1
|
La T, Chen S, Zhao XH, Zhou S, Xu R, Teng L, Zhang YY, Ye K, Xu L, Guo T, Jamaluddin MF, Feng YC, Tang HJ, Wang Y, Xu Q, Gu Y, Cao H, Liu T, Thorne RF, Shao F, Zhang XD, Jin L. LncRNA LIMp27 Regulates the DNA Damage Response through p27 in p53-Defective Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204599. [PMID: 36638271 PMCID: PMC9982580 DOI: 10.1002/advs.202204599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
P53 inactivation occurs in about 50% of human cancers, where p53-driven p21 activity is devoid and p27 becomes essential for the establishment of the G1/S checkpoint upon DNA damage. Here, this work shows that the E2F1-responsive lncRNA LIMp27 selectively represses p27 expression and contributes to proliferation, tumorigenicity, and treatment resistance in p53-defective colon adenocarcinoma (COAD) cells. LIMp27 competes with p27 mRNA for binding to cytoplasmically localized hnRNA0, which otherwise stabilizes p27 mRNA leading to cell cycle arrest at the G0/G1 phase. In response to DNA damage, LIMp27 is upregulated in both wild-type and p53-mutant COAD cells, whereas cytoplasmic hnRNPA0 is only increased in p53-mutant COAD cells due to translocation from the nucleus. Moreover, high LIMp27 expression is associated with poor survival of p53-mutant but not wild-type p53 COAD patients. These results uncover an lncRNA mechanism that promotes p53-defective cancer pathogenesis and suggest that LIMp27 may constitute a target for the treatment of such cancers.
Collapse
Affiliation(s)
- Ting La
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
- National‐Local Joint Engineering Research Center of Biodiagnosis & BiotherapyThe Second Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Song Chen
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Institute of Medicinal BiotechnologyJiangsu College of NursingHuai'anJiangsu223300China
| | - Xiao Hong Zhao
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Shuai Zhou
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Ran Xu
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Liu Teng
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Yuan Yuan Zhang
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Kaihong Ye
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Liang Xu
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Tao Guo
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Muhammad Fairuz Jamaluddin
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Yu Chen Feng
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Medicine and Public HealthThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Hai Jie Tang
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Yanliang Wang
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Qin Xu
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Yue Gu
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Huixia Cao
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical ResearchUniversity of New South WalesSydneyNew South Wales2750Australia
| | - Rick F. Thorne
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Feng‐Min Shao
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Xu Dong Zhang
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Lei Jin
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Medicine and Public HealthThe University of NewcastleCallaghanNew South Wales2308Australia
| |
Collapse
|
2
|
Yu J, Hu D, Cheng Y, Guo J, Wang Y, Tan Z, Peng J, Zhou H. Lipidomics and transcriptomics analyses of altered lipid species and pathways in oxaliplatin-treated colorectal cancer cells. J Pharm Biomed Anal 2021; 200:114077. [PMID: 33892396 DOI: 10.1016/j.jpba.2021.114077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/13/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
Drug resistance and adverse reactions to oxaliplatin remain a considerable issue in clinical practice. Emerging evidence has suggested that alterations in the lipid metabolism during drug therapy affect cancer cells. To gain insight into the important process of lipid metabolism, we investigated the lipid and gene expression profile changes in HT29 cells treated with oxaliplatin. A total of 1403 lipid species from 16 lipid classes were identified by UHPLC-MS. Interestingly, phospholipids, including phosphatidylglycerol (PG), phosphatidic acid (PA), phosphatidylcholine (PC), and most of phosphatidylethanolamine (PE) with polyunsaturated fatty acid (PUFA) chains, were significantly higher due to oxaliplatin treatment, while triacylglycerols (TAGs) with a saturated fatty acid chain or monounsaturated fatty acid were significantly downregulated. Gene Set Enrichment Analysis (GSEA) based on RNA sequencing data suggested that neutral lipid metabolism was enriched in the control group, whereas the phospholipid metabolic process was enriched in the oxaliplatin-treated group. We observed that altered lipid metabolism enzyme genes were involved in the synthesis and lipolysis of TAGs and the Lands cycle pathway based on the network between the core lipid-related gene and lipid species, which was further verified by qRT-PCR. In summary, our findings revealed that oxaliplatin impressed a specific lipid profile signature and lipid transcriptional reprogramming in HT29 cells, which provides new insights into biomarker discovery and pathways for overcoming drug resistance and adverse reactions.
