1
|
Hu Y, Wang R, An N, Li C, Wang Q, Cao Y, Li C, Liu J, Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front Genet 2023; 14:1332190. [PMID: 38152656 PMCID: PMC10751322 DOI: 10.3389/fgene.2023.1332190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yannan Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
3
|
Chen HC, Awale S, Wu CP, Lee HH, Wu HT. Co-cultured bone marrow mesenchymal stem cells repair thioacetamide-induced hepatocyte damage. Cell Biol Int 2020; 44:2459-2472. [PMID: 32827326 DOI: 10.1002/cbin.11453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/18/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Adult stem cells, such as bone marrow mesenchymal stem cells (BMSCs), are postdevelopmental cells found in many bone tissues. They are capable of multipotent differentiation and have low immune-rejection characteristics. Hepatocytes may become inflamed and produce a large number of free radicals when affected by drugs, poisoning, or a viral infection. The excessive accumulation of free radicals in the extracellular matrix (ECM) eventually leads to liver fibrosis. This study aims to investigate the restorative effects of mouse bone marrow mesenchymal stem cells (mBMSCs) on thioacetamide (TAA)-induced damage in hepatocytes. An in vitro transwell co-culture system of HepG2 cells were co-cultured with mBMSCs. The effects of damage done to TAA-treated HepG2 cells were reflected in the overall cell survival, the expression of antioxidants (SOD1, GPX1, and CAT), the ECM (COL1A1 and MMP9), antiapoptosis characteristics (BCL2), and inflammation (TNF) genes. The majority of the damage done to HepG2 by TAA was significantly reduced when cells were co-cultured with mBMSCs. The signal transducer and activator of transcription 3 (STAT3) and its phosphorylated STAT3 (p-STAT3), as related to cell growth and survival, were detected in this study. The results show that STAT3 was significantly decreased in the TAA-treated HepG2 cells, but the STAT3 and p-STAT3 of HepG2 cells were significantly activated when the TAA-treated HepG2 co-cultured with mBMSCs. Strong expression of interleukin (Il6) messenger RNA in co-cultured mBMSCs/HepG2 indicated mBMSCs secret the cytokines IL-6, which promotes cell survival through downstream STAT3 activation and aid in the recovery of HepG2 cells damaged by TAA.
Collapse
Affiliation(s)
- Hung-Chiuan Chen
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Suresh Awale
- Department of Translational Research, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan
| | - Hu-Hui Lee
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Hsi-Tien Wu
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
4
|
Zou Y, Zhang M, Zeng D, Ruan Y, Shen L, Mu Z, Zou J, Xie C, Yang Z, Qian Z, Xu R, Li S, Kang Q, Zou H, Zhao S, Liu L, Wang K, Wang X, Zhang X. Periplaneta americana Extracts Accelerate Liver Regeneration via a Complex Network of Pathways. Front Pharmacol 2020; 11:1174. [PMID: 32848780 PMCID: PMC7413023 DOI: 10.3389/fphar.2020.01174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Successful recovery from hepatectomy is partially contingent upon the rate of residual liver regeneration. The traditional Chinese medicines known as Periplaneta americana extracts (PAEs) positively influence wound healing by promoting tissue repair. However, the effect of PAEs on liver regeneration is unknown. We used a mouse liver regeneration model after 70% partial hepatectomy (PH) and a hepatocyte culture to determine whether PAEs can promote liver regeneration as effectively as skin regeneration and establish their modes of action. L02 cells were divided into serum-starved control (NC) and three PAEs (serum starvation + 0.1 mg/ml, 0.5 mg/ml, or 1 mg/ml PAEs) groups. L02 cell proliferation was assessed at 24 h, 48 h, and 72 h by CCK-8 assay. Forty male C57 mice were randomly divided into control (NC), normal saline (NS), PAEs400 (400 mg/kg/d), and PAEs800 (800 mg/kg/d) groups (n = 10 per group). The NS and both PAEs groups were administered normal saline and PAEs, respectively, by gavage for 10 days. Two hours after the tenth gavage, the NS and both PAEs groups were subjected to 70% PH and the residual liver was harvested after 48 h. The hepatic regeneration rate was evaluated and hepatocyte proliferation was estimated by immunohistochemical (IHC) staining for Ki-67. Twelve DEG libraries (three samples per group) were prepared and sequencing was performed in an Illumina HiSeq 2000 (Mus_musculus) at the Beijing Genomics Institute. The genes expressed in the liver tissues and their expression profiles were analyzed by bioinformatics. KEGG was used to annotate, enrich, and analyze the pathways. PAEs promoted hepatocyte proliferation in vitro and in vivo and accelerated mouse liver regeneration after 70% PH. The screening criteria were fold change (FC) ≥ 2 and q-value < 0.001. We identified 1,092 known DEGs in PAEs400 and PAEs800. Of these, 153 were categorized in cellular processes. The KEGG analysis revealed that the aforementioned DEGs participated in several signaling pathways closely associated with cell proliferation including PI3K-Akt, MAPK, Apelin, Wnt, FoxO, mTOR, Ras, VEGF, ErbB, Hippo, and AMPK. It was concluded that PAEs can effectively improve liver regeneration via the synergistic activation of different signaling pathways.
Collapse
Affiliation(s)
- Yingying Zou
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China.,Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meiyan Zhang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Di Zeng
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Yonghua Ruan
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Lijuan Shen
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhihao Mu
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Jiangmeng Zou
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Chenjian Xie
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhihong Yang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhongyi Qian
- Department of Morphological Laboratory, Kunming Medical University, Kunming, China
| | - Ruobing Xu
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Zou
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Songling Zhao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lixin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xie Wang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Xiaowen Zhang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Hoffmann K, Nagel AJ, Tanabe K, Fuchs J, Dehlke K, Ghamarnejad O, Lemekhova A, Mehrabi A. Markers of liver regeneration-the role of growth factors and cytokines: a systematic review. BMC Surg 2020; 20:31. [PMID: 32050952 PMCID: PMC7017496 DOI: 10.1186/s12893-019-0664-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Post-hepatectomy liver failure contributes significantly to postoperative mortality after liver resection. The prediction of the individual risk for liver failure is challenging. This review aimed to provide an overview of cytokine and growth factor triggered signaling pathways involved in liver regeneration after resection. METHODS MEDLINE and Cochrane databases were searched without language restrictions for articles from the time of inception of the databases till March 2019. All studies with comparative data on the effect of cytokines and growth factors on liver regeneration in animals and humans were included. RESULTS Overall 3.353 articles comprising 40 studies involving 1.498 patients and 101 animal studies were identified and met the inclusion criteria. All included trials on humans were retrospective cohort/observational studies. There was substantial heterogeneity across all included studies with respect to the analyzed cytokines and growth factors and the described endpoints. CONCLUSION High-level evidence on serial measurements of growth factors and cytokines in blood samples used to predict liver regeneration after resection is still lacking. To address the heterogeneity of patients and potential markers, high throughput serial analyses may offer a method to predict an individual's regenerative potential in the future.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany.
