1
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 PMCID: PMC11781865 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
2
|
Yang Y, Huang L, Zhang N, Deng YN, Cao X, Liang Y, Hou H, Luo Y, Yang Y, Li Q, Liang S. SUMOylation of annexin A6 retards cell migration and tumor growth by suppressing RHOU/AKT1-involved EMT in hepatocellular carcinoma. Cell Commun Signal 2024; 22:206. [PMID: 38566133 PMCID: PMC10986105 DOI: 10.1186/s12964-024-01573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The protein annexin A6 (AnxA6) is involved in numerous membrane-related biological processes including cell migration and invasion by interacting with other proteins. The dysfunction of AnxA6, including protein expression abundance change and imbalance of post-translational modification, is tightly related to multiple cancers. Herein we focus on the biological function of AnxA6 SUMOylation in hepatocellular carcinoma (HCC) progression. METHODS The modification sites of AnxA6 SUMOylation were identified by LC-MS/MS and amino acid site mutation. AnxA6 expression was assessed by immunohistochemistry and immunofluorescence. HCC cells were induced into the epithelial-mesenchymal transition (EMT)-featured cells by 100 ng/mL 12-O-tetradecanoylphorbol-13-acetate exposure. The ability of cell migration was evaluated under AnxA6 overexpression by transwell assay. The SUMO1 modified AnxA6 proteins were enriched from total cellular proteins by immunoprecipitation with anti-SUMO1 antibody, then the SUMOylated AnxA6 was detected by Western blot using anti-AnxA6 antibody. The nude mouse xenograft and orthotopic hepatoma models were established to determine HCC growth and tumorigenicity in vivo. The HCC patient's overall survival versus AnxA6 expression level was evaluated by the Kaplan-Meier method. RESULTS Lys579 is a major SUMO1 modification site of AnxA6 in HCC cells, and SUMOylation protects AnxA6 from degradation via the ubiquitin-proteasome pathway. Compared to the wild-type AnxA6, its SUMO site mutant AnxA6K579R leads to disassociation of the binding of AnxA6 with RHOU, subsequently RHOU-mediated p-AKT1ser473 is upregulated to facilitate cell migration and EMT progression in HCC. Moreover, the SENP1 deSUMOylates AnxA6, and AnxA6 expression is negatively correlated with SENP1 protein expression level in HCC tissues, and a high gene expression ratio of ANXA6/SENP1 indicates a poor overall survival of patients. CONCLUSIONS AnxA6 deSUMOylation contributes to HCC progression and EMT phenotype, and the combination of AnxA6 and SENP1 is a better tumor biomarker for diagnosis of HCC grade malignancy and prognosis.
Collapse
Affiliation(s)
- Yanfang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Lan Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya-Nan Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Xu Cao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Yue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Huijin Hou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Yinheng Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Huang J, Song P, Hang K, Chen Z, Zhu Z, Zhang Y, Xu J, Qin J, Wang B, Qu W, Huang Z, Liang C. Sleep Deprivation Disturbs Immune Surveillance and Promotes the Progression of Hepatocellular Carcinoma. Front Immunol 2021; 12:727959. [PMID: 34539666 PMCID: PMC8446513 DOI: 10.3389/fimmu.2021.727959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Sleep disturbance is common in patients with cancer and is associated with poor prognosis. However, the effects of sleep deprivation (SD) on immune surveillance during the development of hepatocellular carcinoma (HC) and the underlying mechanisms are not known. This was investigated in the present study using mouse models of SD and tumorigenesis. We determined that acute and chronic sleep deprivation (CSD) altered the relative proportions of various immune cell types in blood and peripheral organs. CSD increased tumor volume and weight, an effect that was enhanced with increasing CSD time. Expression of the cell proliferation marker Ki-67 was elevated in tumor tissues, and tumor cell infiltration into adjacent muscles was enhanced by CSD. Multicolor flow cytometry analysis revealed that CSD significantly reduced the numbers of antitumor CD3+ T cells and natural killer (NK) cells and increased that of immunosuppressive CD11b+ cells infiltrating into the tumor microenvironment from the spleen via the peripheral blood. These results indicate that CSD impairs immune surveillance mechanisms and promotes immunosuppression in the tumor microenvironment to accelerate tumor growth, underscoring the importance of alleviating sleep disturbance in HC patients in order to prevent HC progression.
