNFα expression and macrophage infiltration and increased IL10 expression. Moreover, Crhr1(-/-) mice displayed a reduced activation of NFκB and STAT3 phosphorylation with decreased proliferating and enhanced apoptotic cells in the colon. In conclusion, CRHR1 has a proinflammatory and therefore a protumorigenesis effect in terms of CAC, which may be helpful to develop new therapeutic approaches for inflammation and cancer prevention and treatment.
Collapse
Affiliation(s)
- Yunxin Liu
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xianjun Fang
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jie Yuan
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zongxing Sun
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Chuanhua Li
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Rong Li
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Li Li
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Chao Zhu
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Rong Wan
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Rui Guo
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Lai Jin
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Shengnan Li
- Key Laboratory of Cardiovascular and Molecular InterventionDepartment of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
14
|
El-Gendy AA, Abbas AM. Effect of omega-3 fatty acids on haemostatic functions in urocortin-treated obese rats. J Physiol Biochem 2014; 70:809-20. [PMID: 25062615 DOI: 10.1007/s13105-014-0350-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/14/2014] [Indexed: 12/17/2022]
Abstract
Urocortin 1 (UCN1) decreases food intake. We investigated the effects of UCN1 and omega-3 fatty acids (FA) on metabolic and coagulation parameters in high fat diet (HFD)-fed rats. Fifty male Sprague Dawley rats were divided into five groups; control, HFD, HFD with omega-3 FA, HFD with UCN1, and HFD with UCN1 and omega-3 FA. Food intake, body weight (BW), body mass index (BMI), Lee index, glucose, insulin, HOMA-IR, triglycerides, cholesterol, low (LDL) and high (HDL) density lipoproteins, fibrinogen, plasminogen activator inhibitor 1 (PAI-1), fibrin degradation product (FDP), clotting time, bleeding time, prothrombin time (PT), activated partial thromboplastin time (aPTT), and platelet aggregation were measured. Food intake, BW, BMI, Lee index, glucose, insulin, HOMA-IR, triglycerides, cholesterol, LDL, fibrinogen, platelet aggregation, PAI-1, and FDP increased while bleeding and clotting times, PT, and aPTT decreased in HFD rats. UCN1 decreased food intake, BW, BMI, Lee index, bleeding and clotting times, PT, and aPTT and increased fibrinogen, PAI-1, FDP, and platelet aggregation in HFD rats. Omega-3 FA decreased food intake, BW, BMI, Lee index, platelet aggregation, glucose, insulin, HOMA-IR, triglycerides, and increased HDL and bleeding time in HFD rats. We concluded that UCN1 worsens the hypercoagulable state in HFD rats while omega-3 FA improve the insulin resistance and decrease the platelet aggregation in those rats.
Collapse
Affiliation(s)
- Ahmed A El-Gendy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, PO box 35516, Mansoura, Egypt
| | | |
Collapse
|
15
|
Urocortin affects migration of hepatic cancer cell lines via differential regulation of cPLA2 and iPLA2. Cell Signal 2014; 26:1125-34. [PMID: 24518041 DOI: 10.1016/j.cellsig.2014.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/01/2014] [Indexed: 12/14/2022]
Abstract
Urocortin (UCN) is a member of corticotrophin-releasing factor (CRF) family, which has been reported to play a role in many biological processes, including inflammation and cancer development. Growing evidence shows that PLA2 (phospholipase A2) enzymes also participate in inflammation and tumor development. The primary aim of the present study was to identify a novel signaling pathway of CRF receptor activation leading to migration of two kinds of hepatoma carcinoma cell lines, HepG2 and SMMC-7721, linking the stimulation of PLA2 expression by UCN to UCN-induced tumor cell migration. Pharmacological inhibitors and genetic approaches (such as stable transfection and siRNAs) were used in this study. Unlike HepG2 cells which express both CRF receptors themselves, SMMC-7721 cells which hardly express these two CRF receptors needed stable transfection with CRFR1 or CRFR2 to observe the effect of UCN. Two types of PLA2 enzymes, cPLA2 and iPLA2, were found to be regulated by UCN. Our data showed that UCN raised cPLA2 expression but lowered iPLA2 expression. Moreover, UCN was found to act on the certain region of iPLA2 promoter to reduce its transcription. UCN promoted tumor cell migration by up-regulating cPLA2 expression via CRFR1 whereas it suppressed tumor cell migration by down-regulating iPLA2 expression via CRFR2. These results indicate the dual roles for UCN in the hepatoma carcinoma cell migration, which involve the regulation of both cPLA2and iPLA2.