Collapse
Affiliation(s)
- Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Dongli Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Yu Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiwei Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Yicheng Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
3
|
Guo P, Tian Z, Kong X, Yang L, Shan X, Dong B, Ding X, Jing X, Jiang C, Jiang N, Yu Y. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:202. [PMID: 32993749 PMCID: PMC7523382 DOI: 10.1186/s13046-020-01677-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Background Globally, colorectal cancer (CRC) affects more than 1 million people each year. In addition to non-modifiable and other environmental risk factors, Fusobacterium nucleatum infection has been linked to CRC recently. In this study, we explored mechanisms underlying the role of Fusobacterium nucleatum infection in the progression of CRC in a mouse model. Methods C57BL/6 J-Adenomatous polyposis coli (APC) Min/J mice [APC (Min/+)] were treated with Fusobacterium nucleatum (109 cfu/mL, 0.2 mL/time/day, i.g., 12 weeks), saline, or FadA knockout (FadA−/−) Fusobacterium nucleatum. The number, size, and weight of CRC tumors were determined in isolated tumor masses. The human CRC cell lines HCT29 and HT116 were treated with lentiviral vectors overexpressing chk2 or silencing β-catenin. DNA damage was determined by Comet assay and γH2AX immunofluorescence assay and flow cytometry. The mRNA expression of chk2 was determined by RT-qPCR. Protein expression of FadA, E-cadherin, β-catenin, and chk2 were determined by Western blot analysis. Results Fusobacterium nucleatum treatment promoted DNA damage in CRC in APC (Min/+) mice. Fusobacterium nucleatum also increased the number of CRC cells that were in the S phase of the cell cycle. FadA−/− reduced tumor number, size, and burden in vivo. FadA−/− also reduced DNA damage, cell proliferation, expression of E-cadherin and chk2, and cells in the S phase. Chk2 overexpression elevated DNA damage and tumor growth in APC (Min/+) mice. Conclusions In conclusion, this study provided evidence that Fusobacterium nucleatum induced DNA damage and cell growth in CRC through FadA-dependent activation of the E-cadherin/β-catenin pathway, leading to up-regulation of chk2.
Collapse
Affiliation(s)
- Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Xinjuan Kong
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Lin Yang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Xinzhi Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Xueli Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Chen Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Na Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China.
| |
Collapse
|
4
|
Olcina MM, Kim RK, Balanis NG, Li CG, von Eyben R, Graeber TG, Ricklin D, Stucki M, Giaccia AJ. Intracellular C4BPA Levels Regulate NF-κB-Dependent Apoptosis. iScience 2020; 23:101594. [PMID: 33205012 PMCID: PMC7648136 DOI: 10.1016/j.isci.2020.101594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/11/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022] Open
Abstract
The importance of innate immunity in cancer is increasingly being recognized with recent reports suggesting tumor cell-intrinsic intracellular functions for innate immunity proteins. However, such functions are often poorly understood, and it is unclear whether these are affected by patient-specific mutations. Here, we show that C4b-binding protein alpha chain (C4BPA), typically thought to reside in the extracellular space, is expressed intracellularly in cancer cells, where it interacts with the NF-κB family member RelA and regulates apoptosis. Interestingly, intracellular C4BPA expression is regulated in a stress- and mutation-dependent manner and