Collapse
MESH Headings
- Acute Disease
- Animals
- CD11b Antigen/metabolism
- CD3 Complex/metabolism
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chronic Disease
- Disease Models, Animal
- Disease Progression
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Mice, Inbred C57BL
- Sleep Deprivation/immunology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
- Tumor Burden
- Tumor Escape
- Tumor Microenvironment/immunology
- Mice
Collapse
Affiliation(s)
- Jing Huang
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiwen Song
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaibin Hang
- Department of Radiology, Naval Medical Center of People’s Liberation Army, Shanghai, China
| | - Zeka Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zidan Zhu
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuye Zhang
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jietian Xu
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Qin
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Binghua Wang
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weimin Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chunmin Liang
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
5
|
Barkauskas DS, Medley G, Liang X, Mohammed YH, Thorling CA, Wang H, Roberts MS. Using in vivo multiphoton fluorescence lifetime imaging to unravel disease-specific changes in the liver redox state. Methods Appl Fluoresc 2020; 8:034003. [PMID: 32422610 DOI: 10.1088/2050-6120/ab93de] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiphoton fluorescence lifetime microscopy has revolutionized studies of pathophysiological and xenobiotic dynamics, enabling the spatial and temporal quantification of these processes in intact organs in vivo. We have previously used multiphoton fluorescence lifetime microscopy to characterise the morphology and amplitude weighted mean fluorescence lifetime of the endogenous fluorescent metabolic cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) of mouse livers in vivo following induction of various disease states. Here, we extend the characterisation of liver disease models by using nonlinear regression to estimate the unbound, bound fluorescence lifetimes for NAD(P)H, flavin adenine dinucleotide (FAD), along with metabolic ratios and examine the impact of using multiple segmentation methods. We found that NAD(P)H amplitude ratio, and fluorescence lifetime redox ratio can be used as discriminators of diseased liver from normal liver. The redox ratio provided a sensitive measure of the changes in hepatic fibrosis and biliary fibrosis. Hepatocellular carcinoma was associated with an increase in spatial heterogeneity and redox ratio coupled with a decrease in mean fluorescence lifetime. We conclude that multiphoton fluorescence lifetime microscopy parameters and metabolic ratios provided insights into the in vivo redox state of diseased compared to normal liver that were not apparent from a global, mean fluorescence lifetime measurement alone.
Collapse
Affiliation(s)
- Deborah S Barkauskas
- Therapeutics Research Group, University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Lin H, Fan T, Sui J, Wang G, Chen J, Zhuo S, Zhang H. Recent advances in multiphoton microscopy combined with nanomaterials in the field of disease evolution and clinical applications to liver cancer. NANOSCALE 2019; 11:19619-19635. [PMID: 31599299 DOI: 10.1039/c9nr04902a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiphoton microscopy (MPM) is expected to become a powerful clinical tool, with its unique advantages of being label-free, high resolution, deep imaging depth, low light photobleaching and low phototoxicity. Nanomaterials, with excellent physical and chemical properties, are biocompatible and easy to prepare and functionalize. The addition of nanomaterials exactly compensates for some defects of MPM, such as the weak endogenous signal strength, limited imaging materials, insufficient imaging depth and lack of therapeutic effects. Therefore, combining MPM with nanomaterials is a promising biomedical imaging method. Here, we mainly review the principle of MPM and its application in liver cancer, especially in disease evolution and clinical applications, including monitoring tumor progression, diagnosing tumor occurrence, detecting tumor metastasis, and evaluating cancer therapy response. Then, we introduce the latest advances in the combination of MPM with nanomaterials, including the MPM imaging of gold nanoparticles (AuNPs) and carbon dots (CDs). Finally, we also propose the main challenges and future research directions of MPM technology in HCC.