Collapse
|
16
|
Wan R, Liu Y, Li L, Zhu C, Jin L, Li S. Urocortin increased endothelial ICAM1 by cPLA2-dependent NF-κB and PKA pathways in HUVECs. J Mol Endocrinol 2014; 52:43-53. [PMID: 24363440 DOI: 10.1530/jme-13-0182] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Urocortin (Ucn1), a member of the corticotrophin-releasing hormone (CRH) family, has been reported to participate in inflammation. The increased expression of intercellular adhesion molecule 1 (ICAM1) plays important roles in inflammation and immune responses. Our previous results demonstrated that Ucn1 significantly enhanced the expression of ICAM1. However, the underlying mechanisms are still unknown. The purpose of this study is to investigate the detailed mechanisms of Ucn1-induced upregulation of ICAM1. Here, we characterized the mechanisms of Ucn1 usage to regulate ICAM1 expression in human umbilical vein endothelial cells (HUVECs). Our data revealed that Ucn1 increased ICAM1 and cyclooxygenase 2 (COX2) expressions in a time-dependent manner via CRH receptor 2 (CRHR2). In addition, COX2 was involved in ICAM1 upregulation. Furthermore, Ucn1 could increase the expression and phosphorylation of cytosolic phospholipases A2 (cPLA2) in a time-dependent manner via CRHR2 and CRHR1. Moreover, ablation of cPLA2 by the inhibitor pyrrophenone or siRNA attenuated the ICAM1 increase induced by Ucn1. In addition, nuclear factor κB (NF-κB) was activated, indicated by the increase in nuclear p65NF-κB expression and phosphorylation of p65NF-κB, depending on cPLA2 and CRHR2 activation. Pyrrolidinedithiocarbamic acid, an inhibitor of NF-κB, abolished the elevation of ICAM1 but not COX2. Also, Ucn1 increased the production of prostaglandin E2 (PGE2) which further activated protein kinase A (PKA)-CREB pathways dependent of cPLA2 via CRHR2. Moreover, the increase in NF-κB phosphorylation was not affected by the selective COX2 inhibitor NS-398 or the PKA inhibitor H89. In conclusion, these data indicate that Ucn1 increase the ICAM1 expression via cPLA2-NF-κB and cPLA2-COX2-PGE2-PKA-CREB pathways by means of CRHR2.
Collapse
Affiliation(s)
- Rong Wan
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China The Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Wan R, Jin L, Zhu C, Liu Y, Li L, Guo R, Li S. Sex difference in urocortin production is contributory to the gender disparity in a rat model of vasculitis induced by sodium laurate. Endocrinology 2013; 154:4663-74. [PMID: 24064363 DOI: 10.1210/en.2013-1572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases, the most common leading death diseases, occur more in men than women of the same ages. Increasing evidence shows that urocortin (Ucn1), an autocrine or paracrine pro-inflammatory factor, can be regulated by sex hormones. The purpose of the study is to investigate the role of Ucn1 in gender disparity in a sodium laurate-induced vasculitis model. Rats exhibited visible signs of vasculitis on the 14th day after sodium laurate injection. Inflammatory states of the rat femoral artery were observed by histological examination. Significant gender disparity, with the symptoms much grosser in males than females, was seen. In males, the serum levels of Ucn1, prostaglandin estradiol, and soluble intercellular adhesion molecule-1 and the expressions of Ucn1, cyclooxygenase-2, and intercellular adhesion molecule-1 in femoral artery were higher than those in females. Orchidectomy significantly ameliorated the symptoms of vasculitis accompanied with a decrease in the plasma Ucn1 level. However, estradiol supplement after orchidectomy failed to improve the inflammatory states further. In females, ovariectomy and/or dihydrotestosterone supplement significantly increased Ucn1 level and exacerbated symptoms of vasculitis. Furthermore, ip administration of rabbit antiserum to Ucn1 almost abolished the gender differences in vasculitis. These results demonstrated that vasculitis of this model is androgen-responsive and hormonal manipulation by surgical orchidectomy could substantially attenuate the symptoms of vasculitis. Moreover, Ucn1 is a contributory factor to the gender disparity in vasculitis and dihydrotestosterone-promoted Ucn1 secretion exacerbated the development of vasculitis.