C4BPA mutations are associated with improved cancer survival outcome. Using cell lines harboring patient-specific C4BPA mutations, we show that increasing intracellular C4BPA levels correlate with sensitivity to oxaliplatin-induced apoptosis in vitro and in vivo. Mechanistically, sensitive C4BPA mutants display increased IκBα expression and increased inhibitory IκBα-RelA complex stability. These data suggest a non-canonical intracellular role for C4BPA in regulating NF-κB-dependent apoptosis. C4BPA mutations are associated with improved overall survival in 23 tumor types C4BPA is found, for the first time, to interact with NF-κB family member RelA C4BPA expression is regulated in a mutation- and stress-responsive manner C4BPA has a non-canonical intracellular function in regulating NF-κB signaling
Collapse
Affiliation(s)
- Monica M. Olcina
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
- Department of Gynecology, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
- Corresponding author
| | - Ryan K. Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Nikolas G. Balanis
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Caiyun Grace Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
- Oxford Institute of Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX37DQ, UK
| |
Collapse
|
5
|
Abstract
DNA damage response (DDR) pathway prevents high level endogenous and environmental DNA damage being replicated and passed on to the next generation of cells via an orchestrated and integrated network of cell cycle checkpoint signalling and DNA repair pathways. Depending on the type of damage, and where in the cell cycle it occurs different pathways are involved, with the ATM-CHK2-p53 pathway controlling the G1 checkpoint or ATR-CHK1-Wee1 pathway controlling the S and G2/M checkpoints. Loss of G1 checkpoint control is common in cancer through TP53, ATM mutations, Rb loss or cyclin E overexpression, providing a stronger rationale for targeting the S/G2 checkpoints. This review will focus on the ATM-CHK2-p53-p21 pathway and the ATR-CHK1-WEE1 pathway and ongoing efforts to target these pathways for patient benefit.
Collapse
|
6
|
|
7
|
Chen KY, Srinivasan T, Lin C, Tung KL, Gao Z, Hsu DS, Lipkin SM, Shen X. Single-Cell Transcriptomics Reveals Heterogeneity and Drug Response of Human Colorectal Cancer Organoids. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2378-2381. [PMID: 30440885 DOI: 10.1109/embc.2018.8512784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Organoids are three-dimensional cell cultures that mimic organ functions and structures. The organoid model has been developed as a versatile in vitro platform for stem cell biology and diseases modeling. Tumor organoids are shown to share ~ 90% of genetic mutations with biopsies from same patients. However, it's not clear whether tumor organoids recapitulate the cellular heterogeneity observed in patient tumors. Here, we used single-cell RNA-Seq to investigate the transcriptomics of tumor organoids derived from human colorectal tumors, and applied machine learning methods to unbiasedly cluster subtypes in tumor organoids. Computational analysis reveals cancer heterogeneity sustained in tumor organoids, and the subtypes in organoids displayed high diversity. Furthermore, we treated the tumor organoids with a first-line cancer drug, Oxaliplatin, and investigated drug response in single-cell scale. Diversity of tumor cell populations in organoids were significantly perturbed by drug treatment. Single-cell analysis detected the depletion of chemosensitive subgroups and emergence of new drug tolerant subgroups after drug treatment. Our study suggests that the organoid model is capable of recapitulating clinical heterogeneity and its evolution in response to chemotherapy.