| | - Alexander Johannes Nagel
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Kazukata Tanabe
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | | | - Karolin Dehlke
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Anastasia Lemekhova
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Pereira ENGDS, Silvares RR, Flores EEI, Rodrigues KL, Daliry A. Pyridoxamine improves metabolic and microcirculatory complications associated with nonalcoholic fatty liver disease. Microcirculation 2020; 27:e12603. [PMID: 31876010 DOI: 10.1111/micc.12603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We investigated the protective effects of pyridoxamine against metabolic and microcirculatory complications in nonalcoholic fatty liver disease. METHODS Nonalcoholic fatty liver disease was established by a high-fat diet administration over 28 weeks. Pyridoxamine was administered between weeks 20 and 28. The recruitment of leukocytes and the number of vitamin A-positive hepatic stellate cells were examined by in vivo microscopy. Laser speckle contrast imaging was used to evaluate microcirculatory hepatic perfusion. Thiobarbituric acid reactive substances measurement and RT-PCR were used for oxidative stress and inflammatory parameters. advanced glycation end products were evaluated by fluorescence spectroscopy. RESULTS The increase in body, liver, and fat weights, together with steatosis and impairment in glucose metabolism observed in the nonalcoholic fatty liver disease group were attenuated by pyridoxamine treatment. Regarding the hepatic microcirculatory parameters, rats with high-fat diet-induced nonalcoholic fatty liver disease showed increased rolling and adhesion of leukocytes, increased hepatic stellate cells activation, and decreased tissue perfusion, which were reverted by pyridoxamine. Pyridoxamine protected against the increased hepatic lipid peroxidation observed in the nonalcoholic fatty liver disease group. Pyridoxamine treatment was associated with increased levels of tumor necrosis factor alpha (TNF-α) mRNA transcripts in the liver. CONCLUSION Pyridoxamine modulates oxidative stress, advanced glycation end products, TNF-α transcripts levels, and metabolic disturbances, being a potential treatment for nonalcoholic fatty liver disease-associated microcirculatory and metabolic complications.
Collapse
Affiliation(s)
| | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Fonseca RC, Bassi GS, Brito CC, Rosa LB, David BA, Araújo AM, Nóbrega N, Diniz AB, Jesus ICG, Barcelos LS, Fontes MAP, Bonaventura D, Kanashiro A, Cunha TM, Guatimosim S, Cardoso VN, Fernandes SOA, Menezes GB, de Lartigue G, Oliveira AG. Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain Behav Immun 2019; 81:444-454. [PMID: 31271871 PMCID: PMC7826199 DOI: 10.1016/j.bbi.2019.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract harbors commensal microorganisms as well as invasive bacteria, toxins and other pathogens and, therefore, plays a pivotal barrier and immunological role against pathogenic agents. The vagus nerve is an important regulator of the GI tract-associated immune system, having profound effects on inflammatory responses. Among GI tract organs, the liver is a key site of immune surveillance, as it has a large population of resident macrophages and receives the blood drained from the guts through the hepatic portal circulation. Although it is widely accepted that the hepatic tissue is a major target for vagus nerve fibers, the role of this neural circuit in liver immune functions is still poorly understood. Herein we used in vivo imaging techniques, including confocal microscopy and scintigraphy, to show that vagus nerve stimulation increases the phagocytosis activity by resident macrophages in the liver, even on the absence of an immune challenge. The activation of this neural circuit in a non-lethal model of sepsis optimized the removal of bacteria in the liver and resulted in the production of anti-inflammatory and pro-regenerative cytokines. Our findings provide new insights into the neural regulation of the immune system in the liver.
Collapse
Affiliation(s)
- Roberta Cristelli Fonseca
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Shimizu Bassi
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Camila Carvalho Brito
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Barreto Rosa
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Araújo David
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Alan Moreira Araújo
- University of Florida, College of Pharmacy, Department of Pharmacodynamics, Gainesville, FL, USA
| | - Natália Nóbrega
- Universidade Federal de Minas Gerais, Department of Pharmacology, Belo Horizonte, Minas Gerais, Brazil
| | - Ariane Barros Diniz
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Itamar Couto Guedes Jesus
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola Silva Barcelos
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Antônio Peliky Fontes
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Bonaventura
- Universidade Federal de Minas Gerais, Department of Pharmacology, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Kanashiro
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Sílvia Guatimosim
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Universidade Federal de Minas Gerais, College of Pharmacy, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Universidade Federal de Minas Gerais, College of Pharmacy, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Guillaume de Lartigue
- University of Florida, College of Pharmacy, Department of Pharmacodynamics, Gainesville, FL, USA
| | - André Gustavo Oliveira
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil; Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Chanda PK, Meng S, Lee J, Leung HE, Chen K, Cooke JP. Nuclear S-Nitrosylation Defines an Optimal Zone for Inducing Pluripotency. Circulation 2019; 140:1081-1099. [PMID: 31412725 DOI: 10.1161/circulationaha.119.042371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We found that cell-autonomous innate immune signaling causes global changes in the expression of epigenetic modifiers to facilitate nuclear reprogramming to pluripotency. A role of S-nitrosylation by inducible nitric oxide (NO) synthase, an important effector of innate immunity, has been previously described in the transdifferentiation of fibroblasts to endothelial cells. Accordingly, we hypothesized that S-nitrosylation might also have a role in nuclear reprogramming to pluripotency. METHODS We used murine embryonic fibroblasts containing a doxycycline-inducible cassette encoding the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc), and genetic or pharmacological inhibition of inducible NO synthase together with the Tandem Mass Tag approach, chromatin immunoprecipitation-quantitative polymerase chain reaction, site-directed mutagenesis, and micrococcal nuclease assay to determine the role of S-nitrosylation during nuclear reprogramming to pluripotency. RESULTS We show that an optimal zone of innate immune activation, as defined by maximal yield of induced pluripotent stem cells, is determined by the degree of activation of nuclear factor κ-light-chain-enhancer of activated B cells; NO generation; S-nitrosylation of nuclear proteins; and DNA accessibility as reflected by histone markings and increased mononucleosome generation in a micrococcal nuclease assay. Genetic or pharmacological inhibition of inducible NO synthase reduces DNA accessibility and suppresses induced pluripotent stem cell generation. The effect of NO on DNA accessibility is mediated in part by S-nitrosylation of nuclear proteins, including MTA3 (Metastasis Associated 1 Family Member 3), a subunit of NuRD (Nucleosome Remodeling Deacetylase) complex. S-Nitrosylation of MTA3 is associated with decreased NuRD activity. Overexpression of mutant MTA3, in which the 2 cysteine residues are replaced by alanine residues, impairs the generation of induced pluripotent stem cells. CONCLUSIONS This is the first report showing that DNA accessibility and induced pluripotent stem cell yield depend on the extent of cell-autonomous innate immune activation and NO generation. This "Goldilocks zone" for inflammatory signaling and epigenetic plasticity may have broader implications for cell fate and phenotypic fluidity.