Collapse
Affiliation(s)
- Rong Wan
- Department of Pharmacology, Nanjing Medical University-Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Wan R, Zhu C, Guo R, Jin L, Liu Y, Li L, Zhang H, Li S. Dihydrotestosterone alters urocortin levels in human umbilical vein endothelial cells. J Endocrinol 2013; 218:321-30. [PMID: 23801677 DOI: 10.1530/joe-13-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Urocortin (UCN1) is a member of corticotrophin-releasing factor (CRF) family, which has been proven to participate in inflammation. Previous work showed that dihydrotestosterone (DHT) could promote the inflammatory process. Little is known about the effect of DHT on UCN1 expression. The aim of our study is to investigate the effects and underlying mechanisms of DHT on endothelial UCN1 expression in the absence and presence of induced inflammation. Therefore, we tested the alterations of endothelial UCN1 expression treated with DHT in the presence or absence of lipopolysaccharide (LPS). Our data showed that DHT alone decreased UCN1 levels, which were attenuated in the presence of the androgen receptor (AR) antagonist flutamide. Conversely, in the presence of LPS, DHT augmented the LPS-induced increase in UCN1 expression, which was, interestingly, not affected by flutamide. When cells were treated with DHT alone, AR was upregulated and translocated into the nuclei, which might repress UCN1 expression via a potential androgen-responsive element found in human CRF family promoter. In the presence of LPS, DHT did not influence AR expression and location while it increased toll-like receptor 4 expression and activation, which was not altered by flutamide. DHT enhanced LPS-induced p38MAPK, ERK1/2, and nuclear factor κB pathway activation, which may contribute to the elevated expression of UCN1. These data suggest that DHT differentially influences UCN1 levels under normal and inflammatory conditions in human umbilical vein endothelial cells, which involves AR-dependent and -independent mechanisms respectively.
Collapse
Affiliation(s)
- Rong Wan
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wan R, Guo R, Chen C, Jin L, Zhu C, Zhang Q, Xu Y, Li S. Urocortin increased LPS-induced endothelial permeability by regulating the cadherin-catenin complex via corticotrophin-releasing hormone receptor 2. J Cell Physiol 2013; 228:1295-303. [PMID: 23168683 DOI: 10.1002/jcp.24286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/06/2012] [Indexed: 12/18/2022]
Abstract
Urocortin (Ucn1), a member of corticotrophin-releasing hormone (CRH) family, has been reported to be upregulated in inflammatory diseases and function as an autocrine or paracrine inflammatory mediator. Growing evidence shows that Ucn1 increases the endothelial permeability in inflammatory conditions; however, the detailed mechanisms are not clear. In the present study, we investigated the mechanisms of increased endothelial permeability by Ucn1 in human umbilical vein endothelial cells (HUVECs) exposed to lipopolysaccharide (LPS). Pretreatment of HUVECs with Ucn1 increased the endothelial cell permeability, which was augmented by LPS synergistically. Significant downregulation of VE-cadherin expression was also observed. Moreover, Ucn1 increased phosphorylation of protein kinase D (PKD) and heat shock protein 27 (HSP27) in a time- and CRHR(2) -dependent manner. Inhibition of PKD and HSP27 drastically attenuated Ucn1-induced downregulation of VE-cadherin expression. Further investigations demonstrated that Ucn1 phosphorylated β-catenin at Ser552 to disrupt the cadherin-catenin complex and hence promote the disassociation of β-catenin and VE-cadherin. Disassociation of β-catenin and VE-cadherin resulted in decreased VE-cadherin expression while on the contrary β-catenin was increased, which may due to the inactivation of GSK-3β. Increased β-catenin translocated into the nucleus and subsequently bound to TCF/LEF site, contributing to the elevated expression of vascular endothelial growth factor (VEGF). The above effects of Ucn1 were completely reversed by CRHR(2) receptor blocker, antisauvagine-30. Taken together, our data suggest that Ucn1 increase LPS-induced endothelial permeability by disrupting the VE-cadherin-β-catenin complex via activation of CRHR(2) and PKD-HSP27 signaling pathway.