Collapse
|
8
|
Huang WS, Lin CT, Chen CN, Chang SF, Chang HI, Lee KC. Metformin increases the cytotoxicity of oxaliplatin in human DLD-1 colorectal cancer cells through down-regulating HMGB1 expression. J Cell Biochem 2018; 119:6943-6952. [PMID: 29737584 DOI: 10.1002/jcb.26898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the fourth most common cause of cancer death worldwide. Chemotherapy has been the major strategy for treating patients with advanced CRC. Oxaliplatin (OXA) is used as both an adjuvant and neoadjuvant anticancer agent available to treat advanced CRC. High-mobility group box 1 protein (HMGB1) is a critical regulator of cell death and survival. HMGB1 overexpression has been shown to be resistant to cytotoxic agents. In addition, Metformin, a widely used drug for diabetes, has emerged as a potential anticancer agent. In this study, we examined whether HMGB1 plays a role in the OXA- and/or metformin-induced cytotoxic effect on CRC cells. The results showed that treatment with OXA increased HMGB1 expression in the ERK1/2- and Akt-dependent manners in DLD-1 cells. HMGB1 gene knockdown enhanced the cytotoxicity and cell growth inhibition of OXA. Moreover, OXA-increased HMGB1 expression was by inducing NF-κB-DNA-binding activity to in DLD-1 cells. Compared to a single agent, OXA combined with metformin administration resulted in cytotoxicity and cell growth inhibition synergistically, accompanied with reduced HMGB1 level. These findings may have implications for the rational design of future drug regimens incorporating OXA and metformin for the treatment of CRC.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chien-Tsong Lin
- Center for General Education, National Formosa University, Yunlin, Taiwan.,Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Ko-Chao Lee
- Department of Colorectal Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
10
|
Eisenberg MC, Jain HV. A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study. J Theor Biol 2017; 431:63-78. [PMID: 28733187 DOI: 10.1016/j.jtbi.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 01/08/2023]
Abstract
Mathematical modeling has a long history in the field of cancer therapeutics, and there is increasing recognition that it can help uncover the mechanisms that underlie tumor response to treatment. However, making quantitative predictions with such models often requires parameter estimation from data, raising questions of parameter identifiability and estimability. Even in the case of structural (theoretical) identifiability, imperfect data and the resulting practical unidentifiability of model parameters can make it difficult to infer the desired information, and in some cases, to yield biologically correct inferences and predictions. Here, we examine parameter identifiability and estimability using a case study of two compartmental, ordinary differential equation models of cancer treatment with drugs that are cell cycle-specific (taxol) as well as non-specific (oxaliplatin). We proceed through model building, structural identifiability analysis, parameter estimation, practical identifiability analysis and its biological implications, as well as alternative data collection protocols and experimental designs that render the model identifiable. We use the differential algebra/input-output relationship approach for structural identifiability, and primarily the profile likelihood approach for practical identifiability. Despite the models being structurally identifiable, we show that without consideration of practical identifiability, incorrect cell cycle distributions can be inferred, that would result in suboptimal therapeutic choices. We illustrate the usefulness of estimating practically identifiable combinations (in addition to the more typically considered structurally identifiable combinations) in generating biologically meaningful insights. We also use simulated data to evaluate how the practical identifiability of the model would change under alternative experimental designs. These results highlight the importance of understanding the underlying mechanisms rather than purely using parsimony or information criteria/goodness-of-fit to decide model selection questions. The overall roadmap for identifiability testing laid out here can be used to help provide mechanistic insight into complex biological phenomena, reduce experimental costs, and optimize model-driven experimentation.
Collapse
Affiliation(s)
| | - Harsh V Jain
- Mathematics, Florida State University, United States.
| |
Collapse
|
11
|
Checkpoint kinase 2 (Chk2) supports sensitivity to platinum-based treatment in high grade serous ovarian cancer. Gynecol Oncol 2014; 133:591-8. [DOI: 10.1016/j.ygyno.2014.03.557] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 11/24/2022]
|
12
|
Gutiérrez-González A, Belda-Iniesta C, Bargiela-Iparraguirre J, Dominguez G, García Alfonso P, Perona R, Sanchez-Perez I. Targeting Chk2 improves gastric cancer chemotherapy by impairing DNA damage repair. Apoptosis 2013; 18:347-60. [PMID: 23271172 DOI: 10.1007/s10495-012-0794-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our results demonstrate that the addition of cisplatin after paclitaxel-induced mitotic arrest was more effective than individual treatment on gastric adenocarcinoma cells (MKN45). However, the treatment did not induce benefits in cells derived from lymph node metastasis (ST2957). Time-lapse microscopy revealed that cell death was caused by mitotic catastrophe and apoptosis induction, as the use of the caspase inhibitor z-VAD-fmk decreased cell death. We propose that the molecular mechanism mediating this cell fate is a slippage suffered by these cells, given that our Western blot (WB) analysis revealed premature cyclin B degradation. This resulted in the cell exiting from mitosis without undergoing DNA damage repair, as demonstrated by the strong phosphorylation of H2AX. A comet assay indicated that DNA repair was impaired, and Western blotting showed that the Chk2 protein was degraded after sequential treatment (paclitaxel-cisplatin). Based on these results, the modulation of cell death during mitosis may be an effective strategy for gastric cancer therapy.