Collapse
Affiliation(s)
- Hongxin Lin
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, 350007, China.
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
| | - Jian Sui
- Department of Gastrointestinal surgery, Fujian Provincial Hospital, Fuzhou, 350000, China
| | - Guangxing Wang
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, 350007, China.
| | - Jianxin Chen
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, 350007, China.
| | - Shuangmu Zhuo
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, 350007, China.
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
7
|
Zhao Z, Dai J, Yu Y, Zhang Q, Liu S, Huang G, Zhang Z, Chen T, Pan R, Lu L, Zhang W, Liao W, Lu X. Non-invasive Bioluminescence Monitoring of Hepatocellular Carcinoma Therapy in an HCR Mouse Model. Front Oncol 2019; 9:864. [PMID: 31572672 PMCID: PMC6749040 DOI: 10.3389/fonc.2019.00864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Animal models play crucial roles in the development of anticancer therapeutics. The ability to quickly assess the localized primary hepatocellular carcinoma (HCC) status in a non-invasive manner would significantly improve the effectiveness of anti-HCC therapeutic studies. However, to date, animal models with this advantage are extremely scarce. In this study, we developed a novel animal model for the fast assessment of drug efficacy against primary HCC in vivo. HCC was induced in immunocompetent hepatocarcinogenesis reporter (HCR) mice by diethylnitrosamine (DEN) injection and confirmed by histopathological staining. Using the bioluminescence imaging (BLI) technique, HCC progression was longitudinally visualized and monitored in a non-invasive way. Tests of two clinical drugs showed that both sorafenib and oxaliplatin significantly inhibited the BLI signal in mouse liver in a dose-dependent manner. The in vivo intensity of BLI signals was highly consistent with the final tumor burden status in mouse liver after drug treatment. The inhibitory effect of anti-HCC drugs was accurately evaluated through in vivo BLI intensity detection. Our study successfully established a bioluminescence mouse model for non-invasive real-time monitoring of HCC therapy, and this HCR mouse model would be a useful tool for potential anti-HCC drug screening and new therapeutic strategy development.
Collapse
Affiliation(s)
- Zhu Zhao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sai Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guanmeng Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenyi Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Zheng X, Zhou Y, Yi X, Chen C, Wen C, Ye G, Li X, Tang L, Zhang X, Yang F, Liu G, Li Y, Hou J. IL-21 receptor signaling is essential for control of hepatocellular carcinoma growth and immunological memory for tumor challenge. Oncoimmunology 2018; 7:e1500673. [PMID: 30524894 DOI: 10.1080/2162402x.2018.1500673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-associated cancer. IL-21 regulates both innate and adaptive immune responses and has key roles in antitumor and antiviral responses. However, the role of IL-21 in HCC development is poorly defined. In the current study, we explored the role of IL-21R signaling in HCC growth by using IL-21R knockout mice and HCC mouse models. We discovered that IL-21R signaling deficiency promoted HCC growth in tumor-bearing mice. We showed that IL-21R deletion reduced T cells infiltration and activation as well as their function but increased the accumulation of myeloid-derived suppressor cells in tumor tissues to enhance HCC growth. Furthermore, loss of IL-21R signaling in tumor-bearing mice resulted in an imbalance of the systemic immune system characterized by decreased antitumor immune cells and increased immunosuppressive cells in the spleen and lymph nodes. In addition, we revealed that IL-21R signaling is critical for the expansion of antitumor immune cells in the memory immune response to tumor rechallenge. Finally, we showed that the transcriptional levels of IL-21 in the peritumoral region and IL-21R within the tumor are associated with survival and recurrence of HCC patients. In conclusion, our study demonstrates that IL-21R signaling is essential for controlling the development of HCC and immunological memory response to tumor challenge.