Collapse
Affiliation(s)
- Rong Wan
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kong X, Yuan H, Wu X, Zhang J, Zhou H, Wang M, Liu Y, Jin X. High-mobility-group box protein 1A box reduces development of sodium laurate-induced thromboangiitis obliterans in rats. J Vasc Surg 2012; 57:194-204. [PMID: 23069071 DOI: 10.1016/j.jvs.2012.06.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/04/2012] [Accepted: 06/09/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE High-mobility-group box protein 1 (HMGB1), as a late mediator of inflammation, plays a key role in inflammatory responses by inducing and extending the production of proinflammatory cytokines. The effect of HGMB1 in the inflammatory disease thromboangiitis obliterans (TAO) is unknown. We aimed to investigate the role of HMGB1 in sodium laurate-induced TAO in rats. METHODS Male Wistar rats were randomly divided into five groups (n=8 each) for treatment: normal, sham-operated, TAO model, and low-dose (15 mg/kg) or high-dose (30 mg/kg) recombinant A box (rA box) infection (administered intraperitoneally once daily for 15 days). The TAO model was induced by sodium laurate and graded by gross appearance on day 15 after femoral artery injection. Histologic changes were measured by histopathology in rat femoral arteries. Plasma levels of HMGB1, thromboxane B2, 6-keto-prostaglandin F1-α, and blood cell counts and blood coagulation levels were measured. Expression of HMGB1, receptor for advanced glycation end-products (RAGE), interleukin-6, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 was assessed by immunohistochemistry and immunofluorescence, Western blot analysis, and quantitative reverse-transcription polymerase chain reaction. RESULTS The typical signs and symptoms of TAO were observed on day 15 after sodium laurate injection. The expression of HMGB1, RAGE, interleukin-6, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 was markedly increased in rat femoral arteries. Plasma levels of HMGB1 and thromboxane B2 were elevated, but the level of 6-keto-prostaglandin F1-α was decreased. Blood was in a hypercoagulable state, and prothrombin, thrombin, and activated partial thromboplastin times were all significantly shortened, whereas fibrinogen level was increased in TAO rats compared with sham-operated rats. These effects were terminated by the HMGB1 antagonist rA box. CONCLUSIONS HMGB1 is involved in the inflammatory state in a model of TAO induced by sodium laurate in rats, probably via its receptor RAGE. As the antagonist of HMGB1, rA box can attenuate the development of TAO, which may be a potential therapeutic target for the treatment of TAO.