Collapse
|
13
|
Dominguez-Valentin M, Therkildsen C, Veerla S, Jönsson M, Bernstein I, Borg A, Nilbert M. Distinct gene expression signatures in lynch syndrome and familial colorectal cancer type x. PLoS One 2013; 8:e71755. [PMID: 23951239 PMCID: PMC3741139 DOI: 10.1371/journal.pone.0071755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/02/2013] [Indexed: 02/01/2023] Open
Abstract
Introduction Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects. Purpose We addressed the gene expression signatures in colorectal cancer linked to Lynch syndrome and FCCTX with the aim to identify candidate genes and to map signaling pathways relevant in hereditary colorectal carcinogenesis. Experimental design The 18 k whole-genome c-DNA-mediated annealing, selection, extension, and ligation (WG-DASL) assay was applied to 123 colorectal cancers, including 39 Lynch syndrome tumors and 37 FCCTX tumors. Target genes were technically validated using real-time quantitative RT-PCR (qRT-PCR) and the expression signature was validated in independent datasets. Results Colorectal cancers linked to Lynch syndrome and FCCTX showed distinct gene expression profiles, which by significance analysis of microarrays (SAM) differed by 2188 genes. Functional pathways involved were related to G-protein coupled receptor signaling, oxidative phosphorylation, and cell cycle function and mitosis. qRT-PCR verified altered expression of the selected genes NDUFA9, AXIN2, MYC, DNA2 and H2AFZ. Application of the 2188-gene signature to independent datasets showed strong correlation to MMR status. Conclusion Distinct genetic profiles and deregulation of different canonical pathways apply to Lynch syndrome and FCCTX and key targets herein may be relevant to pursue for refined diagnostic and therapeutic strategies in hereditary colorectal cancer.
Collapse
|
14
|
Duong HQ, Hong YB, Kim JS, Lee HS, Yi YW, Kim YJ, Wang A, Zhao W, Cho CH, Seong YS, Bae I. Inhibition of checkpoint kinase 2 (CHK2) enhances sensitivity of pancreatic adenocarcinoma cells to gemcitabine. J Cell Mol Med 2013; 17:1261-70. [PMID: 23855452 PMCID: PMC4159025 DOI: 10.1111/jcmm.12101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/26/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022] Open
Abstract
Checkpoint kinase 2 (CHK2) plays pivotal function as an effector of cell cycle checkpoint arrest following DNA damage. Recently, we found that co-treatment of NSC109555 (a potent and selective CHK2 inhibitor) potentiated the cytotoxic effect of gemcitabine (GEM) in pancreatic cancer MIA PaCa-2 cells. Here, we further examined whether NSC109555 could enhance the antitumour effect of GEM in pancreatic adenocarcinoma cell lines. In this study, the combination treatment of NSC109555 plus GEM demonstrated strong synergistic antitumour effect in four pancreatic cancer cells (MIA PaCa-2, CFPAC-1, Panc-1 and BxPC-3). In addition, the GEM/NSC109555 combination significantly increased the level of intracellular reactive oxygen species (ROS), accompanied by induction of apoptotic cell death. Inhibition of ROS generation by N-acetyl cysteine (NAC) significantly reversed the effect of GEM/NSC109555 in apoptosis and cytotoxicity. Furthermore, genetic knockdown of CHK2 by siRNA enhanced GEM-induced apoptotic cell death. These findings suggest that inhibition of CHK2 would be a beneficial therapeutic approach for pancreatic cancer therapy in clinical treatment.