Collapse
Affiliation(s)
- Xinchun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Yi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuqiang Yang
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Li Y, Liu M, Cui J, Yang K, Zhao L, Gong M, Wang Y, He Y, He T, Bi Y. Hepa1-6-FLuc cell line with the stable expression of firefly luciferase retains its primary properties with promising bioluminescence imaging ability. Oncol Lett 2018; 15:6203-6210. [PMID: 29616102 PMCID: PMC5876459 DOI: 10.3892/ol.2018.8132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/01/2018] [Indexed: 01/10/2023] Open
Abstract
Reliable animal models are required for the in vivo study of the molecular mechanisms and effects of chemotherapeutic drugs in hepatocarcinoma. In vivo tracing techniques based on firefly luciferase (FLuc) may optimize the non-invasive monitoring of experimental animals. The present study established a murine Hepa1-6-FLuc cell line that stably expressed a retrovirus-delivered FLuc protein gene. The cell morphology, proliferation, migration and invasion ability of Hepa1-6-FLuc cells were the same as that of the Hepa1-6 cells, and thus is suitable to replace Hepa1-6 cells in the construction of hepatocarcinoma animal models. No differences in subcutaneous tumor mass and its pathomorphology from implanted Hepa1-6-FLuc cells were observed compared with Hepa1-6 control tumors. Bioluminescence imaging indicated that the Luc signal of the Hepa1-6-FLuc cells was consistently strengthened with increases in tumor mass; however, the Luc signal of Hepa1-6-AdFLuc became weaker and eventually disappeared during tumor development. Therefore, compared with the transient expression by adenovirus, stable expression of the FLuc gene in Hepa1-6 cells may better reflect cell proliferation and survival in vivo, and provide a reliable source for the establishment of hepatocarcinoma models.
Collapse
Affiliation(s)
- Yasha Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mengnan Liu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jiejie Cui
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ke Yang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mengjia Gong
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yi Wang
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yun He
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Tongchuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, International Science and Technology Cooperation Base of Child Development and Critical Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
10
|
Chuang MH, Chang JT, Hsu LJ, Jan MS, Lu FJ. Antitumor Activity of the Chinese Medicine JC-001 Is Mediated by Immunomodulation in a Murine Model of Hepatocellular Carcinoma. Integr Cancer Ther 2017; 16:516-525. [PMID: 27698264 PMCID: PMC5739137 DOI: 10.1177/1534735416664173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023] Open
Abstract
JC-001 is a Chinese medicine that has been used to treat liver disease; however, its significance in cancer treatment has not been characterized. In this study, we used an immunocompetent tumor model to characterize the antitumor activity of JC-001. A total of 48 Hepa 1-6 tumor-bearing C57BL/6 mice were randomly grouped into 4 groups and treated with H2O or JC-001 via oral administration. After hepatoma cell lines, including HepG2, Hep3B, SK-Hep-1, and Hepa 1-6, underwent 96 hours of JC-001 treatment, a low cytotoxic effect was observed. In contrast, no direct cytotoxic effect of JC-001 on a normal human liver cell line, THLE-3, was observed under the same incubation conditions. Using a murine tumor model, we found that tumor growth could be inhibited by JC-001 in C57BL/6 mice but not in immunodeficient mice. Histopathological analysis of tumors from C57BL/6 mice revealed immune cell infiltration in tumors from the JC-001-treated group, as observed by hematoxylin and eosin staining; in addition, Ki67, hypoxia-inducible factor-1-α, and high mobility group box 1 expression levels were suppressed in the tumors. Both the coculture assay and murine spleen mRNA quantitative PCR analyses demonstrated that JC-001 could suppress Th17 immunity. Our data suggest that JC-001 is a Chinese medicine with low cytotoxicity that can significantly suppress tumor growth by immune regulation. This herbal remedy has great potential for future clinical application in hepatoma therapy.