Collapse
Affiliation(s)
- Palas K Chanda
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (P.K.C., S.M., K.C., J.P.C.)
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (P.K.C., S.M., K.C., J.P.C.)
| | - Jieun Lee
- AgeX Therapeutics Inc, Alameda, CA (J.L.)
| | - Honchiu E Leung
- Department of Medicine, Baylor College of Medicine, Houston, TX (H.E.L.)
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (P.K.C., S.M., K.C., J.P.C.)
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (P.K.C., S.M., K.C., J.P.C.)
| |
Collapse
|
9
|
A Pre-Clinical Large Animal Model of Sustained Liver Injury and Regeneration Stimulus. Sci Rep 2018; 8:14987. [PMID: 30301901 PMCID: PMC6177392 DOI: 10.1038/s41598-018-32889-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/17/2018] [Indexed: 01/15/2023] Open
Abstract
A feasible large animal model to evaluate regenerative medicine techniques is vital for developing clinical applications. One such appropriate model could be to use retrorsine (RS) together with partial hepatectomy (PH). Here, we have developed the first porcine model using RS and PH. RS or saline control was administered intraperitoneally to Göttingen miniature pigs twice, two weeks apart. Four weeks after the second dose, animals underwent PH. Initially, we tested different doses of RS and resection of different amounts of liver, and selected 50 mg/kg RS with 60% hepatectomy as our model for further testing. Treated animals were sacrificed 3, 10, 17 or 28 days after PH. Blood samples and resected liver were collected. Serum and liver RS content was determined by Liquid Chromatograph-tandem Mass Spectrometer. Blood analyses demonstrated liver dysfunction after PH. Liver regeneration was significantly inhibited 10 and 17 days after PH in RS-treated animals, to the extent of 20%. Histological examination indicated hepatic injury and regenerative responses after PH. Immunohistochemical staining demonstrated accumulation of Cyclin D1 and suppression of Ki-67 and PCNA in RS-treated animals. We report the development of the first large animal model of sustained liver injury with suppression of hepatic regeneration.
Collapse
|
10
|
Hou CT, Chen YL, Lin CC, Chou CT, Lin KH, Lin PY, Hsu YL, Chen CB, Lin HC, Ko CJ, Wang SH, Weng LC, Hsieh CE. Portal venous velocity affects liver regeneration after right lobe living donor hepatectomy. PLoS One 2018; 13:e0204163. [PMID: 30222781 PMCID: PMC6141071 DOI: 10.1371/journal.pone.0204163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES We investigated whether chronological changes in portal flow and clinical factors play a role in the liver regeneration (LR) process after right donor-hepatectomy. MATERIALS AND METHODS Participants in this prospective study comprised 58 donors who underwent right donor-hepatectomy during the period February 2014 to February 2015 at a single medical institution. LR was estimated using two equations: remnant left liver (RLL) growth (%) and liver volumetric recovery (LVR) (%). Donors were classified into an excellent regeneration (ER) group or a moderate regeneration (MR) group based on how their LR on postoperative day 7 compared to the median value. RESULTS Multivariate analysis revealed that low residual liver volume (OR = .569, 95% CI: .367- .882) and high portal venous velocity in the immediate postoperative period (OR = 1.220, 95% CI: 1.001-1.488) were significant predictors of LR using the RLL growth equation; high portal venous velocity in the immediate postoperative period (OR = 1.325, 95% CI: 1.081-1.622) was a significant predictor of LR using the LVR equation. Based on the two equations, long-term LR was significantly greater in the ER group than in the MR group (p < .001). CONCLUSION Portal venous velocity in the immediate postoperative period was an important factor in LR. The critical time for short-term LR is postoperative day 7; it is associated with long-term LR in donor-hepatectomy.
Collapse
Affiliation(s)
- Chen-Tai Hou
- Surgical Critical Unit, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (CEH); (YLC)
| | - Chia-Cheng Lin
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chen-Te Chou
- Department of Radiology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming Medical University, Taiper, Taiwan
| | - Kuo-Hua Lin
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Ping-Yi Lin
- Transplant Medicine & Surgery Research Centre, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Lan Hsu
- Department of Nursing, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Bang Chen
- Department of Radiology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hui-Chuan Lin
- Department of Nursing, Hung Kuang University, Taichung, Taiwan
| | - Chih-Jan Ko
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Su-Han Wang
- Department of Nursing, Changhua Christian Hospital, Changhua, Taiwan
| | - Li-Chueh Weng
- Department of Nursing, Graduate Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
| | - Chia-En Hsieh
- Department of Nursing, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (CEH); (YLC)
| |
Collapse
|
11
|
Biological Substrate of the Rapid Volumetric Changes Observed in the Human Liver During the Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy Approach. J Gastrointest Surg 2016; 20:546-53. [PMID: 26487329 DOI: 10.1007/s11605-015-2982-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/10/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND The associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) strategy induces rapid future liver remnant (FLR) hypertrophy. Hepatocyte cellular and molecular changes associated with liver hypertrophy during ALPPS remain ill-defined in humans. METHODS Patients undergoing the ALPPS approach between June 2011 and October 2014 were extracted. Biopsies from the FLR were obtained during the first and second stages. Hematoxylin-eosin staining and immunohistochemical analysis for expression of the proliferating cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) were performed. The proliferative index was defined as: PCNA-TUNEL ratio. RESULTS Eleven of 34 patients treated were studied during both stages. Median FLR hypertrophy was 104 % in 6 days, with a mean difference between preoperative and postoperative volume of 361 ml (P < 0.001). The mean hepatocyte number increased from 52.7 cells/mm(2) in the first stage to 89.6 cells/mm(2) in the second stage (P = 0.001). PCNA expression increased by 190 % between stages with a linear correlation (r = 0.58) with macroscopic hypertrophy. The proliferative index increased from -3.78 cells/mm(2) in first stage to 2.32 cells/mm(2) in the second stage (P = 0.034). CONCLUSIONS The results of the present study indicate that the rapid FLR volumetric increase observed in ALPPS is accompanied by histological and molecular features of hepatocyte cell proliferation.