Collapse
Affiliation(s)
- Hong-Quan Duong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA; WCU (World Class University) Research Center of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gadhikar MA, Sciuto MR, Alves MVO, Pickering CR, Osman AA, Neskey DM, Zhao M, Fitzgerald AL, Myers JN, Frederick MJ. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther 2013; 12:1860-73. [PMID: 23839309 DOI: 10.1158/1535-7163.mct-13-0157] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite the use of multimodality therapy using cisplatin to treat patients with advanced stage squamous cell carcinoma of the head and neck (HNSCC), there is an unacceptably high rate of treatment failure. TP53 is the most commonly mutated gene in HNSCC, and the impact of p53 mutation on response to cisplatin treatment is poorly understood. Here, we show unambiguously that wild-type TP53 (wtp53) is associated with sensitivity of HNSCC cells to cisplatin treatment, whereas mutation or loss of TP53 is associated with cisplatin resistance. We also show that senescence is the major cellular response to cisplatin in wtp53 HNSCC cells and that cisplatin resistance in p53-null or -mutant TP53 cells is due to their lack of senescence. Given the dependence on checkpoint kinase (Chk)1/2 kinases to mediate the DNA damage response in p53-deficient cells, there is potential to exploit this to therapeutic advantage through targeted inhibition of the Chk1/2 kinases. Treatment of p53-deficient HNSCC cells with the Chk inhibitor AZD7762 sensitizes them to cisplatin through induction of mitotic cell death. This is the first report showing the ability of a Chk kinase inhibitor to sensitize TP53-deficient HNSCC to cisplatin in a synthetic lethal manner, which has significance given the frequency of TP53 mutations in this disease and because cisplatin has become part of standard therapy for aggressive HNSCC tumors. These preclinical data provide evidence that a personalized approach to the treatment of HNSCC based on Chk inhibition in p53-mutant tumors may be feasible.
Collapse
Affiliation(s)
- Mayur A Gadhikar
- Corresponding Authors: Mitchell J. Frederick, Department of Head & Neck Surgery, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1445, Houston, TX 77030.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shiragami R, Murata S, Kosugi C, Tezuka T, Yamazaki M, Hirano A, Yoshimura Y, Suzuki M, Shuto K, Koda K. Enhanced antitumor activity of cerulenin combined with oxaliplatin in human colon cancer cells. Int J Oncol 2013; 43:431-8. [PMID: 23754252 DOI: 10.3892/ijo.2013.1978] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/05/2013] [Indexed: 11/06/2022] Open
Abstract
Fatty acid synthase is highly expressed in many types of human cancers. Cerulenin, a natural inhibitor of fatty acid synthase, induced apoptosis in the human colon cancer cell lines HCT116 and RKO. Oxaliplatin also induced cell death in these cell lines. Cerulenin treatment was associated with reduced levels of phosphorylated Akt, activation of p38 and induced caspase-3 cleavage and finally caused apoptosis. Oxaliplatin induced activation of the p53-p21 pathway and p38. In combination with cerulenin and oxaliplatin, activation of the p53-p21 pathway and p38 occurred in a smaller concentration and finally induced caspase-3 cleavage in a smaller concentration of cerulenin and oxaliplatin. In xenotransplanted SCID mice, the cerulenin + oxaliplatin group significantly inhibited tumor progression compared to the control, cerulenin and oxaliplatin groups. Based on these studies, inhibiting fatty acid synthase would be an effective strategy to treat unresectable colorectal cancer tumors in combination with oxaliplatin. Fatty acid synthase inhibitor would be one of the best counterparts of oxaliplatin, which reduces the dose and side-effects of oxaliplatin and would make it possible to endure the chemotherapy over a longer period.