Collapse
Affiliation(s)
- Meng-Hsien Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jinghua Tsai Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Chest Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Technology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung,Taiwan
- Division of Allergy, Immunology and Rheumatology, Department ofInternal Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Impact of non-neoplastic vs intratumoural hepatitis B viral DNA and replication on hepatocellular carcinoma recurrence. Br J Cancer 2016; 115:841-7. [PMID: 27537392 PMCID: PMC5046201 DOI: 10.1038/bjc.2016.239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Background: This study aims to determine the impact of intracellular hepatitis B virus (HBV) DNA, covalently closed circular DNA (cccDNA) and viral replicative activity in both tumour and non-neoplastic liver on prognosis and to determine the relationship of viral replicative activity and Ishak fibrosis in predicting outcome following resection. Methods: A total of 99 prospectively enrolled patients treated with primary liver resection for HBV-HCC are included. Intracellular HBV DNA and cccDNA were quantitated by real-time PCR. The RNA-sequencing (RNA-seq) was performed in a subset of 21 patients who had either minimal liver fibrosis (Ishak stages 0–2) or end-stage fibrosis (Ishak stage 6). Results: Tumour tissue contained a lower cccDNA copy number compared with paired non-neoplastic liver, and larger tumours (>3 cm) had less cccDNA compared with small tumours (⩽3 cm). High viral replicative activity in non-neoplastic liver was associated with higher HCC recurrence rate independent of Ishak fibrosis stage. Genes correlated with viral replicative activity in non-neoplastic liver (620 genes) were distinct from those associated with end-stage fibrosis (1226 genes). Genes associated with viral replicative activity were preferentially distributed in regions on chr3, chr16 and chr19. Conclusions: Viral replicative activity in non-neoplastic liver is associated with HCC recurrence through mechanisms that are distinct from and independent of Ishak fibrosis stage.
Collapse
|
12
|
Wang Q, Luan W, Warren L, Kadri H, Kim KW, Goz V, Blank S, Isabel Fiel M, Hiotis SP. Autologous Tumor Cell Lysate-Loaded Dendritic Cell Vaccine Inhibited Tumor Progression in an Orthotopic Murine Model for Hepatocellular Carcinoma. Ann Surg Oncol 2016; 23:574-582. [PMID: 26786094 DOI: 10.1245/s10434-015-5035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/12/2022]
Abstract
The immune status of the tumor microenvironment influences tumor progression, and hepatocellular carcinoma (HCC) with an immunosuppressive signature often is associated with a poor prognosis. This study examined the impact of a bone marrow-derived dendritic cell (DC) vaccine loaded with autologous tumor cell lysate on tumor progression and the tumor microenvironment using an orthotopic murine HCC model. An orthotopic murine HCC was established by implantation of Hepa1-6 cells in the liver. The impact of DC vaccine loaded with Hepa1-6 cell lysate on tumor progression, survival, and tumor-infiltrating lymphocytes and cytokines was examined. Treating mice with DC vaccine loaded with Hepa1-6 cell lysate inhibited the progression of murine HCC generated through orthotopic implantation of Hepa1-6 cells and resulted in a 90 % survival rate by day 60 compared with a survival rate lower than 5 % for untreated mice. This anti-tumor response was associated with inhibition of STAT3 phosphorylation within the tumor. The DC vaccine reduced accumulation of Foxp3+CD4+ regulatory T cells within the tumor microenvironment and prevented TGF-β production from the tumor tissue. Tumor cell lysate-loaded DC vaccine prevented HCC progression in a clinically relevant orthotopic murine HCC model. The effect of DC vaccine on the accumulation of Foxp3+CD4+ regulatory T cells within the tumor microenvironment and on the production of TGF-β suggests that tumor regression by DC vaccination may be associated with an altered immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Qin Wang
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Luan
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leslie Warren
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hena Kadri
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Won Kim
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vadim Goz
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sima Blank
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Isabel Fiel