Collapse
|
12
|
Yang Y, Zhang X, Fu Y, Yang H. Leptin and IL-8: Two novel cytokines screened out in childhood lead exposure. Toxicol Lett 2014; 227:172-8. [DOI: 10.1016/j.toxlet.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/21/2022]
|
13
|
Abstract
The liver is unique in its ability to regenerate in response to injury. A number of evolutionary safeguards have allowed the liver to continue to perform its complex functions despite significant injury. Increased understanding of the regenerative process has significant benefit in the treatment of liver failure. Furthermore, understanding of liver regeneration may shed light on the development of cancer within the cirrhotic liver. This review provides an overview of the models of study currently used in liver regeneration, the molecular basis of liver regeneration, and the role of liver progenitor cells in regeneration of the liver. Specific focus is placed on clinical applications of current knowledge in liver regeneration, including small-for-size liver transplant. Furthermore, cutting-edge topics in liver regeneration, including in vivo animal models for xenogeneic human hepatocyte expansion and the use of decellularized liver matrices as a 3-dimensional scaffold for liver repopulation, are proposed. Unfortunately, despite 50 years of intense study, many gaps remain in the scientific understanding of liver regeneration.
Collapse
|
14
|
Ijiri Y, Kato R, Sadamatsu M, Takano M, Okada Y, Tanaka K, Hayashi T. Chronological changes in circulating levels of soluble tumor necrosis factor receptors 1 and 2 in rats with carbon tetrachloride-induced liver injury. Toxicology 2014; 316:55-60. [PMID: 24389507 DOI: 10.1016/j.tox.2013.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 11/19/2022]
Abstract
Carbon tetrachloride (CCl₄) facilitates the generation of hepatotoxins that can result in morphologic abnormalities, and these abnormalities are reasonably characteristic and reproducible for each particular toxin. It is also known that tumor necrosis factor-alpha (TNF-α) may participate in CCl₄-induced liver injury (CILI). In this study, we observed the chronological changes in circulating soluble tumor necrosis factor receptors 1 and 2 (sTNF-R1 and -R2) in rats with CILI. Laboratory data; circulating levels of TNF-α, sTNF-R1, and sTNF-R2; and TNF-α levels in liver tissues were measured at various time-points. In the CCl₄ group, the plasma aspartate aminotransferase (AST, 7694±3041IU/l)/alanine aminotransferase (ALT, 3241±2159 IU/l) levels peaked at 48 h after CCl₄ administration, but the other laboratory data did not differ significantly from the corresponding data in the controls. Centrilobular hepatocyte necrosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells near the central vein area were observed via hematoxylin eosin (HE) and TUNEL staining, respectively, at 24 and 48 h after CCl₄ administration. Compared to the control group, the CCl₄ group did not show significantly the increased circulating TNF-α levels. But TNF-α levels in the liver tissues first peaked at 1h (5261±2253 pg/g liver), and a second peak was observed at 12h (3806±533 pg/g liver) after CCl₄ administration. Compared to the control group, the CCl₄ group showed significantly increased circulating levels of both sTNF-R1 (797±121pg/ml) and sTNF-R2 (5696±626 pg/ml) 1h after CCl₄ administration. Since the hepatocyte apoptosis may be resulted from binding of TNF-α with TNF-R1 at 24h after administration, and consequently the circulating TNF-R2 level might be approximately 10-fold higher than the circulating TNF-R1 level. In conclusion, increased circulating levels of sTNF-R1 and -R2 potentially contribute to drug-induced liver injury, together with AST/ALT.
Collapse
Affiliation(s)
- Yoshio Ijiri
- Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Ryuji Kato
- Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Maiko Sadamatsu
- Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mina Takano
- Pharmacotherapy II, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshikatsu Okada
- Department of Pathology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhiko Tanaka
- Kidney Center, Shirasagi Hospital, 7-11-23 Kumata, Higashisumiyoshi-ku, Osaka 546-0002, Japan
| | - Tetsuya Hayashi
- Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
15
|
Ben Ya'acov A, Lalazar G, Zolotaryova L, Steinhardt Y, Lichtentein Y, Ilan Y, Shteyer E. Impaired liver regeneration by β-glucosylceramide is associated with decreased fat accumulation. J Dig Dis 2013; 14:425-32. [PMID: 23575221 DOI: 10.1111/1751-2980.12062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of β-glucosylceramide (GC), a natural glycolipid, on hepatic fat accumulation and regenerative response after partial hepatectomy (PH). METHODS Male C57Bl/6 mice were assigned to either 70% PH or sham surgery after receiving daily intraperitoneal injection of GC or vehicle for 3 days. Hepatic fat accumulation, cytokines, cell cycle proteins and adipogenic genes expression were assessed at various time points after PH. RESULTS The administration of GC delayed hepatic triglyceride accumulation during hepatic regeneration. This observation was closely correlated with alterations in the expression of four major adipogenic genes during the course of liver regeneration, with reduced expression 3 h after PH and increased expression 48 h post-surgery. GC significantly reduced hepatocellular proliferation 48 h after PH. In GC-treated mice, both tumor necrosis factor-α and interleukin-6 levels were lower 3, 48 and 72 h after PH compared with the control group. CONCLUSIONS Administration of GC delayed hepatic triglyceride accumulation and suppressed early adipogenic gene expression during the hepatic regenerative response. These changes are closely associated with early inhibition of liver regeneration and temporal alteration of cytokine secretion.