Collapse
Affiliation(s)
- Risa Shiragami
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba 299-0111, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maugeri-Saccà M, Bartucci M, De Maria R. Checkpoint kinase 1 inhibitors for potentiating systemic anticancer therapy. Cancer Treat Rev 2012. [PMID: 23207059 DOI: 10.1016/j.ctrv.2012.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The checkpoint kinase 1 (Chk1) is a key component of the DNA damage response, a molecular network deputed to maintain genome integrity. Nevertheless, cancer cells aberrantly exploit these circuits to overcome chemotherapy-induced cytotoxicity. Chk1 inhibitors have been developed as a chemopotentiating strategy and different molecular mechanisms underlying the synergism with chemotherapeutics have been uncovered. The monotherapy with Chk1 inhibitors seems to be endowed with antitumor activity against cancer cells characterized by specific defects in the DNA damage machinery or characterized by elevated levels of oncogene-induced replication stress. In this biological framework Chk1 neutralization represents a synthetic lethality-based therapeutic approach. Moreover, a dual targeting of the DNA damage machinery has been proposed envisioning the association of Chk1 abrogation with poly-ADP ribose polymerase inhibitors. The spectrum of antitumor properties of Chk1 antagonists is completed by the activity against cancer stem cells, the prominent tumorigenic population that is equipped to survive stressful conditions through multiple and interconnected mechanisms. Although the clinical development of the first generation of Chk1 antagonists was hindered by off-target effects and an unfavorable pharmacokinetic profile, a new wave of early clinical trials with more selective compounds are currently being carried out. To this end, the identification of predictive biomarkers and an in-depth characterization of molecular circuits governed by Chk1 are issues that need to be addressed for sharpening the therapeutic potential of Chk1 inhibitors.
Collapse
Affiliation(s)
- M Maugeri-Saccà
- Regina Elena National Cancer Institute, Via E. Chianesi, n. 53, 00144 Rome, Italy.
| | | | | |
Collapse
|
18
|
Solier S, Zhang YW, Ballestrero A, Pommier Y, Zoppoli G. DNA damage response pathways and cell cycle checkpoints in colorectal cancer: current concepts and future perspectives for targeted treatment. Curr Cancer Drug Targets 2012; 12:356-71. [PMID: 22385513 DOI: 10.2174/156800912800190901] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/05/2011] [Accepted: 12/22/2011] [Indexed: 01/28/2023]
Abstract
Although several drugs have been designed in the last few years to target specific key pathways and functions in colorectal cancer (CRC), the backbone of CRC treatment is still made up of compounds which rely on DNA damage to accomplish their role. DNA damage response (DDR) and checkpoint pathways are intertwined signaling networks that arrest cell cycle, recognize and repair genetic mistakes which arise during DNA replication and transcription, as well as through the exposure to chemical and physical agents that interact with nucleic acids. The good but highly variable activity of DNA damaging agents in the treatment of CRC suggests that intrinsic alterations in DDR pathways and cell cycle checkpoints may contribute differentially to the way cancer cells react to DNA damage. In the present review, our aim is to depict the recent advances in understanding the molecular basis of the activity of DNA damaging agents used for the treatment of CRC. We focus on the known and potential drug targets that are part of these complex and intertwined pathways. We describe the potential role of the checkpoints in CRC, and how their pharmacological manipulation could lead to chemopotentiation or synergism with currently used drugs. Novel therapeutic agents playing a role in DDR and checkpoint inhibition are assessed. We discuss the possible rationale for combining PARP inhibition with DNA damaging agents, and we address the link between DDR and EGFR pathways in CRC.