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spiros P Hiotis
- Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Li N, Zheng D, Xue J, Guo W, Shi J, Sun J, Lu C, Zheng W, Wu M, Cheng S. Cidan inhibits liver cancer cell growth by reducing COX-2 and VEGF expression and cell cycle arrest. Exp Ther Med 2015; 9:1709-1718. [PMID: 26136881 DOI: 10.3892/etm.2015.2351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Cidan is a traditional Chinese medicine formula that has been used for >10 years as an antitumor drug. In the present study, the antitumor effect of cidan on hepatocellular carcinoma (HCC) and the underlying molecular mechanisms were investigated. A total of 372 patients with primary HCC, as confirmed by pathological examination in the Eastern Hepatobiliary Surgery Hospital and Beijing Oncology Hospital of Weida TCM, were prospectively enrolled in the study. In total, 92 patients were treated with cidan capsules for three months postoperatively, while 280 patients served as controls. The efficacy of cidan was analyzed by monitoring associated symptoms and liver function tests, including measuring the levels of α-1-fetoprotein, α-L-fucosidase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase. In addition, in vivo analysis was performed using mice Hepa1-6 xenograft models, while in vitro studies were performed with SMMC-7721 and CSQT-1 cells; this included cidan-dependent cell viability and migration assays, cell cycle analyses and the evaluation of cidan effects on cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) mRNA transcription rates using quantitative polymerase chain reaction. The postoperative two-year overall survival (77 and 58% for the cidan and control groups, respectively; P<0.01) and disease-free survival (36 and 24% for the cidan and control groups, respectively; P<0.01) rates were superior in the cidan-treated group when compared with the control. In addition, the size and weight of the tumor xenografts in the C57BL/6 mice were significantly reduced in a time- and dose-dependent manner following cidan treatment (P<0.01). Cidan significantly reduced the cell viability of SMMC-7721 and CSQT-1 cells after four and five days when compared with the control (P<0.01). Furthermore, COX-2 and VEGF mRNA expression levels decreased following cidan treatment (P<0.01), and cidan treatment resulted in enhanced G1 and G2/M cell cycle arrest of CSQT-1 cells. Therefore, cidan effectively inhibited cell proliferation, reduced cell viability and downregulated COX-2 and VEGF expression levels in hepatoma cells.
Collapse
Affiliation(s)
- Nan Li
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Donghai Zheng
- Beijing Oncology Hospital Of Weida TCM, Beijing 100023, P.R. China
| | - Jie Xue
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Weixing Guo
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Juxian Sun
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Chongde Lu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Weida Zheng
- Beijing Oncology Hospital Of Weida TCM, Beijing 100023, P.R. China
| | - Mengchao Wu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
14
|
Wang H, Liang X, Mohammed YH, Thomas JA, Bridle KR, Thorling CA, Grice JE, Xu ZP, Liu X, Crawford DHG, Roberts MS. Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6:780-92. [PMID: 25798303 PMCID: PMC4361433 DOI: 10.1364/boe.6.000780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 05/07/2023]
Abstract
Conventional histology with light microscopy is essential in the diagnosis of most liver diseases. Recently, a concept of real-time histology with optical biopsy has been advocated. In this study, live mice livers (normal, with fibrosis, steatosis, hepatocellular carcinoma and ischemia-reperfusion injury) were imaged by MPM-FLIM for stain-free real-time histology. The acquired MPM-FLIM images were compared with conventional histological images. MPM-FLIM imaged subsurface cellular and subcellular histopathological hallmarks of live liver in mice models at high resolution. Additional information such as distribution of stellate cell associated autofluorescence and fluorescence lifetime changes was also gathered by MPM-FLIM simultaneously, which cannot be obtained from conventional histology. MPM-FLIM could simultaneously image and quantify the cellular morphology and microenvironment of live livers without conventional biopsy or fluorescent dyes. We anticipate that in the near future MPM-FLIM will be evaluated from bench to bedside, leading to real-time histology and dynamic monitoring of human liver diseases.