Collapse
Affiliation(s)
- Xiangqian Kong
- Department of Vascular Surgery, Provincial Hospital affiliated to Shandong University, Ji'nan, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Liew HK, Pang CY, Hsu CW, Wang MJ, Li TY, Peng HF, Kuo JS, Wang JY. Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats. J Neuroinflammation 2012; 9:13. [PMID: 22257737 PMCID: PMC3271957 DOI: 10.1186/1742-2094-9-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/19/2012] [Indexed: 12/18/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) remains a serious clinical problem lacking effective treatment. Urocortin (UCN), a novel anti-inflammatory neuropeptide, protects injured cardiomyocytes and dopaminergic neurons. Our preliminary studies indicate UCN alleviates ICH-induced brain injury when administered intracerebroventricularly (ICV). The present study examines the therapeutic effect of UCN on ICH-induced neurological deficits and neuroinflammation when administered by the more convenient intraperitoneal (i.p.) route. Methods ICH was induced in male Sprague-Dawley rats by intrastriatal infusion of bacterial collagenase VII-S or autologous blood. UCN (2.5 or 25 μg/kg) was administered i.p. at 60 minutes post-ICH. Penetration of i.p. administered fluorescently labeled UCN into the striatum was examined by fluorescence microscopy. Neurological deficits were evaluated by modified neurological severity score (mNSS). Brain edema was assessed using the dry/wet method. Blood-brain barrier (BBB) disruption was assessed using the Evans blue assay. Hemorrhagic volume and lesion volume were assessed by Drabkin's method and morphometric assay, respectively. Pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) expression was evaluated by enzyme-linked immunosorbent assay (ELISA). Microglial activation and neuronal loss were evaluated by immunohistochemistry. Results Administration of UCN reduced neurological deficits from 1 to 7 days post-ICH. Surprisingly, although a higher dose (25 μg/kg, i.p.) also reduced the functional deficits associated with ICH, it is significantly less effective than the lower dose (2.5 μg/kg, i.p.). Beneficial results with the low dose of UCN included a reduction in neurological deficits from 1 to 7 days post-ICH, as well as a reduction in brain edema, BBB disruption, lesion volume, microglial activation and neuronal loss 3 days post-ICH, and suppression of TNF-α, IL-1β, and IL-6 production 1, 3 and 7 days post-ICH. Conclusion Systemic post-ICH treatment with UCN reduces striatal injury and neurological deficits, likely via suppression of microglial activation and inflammatory cytokine production. The low dose of UCN necessary and the clinically amenable peripheral route make UCN a potential candidate for development into a clinical treatment regimen.
Collapse
Affiliation(s)
- Hock-Kean Liew
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ikeda K, Fujioka K, Manome Y, Tojo K. Clinical perspectives of urocortin and related agents for the treatment of cardiovascular disease. Int J Endocrinol 2012; 2012:198628. [PMID: 22548056 PMCID: PMC3324148 DOI: 10.1155/2012/198628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/29/2022] Open
Abstract
The effects of corticotropin-releasing hormone, also known as corticotropin-releasing factor (CRF), on the cardiovascular system have been intensively researched since its discovery. Moreover, the actions of urocortin (Ucn) I on the cardiovascular system have also been intensively scrutinized following the cloning and identification of its receptor, CRF receptor type 2 (CRFR2), in peripheral tissues including the heart. Given the cardioprotective actions of CRFR2 ligands, the clinical potential of not only Ucn I but also Ucn II and III, which were later identified as more specific ligands for CRFR2, has received considerable attention from researchers. In addition, recent work has indicated that CRF type 1 receptor may be also involved in cardioprotection against ischemic/reperfusion injury. Here we provide a historical overview of research on Ucn I and related agents, their effects on the cardiovascular system, and the clinical potential of the use of such agents to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
- *Keiichi Ikeda:
| | - Kouki Fujioka
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yoshinobu Manome
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Katsuyoshi Tojo
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
23
|
Hong F, He C, Liu X, Tu G, Guo F, Yang S. Protective effect of Shenfu injection on thromboangiitis obliterans model rats. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:458-462. [PMID: 21982791 DOI: 10.1016/j.jep.2011.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/31/2011] [Accepted: 09/18/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thromboangiitis obliterans (TAO) or Buerger's disease is a non atherosclerotic, segmentar inflammatory vasculitis that is incurable at present. Shenfu injection (SFI), a traditional Chinese formulation, have been confirmed to produce protective influences on several organs and limb during ischemia and reperfusion (IR) injury in rats. However, the effects of SFI on TAO remain unclear. MATERIALS AND METHODS Adult male Sprague Dawley rats were randomly divided into sham operated group, TAO model group, SFI 2.5mg/kg (low dose), 5mg/kg (medium dose) and 10mg/kg (high dose) groups (n=8). Rats were intravenously administered SFI 2.5, 5 and 10mg/kg or saline once per day for 15 days. TAO model was prepared by injecting sodium laurate into the femoral artery of rats. Then we examined the changes of pathological signs, pathologic grading of thrombus, the indexes of hematology, the contents of thromboxane B2 (TXB2), 6-keto-prostaglandin F(lα) (6-K-PGF(1α)) in plasma following SFI or saline treatment. RESULTS More pathological signs of lesions, higher grades of pathological thrombosis, increased blood platelet counts, the increase in the TXB2 and TXB2/6-K-PGF(1α) ratio, as well as the decrease of 6-K-PGF(1α) in TAO model group were shown in present experiments; SFI treatment significantly improved the pathological signs of lesions induced by sodium laurate injection, reduced the numbers of thrombus formation, blood platelet counts, the TXB2 and TXB2/6-K-PGF(1α) ratio but increased the 6-K-PGF(1α) compared with TAO model group. However, there were no significant alterations in the counts of red blood cell, leucocyte and neutrophil among these groups. CONCLUSIONS Our preliminary findings first indicated that SFI can produce significant therapeutic effects on experimental Buerger's disease model rats in a dose independent manner. The underlying mechanisms may be due to its modifying hematology, inhibiting platelet aggregation and enhancing anti-thrombotic function of vessel endothelia.