Collapse
Affiliation(s)
- S Solier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda (MD), USA
| | | | | | | | | |
Collapse
|
19
|
Koh W, Jeong SJ, Lee HJ, Ryu HG, Lee EO, Ahn KS, Bae H, Kim SH. Melatonin promotes puromycin-induced apoptosis with activation of caspase-3 and 5'-adenosine monophosphate-activated kinase-alpha in human leukemia HL-60 cells. J Pineal Res 2011; 50:367-73. [PMID: 21244482 DOI: 10.1111/j.1600-079x.2010.00852.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin, a naturally occurring molecule, is produced by the pineal gland in a circadian manner to regulate biologic rhythms in humans. Recent studies report that melatonin may be an attractive candidate as an anticancer agent or for combined therapy because of its antioxidant, oncostatic and immunoregulatory activities. In this study, the potentiating effect of melatonin was evaluated on the apoptosis induced by puromycin as an anticancer drug in acute promyelocytic leukemia HL-60 cells. Melatonin did not show significant cytotoxicity against HL-60 cells compared to puromycin. However, melatonin significantly augmented the cytotoxicity of puromycin. Consistently, combined treatment of melatonin and puromycin reduced the expression of anti-apoptotic proteins, such as bcl-2 and bcl-x(L) , and also induced caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage compared to puromycin treatment alone. Furthermore, cell cycle analysis revealed that melatonin promoted puromycin-induced apoptosis by increasing the sub-G1 population, but suppressing G2/M arrest in HL-60 cells. Interestingly, melatonin activated the phosphorylation of 5'-adenosine monophosphate-activated kinase (AMPK) in combination with puromycin. Taken together, our results suggest that melatonin potentiates puromycin-induced apoptosis with caspase-3 and AMPK activation in HL-60 cells, and thus, melatonin treatment can be effectively applied to leukemia treatment as a potential sensitizer for chemotherapeutic agents.
Collapse
Affiliation(s)
- Wonil Koh
- College of Oriental Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Modifications of p53 and the DNA damage response in cells expressing mutant form of the protein huntingtin. J Mol Neurosci 2011; 45:256-68. [PMID: 21465263 DOI: 10.1007/s12031-011-9516-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
Huntington's disease (HD) occurs through an expansion of the trinucleotide repeat in the HD gene resulting in the lengthening of the polyglutamine stretch within the N terminus of the protein, huntingtin (Htt). While the function of the protein is still being fully elucidated, we have shown that genomic DNA damage is associated with the expression of mutant Htt (mHtt) in a time-dependent fashion. With the accumulation of mHtt and its development into a micro-aggregated complex, the initiation of genomic damage engages a cellular stress signal that activates the DNA damage and stress response pathway. Here we explore the modifications and activation of p53 and keystone regulators of the cell stress response pathway using expression of a fragment of mHtt in HEK293T cells. We find an increase in phosphorylated p53 at serine 15 (S15), diminished acetylation at lysine 382 (K382), altered ubiquitination pattern, and oligomerization activity as a function of mHtt expression. As one might predict, upstream regulators of p53, such as CREB-binding protein/p300 and MDM2, are also seen to be affected by the expression of mHtt, albeit in different ways. These data suggest a possible relationship between p53 and the slow accumulation of DNA damage resulting from the expression of mHtt. The lack of a proper p53-mediated signaling cascade or its alteration in the presence of DNA damage may contribute to the slow progression of cellular dysfunction which is a hallmark of HD pathology.
Collapse
|
21
|
Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 2011; 32:308-16. [PMID: 21458083 DOI: 10.1016/j.tips.2011.02.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 11/22/2022]
Abstract
Research into inhibitors of the protein kinases controlling the cellular response to DNA damage has reached an exciting stage, particularly for the checkpoint kinases CHK1 and CHK2. Selective inhibitors are now being tested in clinical trials in cancer patients. In this review, we highlight recent data from cellular and in vivo preclinical models that provide insight into the clinical contexts for checkpoint kinase inhibition (e.g. the timing of treatment and what type of inhibitor would be most appropriate). Although it has been shown that CHK1 inhibition potentiates the efficacy of various DNA-damaging therapies, the context for selective CHK2 inhibition is not yet as well defined. Distinct effects of selective CHK1 or CHK2 inhibition are observed when combined with DNA-damaging agents. It has also been shown that both CHK1 and CHK2 inhibitors potentiate the effects of other molecular targeted therapeutics [e.g. poly(ADP-ribose) polymerase inhibitors]. We also consider the single-agent activity of checkpoint kinase inhibitors for tumours with defined genetic backgrounds.
Collapse
|
22
|
Stolz A, Ertych N, Bastians H. Tumor Suppressor CHK2: Regulator of DNA Damage Response and Mediator of Chromosomal Stability: Figure 1. Clin Cancer Res 2010; 17:401-5. [DOI: 10.1158/1078-0432.ccr-10-1215] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|