Collapse
Affiliation(s)
- Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102,
Australia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 S. Dongfang Road, Shanghai, 200127,
China
- These authors contributed equally to this work
| | - Xiaowen Liang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102,
Australia
- These authors contributed equally to this work
| | - Yousuf H. Mohammed
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102,
Australia
| | - James A. Thomas
- Department of Gastroenterology, Princess Alexandra Hospital, School of Medicine, The University of Queensland, Woolloongabba, QLD 4102,
Australia
| | - Kim R. Bridle
- School of Medicine, The University of Queensland, Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD 4120,
Australia
| | - Camilla A. Thorling
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102,
Australia
| | - Jeffrey E. Grice
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102,
Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Xin Liu
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102,
Australia
| | - Darrell H. G. Crawford
- School of Medicine, The University of Queensland, Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD 4120,
Australia
| | - Michael S. Roberts
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102,
Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001,
Australia
| |
Collapse
|
15
|
Establishment of animal models with orthotopic hepatocellular carcinoma. Nucl Med Mol Imaging 2014; 48:173-9. [PMID: 25177373 DOI: 10.1007/s13139-014-0288-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most serious health problems worldwide. Many researchers have investigated HCC at the level of genes, ribonucleic acid, proteins, cells, and animals. The resultant development of animal models and monitoring methods has improved the effectiveness of guidelines provided to researchers working with preclinical HCC models. HCC in animal models and clinical patients is monitored by various current imaging modalities such as ultrasound (US) imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), positron emission tomography (PET) and bioluminescence imaging (BLI). These techniques are currently used for both preclinical and clinical assessment, and provide valuable diagnostic information. In this article, we have mainly reviewed the established animal models and the assessment of orthotopic HCC using imaging modalities. Additionally, we have introduced a method of orthotopic HCC rat model developed in our laboratory. We have furthermore evaluated the occurrence of tumor mass using molecular imaging techniques.
Collapse
|
16
|
Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, Shi L, Wu D, Dong C, Liu H. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 2014; 74:1969-82. [PMID: 24525743 DOI: 10.1158/0008-5472.can-13-2534] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interleukin (IL)-17A is expressed in the tumor microenvironment where it appears to contribute to tumor development, but its precise role in tumor immunity remains controversial. Here, we report mouse genetic evidence that IL-17A is critical for tumor growth. IL-17A-deficient mice exhibited reduced tumor growth, whereas systemic administration of recombinant mouse IL-17A promoted the growth of hepatocellular carcinoma. The tumor-promoting effect of IL-17A was mediated through suppression of antitumor responses, especially CD8(+) T-cell responses. Furthermore, we found that IL-17A was produced mainly by Vγ4 γδ T cells, insofar as depleting Vγ4 γδ T cells reduced tumor growth, whereas adoptive transfer of Vγ4 γδ T cells promoted tumor growth. Mechanistic investigations showed that IL-17A induced CXCL5 production by tumor cells to enhance the infiltration of myeloid-derived suppressor cells (MDSC) to tumor sites in a CXCL5/CXCR2-dependent manner. IL-17A also promoted the suppressive activity of MDSC to reinforce suppression of tumoral immunity. Moreover, we found that MDSC could induce IL-17A-producing γδ T cells via production of IL-1β and IL-23. Conversely, IL-17A could also enhance production of IL-1β and IL-23 in MDSC as a positive feedback. Together, our results revealed a novel mechanism involving cross-talk among γδ T cells, MDSCs, and tumor cells through IL-17A production. These findings offer new insights into how IL-17A influences tumor immunity, with potential implications for the development of tumor immunotherapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Authors' Affiliations: Laboratory of Cellular and Molecular Tumor Immunology, Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou; Department of Basic Medical Science, Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; and Department of Immunology, MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|