Collapse
Affiliation(s)
- Fenfang Hong
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 310006, China
| | | | | | | | | | | |
Collapse
|
24
|
Emeto TI, Moxon JV, Rush C, Woodward L, Golledge J. Relevance of urocortins to cardiovascular disease. J Mol Cell Cardiol 2011; 51:299-307. [PMID: 21689660 DOI: 10.1016/j.yjmcc.2011.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022]
Abstract
Acquired cardiovascular diseases such as coronary heart disease, peripheral artery disease and related vascular problems contribute to more than one-third of worldwide morbidity and mortality. In many instances, particularly in the under developed world, cardiovascular diseases are diagnosed at a late stage limiting the scope for improving outcomes. A range of therapies already exist for established cardiovascular disease, although there is significant interest in further understanding disease pathogenesis in order to improve diagnosis and achieve primary and secondary therapeutic goals. The urocortins are a group of recently defined peptide members of the corticotrophin-releasing factor family. Previous pre-clinical work and human association studies suggest that urocortins have potential to exert some beneficial and other detrimental effects on the heart and major blood vessels. More current evidence however favours beneficial effects of urocortins, for example these peptides have been shown to inhibit production of reactive oxygen species and vascular cell apoptosis, and thus may have potential to antagonise the progression of cardiovascular disease. This review summarises published data on the potential role of urocortins in cardiovascular disease.
Collapse
Affiliation(s)
- Theophilus I Emeto
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | | | |
Collapse
|
25
|
Corticotropin-releasing factor family and its receptors: pro-inflammatory or anti-inflammatory targets in the periphery? Inflamm Res 2011; 60:715-21. [DOI: 10.1007/s00011-011-0329-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 02/21/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022] Open
|
26
|
Wang MH, Jin X, Wu XJ, Zhang JY, Miao JY. Phosphatidylcholine-specific phospholipase C activity and level increase evidently in thromboangitis obliterans. Biofactors 2010; 36:196-200. [PMID: 20232348 DOI: 10.1002/biof.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thromboangitis obliterans (TAO) is considered to be an inflammatory disease. Previous research has demonstrated that phosphatidylcholine-specific phospholipase C (PC-PLC) plays critical roles in various inflammatory responses. However, the connection between PC-PLC and TAO is undetermined. Therefore, we sought to investigate whether PC-PLC was implicated in TAO. In our study, there were two groups: TAO group and control group. The PC-PLC activity of serum of two groups (16 TAO patients and 11 controls) was detected by PC-PLC activity assay. The level and distribution of PC-PLC in posterior tibial arteries in seven TAO patients and four controls were detected by immunofluorescence staining method. PC-PLC activity increased greatly in serum of TAO patients. Immunofluorescence analysis also revealed an upregulation of PC-PLC in the vascular endothelium of TAO patients. Our data suggest that PC-PLC activity and level increase obviously in TAO patients. Our study may provide new clues for seeking pathogenesis of TAO. Furthermore, it may bring new insights into clinical diagnosis and treatment of TAO.
Collapse
Affiliation(s)
- Mao-hua Wang
- Department of Vascular Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | | | | | | | | |
Collapse
|