Collapse
Affiliation(s)
- Ami Ben Ya'acov
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ringelhan M, Schmid RM, Geisler F. The NF-κB subunit RelA/p65 is dispensable for successful liver regeneration after partial hepatectomy in mice. PLoS One 2012; 7:e46469. [PMID: 23049704 PMCID: PMC3462179 DOI: 10.1371/journal.pone.0046469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/04/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The transcription factor NF-κB consisting of the subunits RelA/p65 and p50 is known to be quickly activated after partial hepatectomy (PH), the functional relevance of which is still a matter of debate. Current concepts suggest that activation of NF-κB is especially critical in non-parenchymal cells to produce cytokines (TNF, IL-6) to adequately prime hepatocytes to proliferate after PH, while NF-κB within hepatocytes mainly bears cytoprotective functions. METHODS To study the role of the NF-κB pathway in different liver cell compartments, we generated conditional knockout mice in which the transactivating NF-κB subunit RelA/p65 can be inactivated specifically in hepatocytes (Rela(F/F)AlbCre) or both in hepatocytes plus non-parenchymal cells including Kupffer cells (Rela(F/F)MxCre). 2/3 and 80% PH were performed in controls (Rela(F/F)) and conditional knockout mice (Rela(F/F)AlbCre and Rela(F/F)MxCre) and analyzed for regeneration. RESULTS Hepatocyte-specific deletion of RelA/p65 in Rela(F/F)AlbCre mice resulted in an accelerated cell cycle progression without altering liver mass regeneration after 2/3 PH. Surprisingly, hepatocyte apoptosis or liver damage were not enhanced in Rela(F/F)AlbCre mice, even when performing 80% PH. The additional inactivation of RelA/p65 in non-parenchymal cells in Rela(F/F)MxCre mice reversed the small proliferative advantage observed after hepatocyte-specific deletion of RelA/p65 so that Rela(F/F)MxCre mice displayed normal cell cycle progression, DNA-synthesis and liver mass regeneration. CONCLUSION The NF-κB subunit RelA/p65 fulfills opposite functions in different liver cell compartments in liver regeneration after PH. However, the effects observed after conditional deletion of RelA/p65 are small and do not alter liver mass regeneration after PH. We therefore do not consider RelA/p65-containing canonical NF-κB signalling to be essential for successful liver regeneration after PH.
Collapse
Affiliation(s)
- Marc Ringelhan
- 2nd Medical Department, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland M. Schmid
- 2nd Medical Department, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fabian Geisler
- 2nd Medical Department, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
17
|
Taki-Eldin A, Zhou L, Xie HY, Zheng SS. Liver regeneration after liver transplantation. ACTA ACUST UNITED AC 2012; 48:139-53. [PMID: 22572792 DOI: 10.1159/000337865] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/07/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND/PURPOSE The liver has a remarkable capacity to regenerate after injury or resection. The aim of this review is to outline the mechanisms and factors affecting liver regeneration after liver transplantation. METHODS Relevant studies were reviewed using Medline, PubMed and Springer databases. RESULTS A variety of cytokines (such as interleukin-6 and tumor necrosis factor-α), growth factors (like hepatocyte growth factor and transforming growth factor-α) and cells are involved in liver regeneration. Several factors affect liver regeneration after transplantation such as ischemic injury, graft size, immunosuppression, steatosis, donor age and viral hepatitis. CONCLUSION Liver regeneration has been studied for many years. However, further research is essential to reveal the complex processes affecting liver regeneration, which may provide novel strategies in the management of liver transplantation recipients and donors.
Collapse
Affiliation(s)
- A Taki-Eldin
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | |
Collapse
|
18
|
Kim RD, Kim JS, Watanabe G, Mohuczy D, Behrns KE. Liver regeneration and the atrophy-hypertrophy complex. Semin Intervent Radiol 2011; 25:92-103. [PMID: 21326550 DOI: 10.1055/s-2008-1076679] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The atrophy-hypertrophy complex (AHC) refers to the controlled restoration of liver parenchyma following hepatocyte loss. Different types of injury (e.g., toxins, ischemia/reperfusion, biliary obstruction, and resection) elicit the same hypertrophic response in the remnant liver. The AHC involves complex anatomical, histological, cellular, and molecular processes. The signals responsible for these processes are both intrinsic and extrinsic to the liver and involve both physical and molecular events. In patients in whom resection of large liver malignancies would result in an inadequate functional liver remnant, preoperative portal vein embolization may increase the remnant liver sufficiently to permit aggressive resections. Through continued basic science research, the cellular mechanisms of the AHC may be maximized to permit curative resections in patients with potentially prohibitive liver function.
Collapse
Affiliation(s)
- Robin D Kim
- Department of Surgery, Division of General and GI Surgery, University of Florida, Gainesville, Florida
| | | | | | | | | |
Collapse
|
19
|
Abstract
Liver regeneration is known to be a process involving highly organized and ordered tissue growth triggered by the loss of liver tissue, and remains a fascinating topic. A large number of genes are involved in this process, and there exists a sequence of stages that results in liver regeneration, while at the same time inhibitors control the size of the regenerated liver. The initiation step is characterized by priming of quiescent hepatocytes by factors such as TNF-α, IL-6 and nitric oxide. The proliferation step is the step during which hepatocytes enter into the cell cycle's G1 phase and are stimulated by complete mitogens including HGF, TGF-α and EGF. Hepatic stimulator substance, glucagon, insulin, TNF-α, IL-1 and IL-6 have also been implicated in regulating the regeneration process. Inhibitors and stop signals of hepatic regeneration are not well known and only limited information is available. Furthermore, the effects of other factors such as VEGF, PDGF, hypothyroidism, proliferating cell nuclear antigen, heat shock proteins, ischemic-reperfusion injury, steatosis and granulocyte colony-stimulating factor on liver regeneration are also systematically reviewed in this article. A tissue engineering approach using isolated hepatocytes for in vitro tissue generation and heterotopic transplantation of liver cells has been established. The use of stem cells might also be very attractive to overcome the limitation of donor liver tissue. Liver-specific differentiation of embryonic, fetal or adult stem cells is currently under investigation.
Collapse
Affiliation(s)
- Changku Jia
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China.
| |
Collapse
|
20
|
Liu ZC, Chang TMS. Artificial cell microencapsulated stem cells in regenerative medicine, tissue engineering and cell therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:68-79. [PMID: 20384219 PMCID: PMC3518469 DOI: 10.1007/978-1-4419-5786-3_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult stem cells, especially isolated from bone marrow, have been extensively investigated in recent years. Studies focus on their multiple plasticity oftransdifferentiating into various cell lineages and on their potential in cellular therapy in regenerative medicine. In many cases, there is the need for tissue engineering manipulation. Among the different approaches of stem cells tissue engineering, microencapsulation can immobilize stem cells to provide a favorable microenvironment for stem cells survival and functioning. Furthermore, microencapsulated stem cells are immunoisolated after transplantation. We show that one intraperitoneal injection of microencapsulated bone marrow stem cells can prolong the survival of liver failure rat models with 90% of the liver removed surgically. In addition to transdifferentiation, bone marrow stem cells can act as feeder cells. For example, when coencapsulated with hepatocytes, stem cells can increase the viability and function of the hepatocytes in vitro and in vivo.
Collapse
Affiliation(s)
| | - Thomas Ming Swi Chang
- Corresponding Author: Thomas Ming Swi Chang—Artificial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3G 1Y6.
| |
Collapse
|
21
|
Maeda S, Hikiba Y, Sakamoto K, Nakagawa H, Hirata Y, Hayakawa Y, Yanai A, Ogura K, Karin M, Omata M. Ikappa B kinasebeta/nuclear factor-kappaB activation controls the development of liver metastasis by way of interleukin-6 expression. Hepatology 2009; 50:1851-60. [PMID: 19821485 DOI: 10.1002/hep.23199] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Nuclear factor kappaB (NF-kappaB) plays an important role in the regulation of innate immune responses, apoptosis, inflammation, and oncogenesis. NF-kappaB activation in the liver was observed after intrasplenic administration of a lung carcinoma cell line, LLC, which induces liver metastasis. To explore the role of Ikappa B kinase beta (IKKbeta), which is the critical kinase of the IKK complex, and NF-kappaB activation in metastasis, we injected LLC cells into hepatocyte-specific IKKbeta knockout mice (Ikkbeta(Deltahep)), whole-liver knockout (Ikkbeta(DeltaL+H)) mice, and control (Ikkbeta(F/F)) mice. Ikkbeta(DeltaL+H) mice developed liver metastasis with significantly lower liver weights and fewer metastatic foci compared to Ikkbeta(Deltahep) and Ikkbeta(F/F) mice. Furthermore, intrasplenic LLC injection induced the messenger RNA (mRNA) expression of interleukin (IL)-6 and IL-1beta in Ikkbeta(F/F) mice, whereas these genes were less expressed in Ikkbeta(DeltaL+H) mice. IL-6(-/-) mice and treatment with anti-IL-6 receptor antibody showed a lesser degree of metastatic tumor, indicating that IL-6 is associated with liver metastasis. CONCLUSION Collectively, these observations suggest that IKKbeta/NF-kappaB activation controls the development of liver metastasis by way of IL-6 expression and is a potential target for the development of antimetastatic drugs.
Collapse
Affiliation(s)
- Shin Maeda
- Department of Gastroenterology, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ypsilantis P, Lambropoulou M, Anagnostopoulos C, Tentes I, Tsigalou C, Pitiakoudis M, Kortsaris A, Papadopoulos N, Simopoulos C. Mesna preserves hepatocyte regenerating capacity following liver radiofrequency ablation under Pringle maneuver. J Surg Res 2009; 169:44-50. [PMID: 20080247 DOI: 10.1016/j.jss.2009.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/14/2009] [Accepted: 10/01/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND The objectives of the present study were to test the hypothesis that hepatocyte regenerating activity induced by radiofrequency ablation (RFA) of the liver is attenuated when performed under Pringle maneuver, and to investigate the potentially protective effect of mesna prophylactic administration. MATERIALS AND METHODS Wistar rats were subjected to liver RFA (group RFA), RFA plus Pringle maneuver for 30 min (group RFA+P), RFA plus Pringle plus mesna (400mg/kg, per os, 3h prior to operation) (group RFA+P+M), Pringle only (group P), or sham operation (group S) after midline laparotomy. At 1h, liver oxidative state (glutathione to glutathione disulfide ratio-GSH/GSSG) and nuclear factor κB (NF-κB) activity were assessed in liver specimens. At 1, 3, and 6h, the levels of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) were measured in blood serum. At 24h, 48 h, 1 wk, and 3 wk, the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured in blood serum and the histopathologic profile and hepatocyte mitotic activity were assessed in liver specimens. RESULTS Mitotic activity was low but sustained in groups RFA and RFA+P+M, more intense in group P, while suppressed in group RFA+P. Histopathologic profile was deteriorated with lesions being more intense in group RFA+P but significantly less severe in group RFA+P+M. Oxidative stress was equally induced in all experimental groups. NF-κB was activated in groups RFA, RFA+P, and P, but not in group RFA+P+M. IL-6 and TNF-α serum levels were increased; the levels were significantly higher in group RFA+P, while lower in group RFA+P+M. Serum transaminases levels were increased during the first 48 h. CONCLUSIONS Hepatocyte regenerating activity is suppressed following liver RFA under Pringle maneuver. Prophylactic administration of mesna preserves hepatocyte regenerating capacity by attenuating acute inflammatory response and minimizing hepatic tissue injury in the non-ablated liver parenchyma.
Collapse
Affiliation(s)
- Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hodgson AJ, Keasler VV, Slagle BL. Premature cell cycle entry induced by hepatitis B virus regulatory HBx protein during compensatory liver regeneration. Cancer Res 2008; 68:10341-8. [PMID: 19074903 PMCID: PMC2730779 DOI: 10.1158/0008-5472.can-08-2695] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cycles of cell death and compensatory regeneration that occur during chronic hepatitis B virus (HBV) infection are central to viral pathogenesis and are a risk factor for the development of liver cancer. The HBV genome encodes one regulatory protein, HBx, which is required for virus replication, although its precise role in replication and pathogenesis is unclear. Because HBx can induce the G(0)-G(1) transition in cultured cells, the purpose of this study was to examine the effect of HBx during liver regeneration. Transgenic mice expressing HBx (ATX) and their wild-type (WT) littermates were used in the partial hepatectomy (PH) model for compensatory regeneration. Liver tissues collected from ATX and WT mice at varying sacrifice time points after PH were examined for markers of cell cycle progression. When compared with WT liver tissues, ATX livers had evidence of premature cell cycle entry as assessed by several variables (BrdUrd incorporation, proliferating cell nuclear antigen and mitotic indices, and reduced steady-state p21 protein levels). However, HBx did not affect apoptosis, glycogen storage, or PH-induced steatosis. Together, these results show that HBx expression can induce cell cycle progression within the regenerating liver. Our data are consistent with a model in which HBx expression contributes to liver disease and cancer formation by affecting early steps in liver regeneration.
Collapse
Affiliation(s)
- Amanda J. Hodgson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, U.S.A. 77030-3411
| | - Victor V. Keasler
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, U.S.A. 77030-3411
| | - Betty L. Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, U.S.A. 77030-3411
| |
Collapse
|
24
|
Sudo K, Yamada Y, Saito K, Shimizu S, Ohashi H, Kato T, Moriwaki H, Ito H, Seishima M. TNF-alpha and IL-6 signals from the bone marrow derived cells are necessary for normal murine liver regeneration. Biochim Biophys Acta Mol Basis Dis 2008; 1782:671-9. [PMID: 18948191 DOI: 10.1016/j.bbadis.2008.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
In the present study, we used bone marrow transplanted mice and revealed the role of bone marrow derived cells in liver regeneration after partial hepatectomy (PH). Irradiated wild type (WT) mice received a bone marrow transplant from either WT, TNF (tumor necrosis factor)-alpha knockout (KO), or interleukin (IL)-6 KO donors. Both TNF-alpha KO- and IL-6 KO-transplanted mice compared with WT-transplanted mice showed decreased hepatocyte DNA synthesis after PH. TNF-alpha KO-transplanted mice showed no nuclear factor kappa B (NF-kappaB) and signal transducer and activator of transcription (STAT) 3 binding after PH, while IL-6 KO-transplanted mice showed NF-kappaB, but not STAT3, binding. Lack of AP-1 or C/EBP binding or expression of c-jun or c-myc mRNA after PH was unrelated to the timing and amount of DNA replication. In conclusion, The TNF-alpha and IL-6 signals from the blood are necessary for liver regeneration and NF-kappaB and STAT3 binding are activated via TNF-alpha and IL-6 signal pathways.
Collapse
Affiliation(s)
- Kaori Sudo
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kassardjian A, Kreydiyyeh SI. JNK modulates the effect of caspases and NF‐κB in the TNF‐α‐induced down‐regulation of Na+/K+ATPase in HepG2 cells. J Cell Physiol 2008; 216:615-20. [DOI: 10.1002/jcp.21436] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Liver regeneration and tumor stimulation--a review of cytokine and angiogenic factors. J Gastrointest Surg 2008; 12:966-80. [PMID: 18181006 DOI: 10.1007/s11605-007-0459-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/06/2007] [Indexed: 01/31/2023]
Abstract
Liver resection for metastatic (colorectal carcinoma) tumors is often followed by a significant incidence of tumor recurrence. Cellular and molecular changes resulting from hepatectomy and the subsequent liver regeneration process may influence the kinetics of tumor growth and contribute to recurrence. Clinical and experimental evidence suggests that factors involved in liver regeneration may also stimulate the growth of occult tumors and the reactivation of dormant micrometastases. An understanding of the underlying changes may enable alternative strategies to minimize tumor recurrence and improve patient survival after hepatectomy.
Collapse
|
27
|
Sca-1+ endothelial cells (SPECs) reside in the portal area of the liver and contribute to rapid recovery from acute liver disease. Biochem Biophys Res Commun 2008; 365:595-601. [DOI: 10.1016/j.bbrc.2007.10.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/21/2007] [Indexed: 12/19/2022]
|
28
|
Takai S, Nagaki M, Imao M, Kimura K, Kozawa O, Moriwaki H. Intrinsic resistance to TNF-alpha-induced hepatocyte apoptosis in ICR mice correlates with expression of a short form of c-FLIP. J Transl Med 2007; 87:572-81. [PMID: 17372587 DOI: 10.1038/labinvest.3700544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The administration of tumor necrosis factor-alpha (TNF-alpha) or the anti-Fas antibody (Jo-2) to mice causes acute liver failure, which is lethal within hours as a result of the induction of apoptosis in hepatocytes. It was recently reported that nonobese diabetic (NOD) mice are less sensitive to TNF-alpha/D-galactosamine (GalN)-induced liver failure than C57BL/6J (B6) mice, whereas both NOD and B6 mice were sensitive to the lethal effect of Jo-2. In the present study, we investigated the differences between the apoptotic liver cell death induced by TNF-alpha/GalN and that induced by Jo-2. B6, NOD, and Jcl-Imperial Cancer Research (ICR) mice were injected intravenously with TNF-alpha/GalN or Jo-2. ICR mice were less sensitive to TNF-alpha/GalN-induced liver failure than NOD and B6 mice (P<0.0001). In contrast, ICR mice were more sensitive to Jo-2-induced liver failure than B6 mice (P=0.0003). The liver caspase-3, -8 activity, serum transaminase levels, and the number of apoptotic liver nuclei all decreased in ICR in comparison to B6 mice treated with TNF-alpha/GalN. The mRNA expression of TNFR-associated death domain, Fas associated protein with death domain, and Bcl family and nuclear factor-kappaB activation induced by TNF-alpha/GalN were similar in both mice. Interestingly, the short form of cellular FLICE/caspase-8-inhibitory protein (c-FLIP(S)) was constitutively upregulated in ICR mice. In conclusion, these results suggest that ICR mice have an intrinsic resistance to TNF-alpha-induced hepatocyte apoptosis, and that c-FLIP(S) may play a role in TNF-alpha/GalN-induced liver failure, but not in Fas-induced liver failure.
Collapse
Affiliation(s)
- Shinji Takai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abshagen K, Eipel C, Kalff JC, Menger MD, Vollmar B. Loss of NF-kappaB activation in Kupffer cell-depleted mice impairs liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1570-7. [PMID: 17322066 DOI: 10.1152/ajpgi.00399.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kupffer cells (KCs) are located in the liver sinusoids adjacent to hepatocytes and are capable of producing important growth-regulating mediators that exert both stimulatory and inhibitory influences on hepatocyte proliferation by paracrine mechanisms. To elucidate the overall effect of KC depletion on liver regeneration, mice were selectively and long-standing depleted of KCs by liposome-encapsulated dichloromethylene diphosphonate. Using in vivo fluorescence microscopy, immunohistochemistry, Western blot analysis, and NF-kappaB transcription factor DNA binding activity and cytokine assays, we analyzed livers of KC-depleted and KC-competent mice at days 3, 5, and 8 after partial (i.e., 68%) hepatectomy (PH). Selective KC elimination delayed cell proliferation, as indicated by significantly reduced PCNA and cyclin B1 protein expression in liver tissue at day 3 after PH. This was associated with a lower liver weight at day 8 upon PH. Resection-associated activation of NF-kappaB with translocation into parenchymal and nonparenchymal cell nuclei was diminished in livers of KC-depleted mice, primarily at day 3 after PH. KC-depleted mice further lacked the resection-induced rise in TNF-alpha and IL-6 serum concentrations. These findings imply that KCs play a stimulatory role in liver regeneration, mainly by activating NF-kappaB with influence on the cell cycle and by enhancing expression of the proliferative cytokines TNF-alpha and IL-6.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Institute for Experimental Surgery, Univ. of Rostock, 18055 Rostock, Germany
| | | | | | | | | |
Collapse
|
30
|
Stoick-Cooper CL, Moon RT, Weidinger G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 2007; 21:1292-315. [PMID: 17545465 DOI: 10.1101/gad.1540507] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While all animals have evolved strategies to respond to injury and disease, their ability to functionally recover from loss of or damage to organs or appendages varies widely damage to skeletal muscle, but, unlike amphibians and fish, they fail to regenerate heart, lens, retina, or appendages. The relatively young field of regenerative medicine strives to develop therapies aimed at improving regenerative processes in humans and is predicated on >40 years of success with bone marrow transplants. Further progress will be accelerated by implementing knowledge about the molecular mechanisms that regulate regenerative processes in model organisms that naturally possess the ability to regenerate organs and/or appendages. In this review we summarize the current knowledge about the signaling pathways that regulate regeneration of amphibian and fish appendages, fish heart, and mammalian liver and skeletal muscle. While the cellular mechanisms and the cell types involved in regeneration of these systems vary widely, it is evident that shared signals are involved in tissue regeneration. Signals provided by the immune system appear to act as triggers of many regenerative processes. Subsequently, pathways that are best known for their importance in regulating embryonic development, in particular fibroblast growth factor (FGF) and Wnt/beta-catenin signaling (as well as others), are required for progenitor cell formation or activation and for cell proliferation and specification leading to tissue regrowth. Experimental activation of these pathways or interference with signals that inhibit regenerative processes can augment or even trigger regeneration in certain contexts.
Collapse
Affiliation(s)
- Cristi L Stoick-Cooper
- Department of Pharmacology, Howard Hughes Medical Institute, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
31
|
Kreydiyyeh SI, Riman S, Serhan M, Kassardjian A. TNF-alpha modulates hepatic Na+-K+ ATPase activity via PGE2 and EP2 receptors. Prostaglandins Other Lipid Mediat 2007; 83:295-303. [PMID: 17499749 DOI: 10.1016/j.prostaglandins.2007.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 01/20/2007] [Accepted: 02/09/2007] [Indexed: 11/30/2022]
Abstract
The effect of TNF-alpha on liver Na(+)-K(+) ATPase was studied in Sprague-Dawley rats and in HepG2 cells. TNF-alpha was injected intraperitoneally to rats and 4h later the liver was isolated and the activity and protein expression of hepatic Na(+)-K(+) ATPase studied. The cytokine caused a significant down-regulation of the ATPase and a decrease in its activity. This effect disappeared in presence of indomethacin, an inhibitor of COX enzymes, and PGE2 injected to the animals imitated the effect of TNF-alpha. The observed in vivo effects of TNF and PGE2 on the pump appeared again when HepG2 cells were treated with the cytokine or the prostaglandin. The application of different agonist and antagonist to EP receptors showed that the effect of PGE2 is mediated via EP2 receptors. It was concluded that TNF-alpha induces in hepatocytes, PGE2 production which in turn reduces the activity and protein expression of the Na(+)-K(+) ATPase by activating EP2 receptors.
Collapse
|
32
|
Pawlowski R, Jura J. ALR and Liver Regeneration. Mol Cell Biochem 2006; 288:159-69. [PMID: 16691313 DOI: 10.1007/s11010-006-9133-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 01/10/2006] [Indexed: 12/18/2022]
Abstract
Liver possesses the capacity to restore its tissue mass and attain optimal volume in response to physical, infectious and toxic injury. The extraordinary ability of liver to regenerate is the effect of cross-talk between growth factors, cytokines, matrix components and many other factors. In this review we present recent findings and existing information about mechanisms that regulate liver growth, paying attention to augmenter of liver regeneration.
Collapse
Affiliation(s)
- Rafał Pawlowski
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | | |
Collapse
|
33
|
Pahlavan PS, Feldmann RE, Zavos C, Kountouras J. Prometheus' challenge: molecular, cellular and systemic aspects of liver regeneration. J Surg Res 2006; 134:238-51. [PMID: 16458925 DOI: 10.1016/j.jss.2005.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 10/25/2005] [Accepted: 12/15/2005] [Indexed: 02/08/2023]
Abstract
The fascinating aspect of the liver is the capacity to regenerate after injury or resection. A variety of genes, cytokines, growth factors, and cells are involved in liver regeneration. The exact mechanism of regeneration and the interaction between cells and cytokines are not fully understood. There seems to exist a sequence of stages that result in liver regeneration, while at the same time inhibitors control the size of the regenerated liver. It has been proven that hepatocyte growth factor, transforming growth factor, epidermal growth factor, tumor necrosis factor-alpha, interleukins -1 and -6 are the main growth and promoter factors secreted after hepatic injury, partial hepatectomy and after a sequence of different and complex reactions to activate transcription factors, mainly nuclear factor kappaB and signal transduction and activator of transcription-3, affects specific genes to promote liver regeneration. Unraveling the complex processes of liver regeneration may provide novel strategies in the management of patients with end-stage liver disease. In particular, inducing liver regeneration should reduce morbidity for the donor and increase faster recovery for the liver transplantation recipient.
Collapse
Affiliation(s)
- Payam Samareh Pahlavan
- Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
34
|
Abstract
During liver regeneration after partial hepatectomy, normally quiescent hepatocytes undergo one or two rounds of replication to restore the liver mass by a process of compensatory hyperplasia. A large number of genes are involved in liver regeneration, but the essential circuitry required for the process may be categorized into three networks: cytokine, growth factor and metabolic. There is much redundancy within each network, and intricate interactions exist between them. Thus, loss of function from a single gene rarely leads to complete blockage of liver regeneration. The innate immune system plays an important role in the initiation of liver regeneration after partial hepatectomy, and new cytokines and receptors that participate in initiation mechanisms have been identified. Hepatocytes primed by these agents readily respond to growth factors and enter the cell cycle. Presumably, the increased metabolic demands placed on hepatocytes of the regenerating liver are linked to the machinery needed for hepatocyte replication, and may function as a sensor that calibrates the regenerative response according to body demands. In contrast to the regenerative process after partial hepatectomy, which is driven by the replication of existing hepatocytes, liver repopulation after acute liver failure depends on the differentiation of progenitor cells. Such cells are also present in chronic liver diseases, but their contribution to the production of hepatocytes in those conditions is unknown. Most of the new knowledge about the molecular and cellular mechanisms of liver regeneration is both conceptually important and directly relevant to clinical problems.
Collapse
Affiliation(s)
- Nelson Fausto
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195-7470, USA.
| | | | | |
Collapse
|